.NET Decompiler with support for PDB generation, ReadyToRun, Metadata (&more) - cross-platform!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

447 lines
17 KiB

// Copyright (c) 2016 Daniel Grunwald
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Threading;
using ICSharpCode.Decompiler.IL;
using ICSharpCode.Decompiler.Util;
namespace ICSharpCode.Decompiler.FlowAnalysis
{
/// <summary>
/// Implements the "reaching definitions" analysis.
///
/// https://en.wikipedia.org/wiki/Reaching_definition
///
/// By "definitions", we mean stores to local variables.
/// </summary>
/// <remarks>
/// Possible "definitions" that store to a variable are:
/// * <c>StLoc</c>
/// * <c>TryCatchHandler</c> (for the exception variable)
/// * <c>ReachingDefinitionsVisitor.UninitializedVariable</c> for uninitialized variables.
/// Note that we do not keep track of <c>LdLoca</c>/references/pointers.
/// The analysis will likely be wrong/incomplete for variables with <c>AddressCount != 0</c>.
///
/// Note: this class does not store the computed information, because doing so
/// would significantly increase the number of states we need to store.
/// The only way to get the computed information out of this class is to
/// derive from the class and override the Visit methods at the points of interest
/// (usually the load instructions).
/// </remarks>
class ReachingDefinitionsVisitor : DataFlowVisitor<ReachingDefinitionsVisitor.State>
{
#region State representation
/// <summary>
/// The state during the reaching definitions analysis.
/// </summary>
/// <remarks>
/// A state can either be reachable, or unreachable:
/// 1) unreachable
/// Note that during the analysis, "unreachable" just means we have not yet found a path
/// from the entry point to the node. States transition from unreachable to reachable as
/// the analysis processes more control flow paths.
/// 2) reachable
/// In this case, the state contains, for each variable, the set of stores that might have
/// written to the variable before the control flow reached the state's source code position.
/// This set does not include stores that were definitely overwritten by other stores to the
/// same variable.
/// During the analysis, the set of stores gets extended as the analysis processes more code paths.
///
/// The reachable state could be represented as a `Dictionary{ILVariable, ISet{ILInstruction}}`.
/// To consume less memory, we instead assign an integer index to all stores in the analyzed function ("store index"),
/// and store the state as a `BitSet` instead.
/// Each bit in the set corresponds to one store instruction, and is `true` iff the store is a reaching definition
/// for the variable it is storing to.
/// The `allStores` array has the same length as the bit sets and holds the corresponding `ILInstruction` objects (store instructions).
/// All stores for a single variable occupy a contiguous segment of the `allStores` array (and thus also of the `state`),
/// which allows us to efficient clear out all stores that get overwritten by a new store.
/// </remarks>
[DebuggerDisplay("{bits}")]
public struct State : IDataFlowState<State>
{
/// <summary>
/// This bitset contains three different kinds of bits:
/// Reachable bit: (bit 0)
/// This state's position is reachable from the entry point.
///
/// Reaching uninitialized variable bit: (bit si, where si > 0 and <c>allStores[si] == null</c>)
/// There is a code path from the scope's entry point to this state's position
/// that does not pass through any store to the variable.
///
/// <c>firstStoreIndexForVariable[v.IndexInScope]</c> gives the index of that variable's uninitialized bit.
///
/// Reaching store bit (bit si, where <c>allStores[si] != null</c>):
/// There is a code path from the entry point to this state's position
/// that passes through through <c>allStores[si]</c> and does not pass through another
/// store to <c>allStores[si].Variable</c>.
///
/// The indices for a variable's reaching store bits are between <c>firstStoreIndexForVariable[v.IndexInScope]</c>
/// to <c>firstStoreIndexForVariable[v.IndexInScope + 1]</c> (both endpoints exclusive!).
/// </summary>
/// <remarks>
/// The initial state has the "reachable bit" and the "reaching uninitialized variable bits" set,
/// and the "reaching store bits" unset.
