// Copyright (c) 2016 Daniel Grunwald // // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE // FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using System.Threading; using ICSharpCode.Decompiler.IL; using ICSharpCode.Decompiler.Util; namespace ICSharpCode.Decompiler.FlowAnalysis { /// /// Implements the "reaching definitions" analysis. /// /// https://en.wikipedia.org/wiki/Reaching_definition /// /// By "definitions", we mean stores to local variables. /// /// /// Possible "definitions" that store to a variable are: /// * StLoc /// * TryCatchHandler (for the exception variable) /// * ReachingDefinitionsVisitor.UninitializedVariable for uninitialized variables. /// Note that we do not keep track of LdLoca/references/pointers. /// The analysis will likely be wrong/incomplete for variables with AddressCount != 0. /// /// Note: this class does not store the computed information, because doing so /// would significantly increase the number of states we need to store. /// The only way to get the computed information out of this class is to /// derive from the class and override the Visit methods at the points of interest /// (usually the load instructions). /// class ReachingDefinitionsVisitor : DataFlowVisitor { #region State representation /// /// The state during the reaching definitions analysis. /// /// /// A state can either be reachable, or unreachable: /// 1) unreachable /// Note that during the analysis, "unreachable" just means we have not yet found a path /// from the entry point to the node. States transition from unreachable to reachable as /// the analysis processes more control flow paths. /// 2) reachable /// In this case, the state contains, for each variable, the set of stores that might have /// written to the variable before the control flow reached the state's source code position. /// This set does not include stores that were definitely overwritten by other stores to the /// same variable. /// During the analysis, the set of stores gets extended as the analysis processes more code paths. /// /// The reachable state could be represented as a `Dictionary{ILVariable, ISet{ILInstruction}}`. /// To consume less memory, we instead assign an integer index to all stores in the analyzed function ("store index"), /// and store the state as a `BitSet` instead. /// Each bit in the set corresponds to one store instruction, and is `true` iff the store is a reaching definition /// for the variable it is storing to. /// The `allStores` array has the same length as the bit sets and holds the corresponding `ILInstruction` objects (store instructions). /// All stores for a single variable occupy a contiguous segment of the `allStores` array (and thus also of the `state`), /// which allows us to efficient clear out all stores that get overwritten by a new store. /// [DebuggerDisplay("{bits}")] public struct State : IDataFlowState { /// /// This bitset contains three different kinds of bits: /// Reachable bit: (bit 0) /// This state's position is reachable from the entry point. /// /// Reaching uninitialized variable bit: (bit si, where si > 0 and allStores[si] == null) /// There is a code path from the scope's entry point to this state's position /// that does not pass through any store to the variable. /// /// firstStoreIndexForVariable[v.IndexInScope] gives the index of that variable's uninitialized bit. /// /// Reaching store bit (bit si, where allStores[si] != null): /// There is a code path from the entry point to this state's position /// that passes through through allStores[si] and does not pass through another /// store to allStores[si].Variable. /// /// The indices for a variable's reaching store bits are between firstStoreIndexForVariable[v.IndexInScope] /// to firstStoreIndexForVariable[v.IndexInScope + 1] (both endpoints exclusive!). /// /// /// The initial state has the "reachable bit" and the "reaching uninitialized variable bits" set, /// and the "reaching store bits" unset. /// /// The bottom state has all bits unset. /// readonly BitSet bits; public State(BitSet bits) { this.bits = bits; } public bool LessThanOrEqual(State otherState) { return bits.IsSubsetOf(otherState.bits); } public State Clone() { return new State(bits.Clone()); } public void ReplaceWith(State newContent) { bits.ReplaceWith(newContent.bits); } public void JoinWith(State incomingState) { // When control flow is joined together, we can simply union our bitsets. // (a store is reachable iff it is reachable through either incoming path) bits.UnionWith(incomingState.bits); } public void TriggerFinally(State finallyState) { // Some cases to consider: // try { v = 1; } finally { v = 2; } // => only the store 2 is visible after the try-finally // v = 1; try { v = 2; } finally { } // => both stores are visible after the try-finally // In general, we're looking for the post-state of the finally-block // assume the finally-block was entered without throwing an exception. // But we don't have that information (it would require analyzing the finally block twice), // so the next best thing is to approximate