///
/// The bottom state has all bits unset.
/// </remarks>
readonly BitSet bits;
public State(BitSet bits)
{
this.bits = bits;
}
public bool LessThanOrEqual(State otherState)
{
return bits.IsSubsetOf(otherState.bits);
}
public State Clone()
{
return new State(bits.Clone());
}
public void ReplaceWith(State newContent)
{
bits.ReplaceWith(newContent.bits);
}
public void JoinWith(State incomingState)
{
// When control flow is joined together, we can simply union our bitsets.
// (a store is reachable iff it is reachable through either incoming path)
bits.UnionWith(incomingState.bits);
}
public void TriggerFinally(State finallyState)
{
// Some cases to consider:
// try { v = 1; } finally { v = 2; }
// => only the store 2 is visible after the try-finally
// v = 1; try { v = 2; } finally { }
// => both stores are visible after the try-finally
// In general, we're looking for the post-state of the finally-block
// assume the finally-block was entered without throwing an exception.
// But we don't have that information (it would require analyzing the finally block twice),
// so the next best thing is to approximate it by just keeping the state after the finally
// (i.e. doing nothing at all).
// However, the DataFlowVisitor requires us to return bottom if the end-state of the
// try-block was unreachable, so let's so at least that.
// (note that in principle we could just AND the reachable and uninitialized bits,
// but we don't have a good solution for the normal store bits)
if (IsReachable)
{
ReplaceWith(finallyState);
}
}
public bool IsBottom {
get { return !bits[ReachableBit]; }
}
public void ReplaceWithBottom()
{
// We need to clear all bits, not just ReachableBit, so that
// the bottom state behaves as expected in joins.
bits.ClearAll();
}
public bool IsReachable {
get { return bits[ReachableBit]; }
}
/// <summary>
/// Clears all store bits between startStoreIndex (incl.) and endStoreIndex (excl.)
/// </summary>
public void KillStores(int startStoreIndex, int endStoreIndex)
{
Debug.Assert(startStoreIndex >= FirstStoreIndex);
Debug.Assert(endStoreIndex >= startStoreIndex);
bits.Clear(startStoreIndex, endStoreIndex);
}
public bool IsReachingStore(int storeIndex)
{
return bits[storeIndex];
}
public void SetStore(int storeIndex)
{
Debug.Assert(storeIndex >= FirstStoreIndex);
bits.Set(storeIndex);
}
}
/// <summary>
/// To distinguish unreachable from reachable states, we use the first bit in the bitset to store the 'reachable bit'.
/// If this bit is set, the state is reachable, and the remaining bits
/// </summary>
const int ReachableBit = 0;
/// <summary>
/// Because bit number 0 is the ReachableBit, we start counting store indices at 1.
/// </summary>
const int FirstStoreIndex = 1;
#endregion
#region Documentation + member fields
protected readonly CancellationToken cancellationToken;
/// <summary>
/// The function being analyzed.
/// </summary>
protected readonly ILFunction scope;
/// <summary>
/// All stores for all variables in the scope.
///
/// <c>state[storeIndex]</c> is true iff <c>allStores[storeIndex]</c> is a reaching definition.
/// Invariant: <c>state.bits.Length == allStores.Length</c>.
/// </summary>
readonly ILInstruction[] allStores;
/// <summary>
/// Maps instructions appearing in <c>allStores</c> to their index.
///
/// Invariant: <c>allStores[storeIndexMap[inst]] == inst</c>
///
/// Does not contain <c>UninitializedVariable</c> (as that special instruction has multiple store indices, one per variable)
/// </summary>
readonly Dictionary<ILInstruction, int> storeIndexMap = new Dictionary<ILInstruction, int>();
/// <summary>
/// For all variables <c>v</c>: <c>allStores[firstStoreIndexForVariable[v.IndexInScope]]</c> is the <c>UninitializedVariable</c> entry for <c>v</c>.
/// The next few stores (up to <c>firstStoreIndexForVariable[v.IndexInScope + 1]</c>, exclusive) are the full list of stores for <c>v</c>.
/// </summary>
/// <remarks>
/// Invariant: <c>firstStoreIndexForVariable[scope.Variables.Count] == allStores.Length</c>
/// </remarks>
readonly int[] firstStoreIndexForVariable;
/// <summary>
/// <c>analyzedVariables[v.IndexInScope]</c> is true iff RD analysis is enabled for the variable.
/// </summary>
readonly BitSet analyzedVariables;
#endregion
#region Constructor
/// <summary>
/// Prepare reaching definitions analysis for the specified variable scope.
///
/// The analysis will track all variables in the scope for which the predicate returns true
/// ("analyzed variables").
/// </summary>
public ReachingDefinitionsVisitor(ILFunction scope, Predicate<ILVariable> pred, CancellationToken cancellationToken)
: this(scope, GetActiveVariableBitSet(scope, pred), cancellationToken)
{
this.cancellationToken = cancellationToken;
}
static BitSet GetActiveVariableBitSet(ILFunction scope, Predicate<ILVariable> pred)
{
if (scope == null)
throw new ArgumentNullException(nameof(scope));
BitSet activeVariables = new BitSet(scope.Variables.Count);
for (int vi = 0; vi < scope.Variables.Count; vi++)
{
activeVariables[vi] = pred(scope.Variables[vi]);
}
return activeVariables;
}
/// <summary>
/// Prepare reaching definitions analysis for the specified variable scope.
///
/// The analysis will track all variables in the scope for which <c>analyzedVariables[v.IndexInScope]</c> is true.
/// </summary>
public ReachingDefinitionsVisitor(ILFunction scope, BitSet analyzedVariables, CancellationToken cancellationToken)
{
if (scope == null)
throw new ArgumentNullException(nameof(scope));
if (analyzedVariables == null)
throw new ArgumentNullException(nameof(analyzedVariables));
this.scope = scope;
this.analyzedVariables = analyzedVariables;
base.flagsRequiringManualImpl |= InstructionFlags.MayWriteLocals;
// Fill `allStores` and `storeIndexMap` and `firstStoreIndexForVariable`.
var storesByVar = FindAllStoresByVariable(scope, analyzedVariables, cancellationToken);
allStores = new ILInstruction[FirstStoreIndex + storesByVar.Sum(l => l != null ? l.Count : 0)];
firstStoreIndexForVariable = new int[scope.Variables.Count + 1];
int si = FirstStoreIndex;
for (int vi = 0; vi < storesByVar.Length; vi++)
{
cancellationToken.ThrowIfCancellationRequested();
firstStoreIndexForVariable[vi] = si;
var stores = storesByVar[vi];
if (stores != null)
{
int expectedStoreCount = scope.Variables[vi].StoreInstructions.Count;
// Extra store for the uninitialized state.
expectedStoreCount += 1;
Debug.Assert(stores.Count == expectedStoreCount);
stores.CopyTo(allStores, si);
// Add all stores except for the first (representing the uninitialized state)
// to storeIndexMap.
for (int i = 1; i < stores.Count; i++)
{
storeIndexMap.Add(stores[i], si + i);
}
si += stores.Count;
}
}
firstStoreIndexForVariable[scope.Variables.Count] = si;
Debug.Assert(si == allStores.Length);
Initialize(CreateInitialState());
}
/// <summary>
/// Fill <c>allStores</c> and <c>storeIndexMap</c>.
/// </summary>
static List<ILInstruction>[] FindAllStoresByVariable(ILFunction scope, BitSet activeVariables, CancellationToken cancellationToken)
{
// For each variable, find the list of ILInstructions storing to that variable
List<ILInstruction>[] storesByVar = new List<ILInstruction>[scope.Variables.Count];
for (int vi = 0; vi < storesByVar.Length; vi++)
{
if (activeVariables[vi])
storesByVar[vi] = new List<ILInstruction> { null };
}
foreach (var inst in scope.Descendants)
{
if (inst.HasDirectFlag(InstructionFlags.MayWriteLocals))
{
cancellationToken.ThrowIfCancellationRequested();
ILVariable v = ((IInstructionWithVariableOperand)inst).Variable;
if (v.Function == scope && activeVariables[v.IndexInFunction])
{
storesByVar[v.IndexInFunction].Add(inst);
}
}
}
return storesByVar;
}
/// <summary>
/// Create the initial state (reachable bit + uninit variable bits set, store bits unset).
/// </summary>
State CreateInitialState()
{
BitSet initialState = new BitSet(allStores.Length);
initialState.Set(ReachableBit);
for (int vi = 0; vi < scope.Variables.Count; vi++)
{
if (analyzedVariables[vi])
{
Debug.Assert(allStores[firstStoreIndexForVariable[vi]] == null);
initialState.Set(firstStoreIndexForVariable[vi]);
}
}
return new State(initialState);
}
#endregion
#region Analysis
void HandleStore(ILInstruction inst, ILVariable v)
{
cancellationToken.ThrowIfCancellationRequested();
if (v.Function == scope && analyzedVariables[v.IndexInFunction] && state.IsReachable)
{
// Clear the set of stores for this variable:
state.KillStores(firstStoreIndexForVariable[v.IndexInFunction], firstStoreIndexForVariable[v.IndexInFunction + 1]);
// And replace it with this store:
int si = storeIndexMap[inst];
state.SetStore(si);
// We should call PropagateStateOnException() here because we changed the state.
// But that's equal to: currentStateOnException.UnionWith(state);
// Because we're already guaranteed that state.LessThanOrEqual(currentStateOnException)
// when entering HandleStore(), all we really need to do to achieve what PropagateStateOnException() does
// is to add the single additional store to the exceptional state as well:
currentStateOnException.SetStore(si);
}
}
protected internal override void VisitStLoc(StLoc inst)
{
inst.Value.AcceptVisitor(this);
HandleStore(inst, inst.Variable);
}
protected override void HandleMatchStore(MatchInstruction inst)
{
HandleStore(inst, inst.Variable);
}
protected override void BeginTryCatchHandler(TryCatchHandler inst)
{
base.BeginTryCatchHandler(inst);
HandleStore(inst, inst.Variable);
}
protected internal override void VisitPinnedRegion(PinnedRegion inst)
{
inst.Init.AcceptVisitor(this);
HandleStore(inst, inst.Variable);
inst.Body.AcceptVisitor(this);
}
public bool IsAnalyzedVariable(ILVariable v)
{
return v.Function == scope && analyzedVariables[v.IndexInFunction];
}
/// <summary>
/// Gets all stores to <c>v</c> that reach the specified state.
///
/// Precondition: v is an analyzed variable.
/// </summary>
protected IEnumerable<ILInstruction> GetStores(State state, ILVariable v)
{
Debug.Assert(v.Function == scope && analyzedVariables[v.IndexInFunction]);
int endIndex = firstStoreIndexForVariable[v.IndexInFunction + 1];
for (int si = firstStoreIndexForVariable[v.IndexInFunction] + 1; si < endIndex; si++)
{
if (state.IsReachingStore(si))
{
Debug.Assert(((IInstructionWithVariableOperand)allStores[si]).Variable == v);
yield return allStores[si];
}
}
}
/// <summary>
/// Gets whether <c>v</c> is potentially uninitialized in the specified state.
///
/// Precondition: v is an analyzed variable.
/// </summary>
protected bool IsPotentiallyUninitialized(State state, ILVariable v)
{
Debug.Assert(v.Function == scope && analyzedVariables[v.IndexInFunction]);
return state.IsReachingStore(firstStoreIndexForVariable[v.IndexInFunction]);
}
#endregion
}
}