it by just keeping the state after the finally // (i.e. doing nothing at all). // However, the DataFlowVisitor requires us to return bottom if the end-state of the // try-block was unreachable, so let's so at least that. // (note that in principle we could just AND the reachable and uninitialized bits, // but we don't have a good solution for the normal store bits) if (IsReachable) { ReplaceWith(finallyState); } } public bool IsBottom { get { return !bits[ReachableBit]; } } public void ReplaceWithBottom() { // We need to clear all bits, not just ReachableBit, so that // the bottom state behaves as expected in joins. bits.ClearAll(); } public bool IsReachable { get { return bits[ReachableBit]; } } /// /// Clears all store bits between startStoreIndex (incl.) and endStoreIndex (excl.) /// public void KillStores(int startStoreIndex, int endStoreIndex) { Debug.Assert(startStoreIndex >= FirstStoreIndex); Debug.Assert(endStoreIndex >= startStoreIndex); bits.Clear(startStoreIndex, endStoreIndex); } public bool IsReachingStore(int storeIndex) { return bits[storeIndex]; } public void SetStore(int storeIndex) { Debug.Assert(storeIndex >= FirstStoreIndex); bits.Set(storeIndex); } } /// /// To distinguish unreachable from reachable states, we use the first bit in the bitset to store the 'reachable bit'. /// If this bit is set, the state is reachable, and the remaining bits /// const int ReachableBit = 0; /// /// Because bit number 0 is the ReachableBit, we start counting store indices at 1. /// const int FirstStoreIndex = 1; #endregion #region Documentation + member fields protected readonly CancellationToken cancellationToken; /// /// The function being analyzed. /// protected readonly ILFunction scope; /// /// All stores for all variables in the scope. /// /// state[storeIndex] is true iff allStores[storeIndex] is a reaching definition. /// Invariant: state.bits.Length == allStores.Length. /// readonly ILInstruction[] allStores; /// /// Maps instructions appearing in allStores to their index. /// /// Invariant: allStores[storeIndexMap[inst]] == inst /// /// Does not contain UninitializedVariable (as that special instruction has multiple store indices, one per variable) /// readonly Dictionary storeIndexMap = new Dictionary(); /// /// For all variables v: allStores[firstStoreIndexForVariable[v.IndexInScope]] is the UninitializedVariable entry for v. /// The next few stores (up to firstStoreIndexForVariable[v.IndexInScope + 1], exclusive) are the full list of stores for v. /// /// /// Invariant: firstStoreIndexForVariable[scope.Variables.Count] == allStores.Length /// readonly int[] firstStoreIndexForVariable; /// /// analyzedVariables[v.IndexInScope] is true iff RD analysis is enabled for the variable. /// readonly BitSet analyzedVariables; #endregion #region Constructor /// /// Prepare reaching definitions analysis for the specified variable scope. /// /// The analysis will track all variables in the scope for which the predicate returns true /// ("analyzed variables"). /// public ReachingDefinitionsVisitor(ILFunction scope, Predicate pred, CancellationToken cancellationToken) : this(scope, GetActiveVariableBitSet(scope, pred), cancellationToken) { this.cancellationToken = cancellationToken; } static BitSet GetActiveVariableBitSet(ILFunction scope, Predicate pred) { if (scope == null) throw new ArgumentNullException(nameof(scope)); BitSet activeVariables = new BitSet(scope.Variables.Count); for (int vi = 0; vi < scope.Variables.Count; vi++) { activeVariables[vi] = pred(scope.Variables[vi]); } return activeVariables; } /// /// Prepare reaching definitions analysis for the specified variable scope. /// /// The analysis will track all variables in the scope for which analyzedVariables[v.IndexInScope] is true. /// public ReachingDefinitionsVisitor(ILFunction scope, BitSet analyzedVariables, CancellationToken cancellationToken) { if (scope == null) throw new ArgumentNullException(nameof(scope)); if (analyzedVariables == null) throw new ArgumentNullException(nameof(analyzedVariables)); this.scope = scope; this.analyzedVariables = analyzedVariables; base.flagsRequiringManualImpl |= InstructionFlags.MayWriteLocals; // Fill `allStores` and `storeIndexMap` and `firstStoreIndexForVariable`. var storesByVar = FindAllStoresByVariable(scope, analyzedVariables, cancellationToken); allStores = new ILInstruction[FirstStoreIndex + storesByVar.Sum(l => l != null ? l.Count : 0)]; firstStoreIndexForVariable = new int[scope.Variables.Count + 1]; int si = FirstStoreIndex; for (int vi = 0; vi < storesByVar.Length; vi++) { cancellationToken.ThrowIfCancellationRequested(); firstStoreIndexForVariable[vi] = si; var stores = storesByVar[vi]; if (stores != null) { int expectedStoreCount = scope.Variables[vi].StoreInstructions.Count; // Extra store for the uninitialized state. expectedStoreCount += 1; Debug.Assert(stores.Count == expectedStoreCount); stores.CopyTo(allStores, si); // Add all stores except for the first (representing the uninitialized state) // to storeIndexMap. for (int i = 1; i < stores.Count; i++) { storeIndexMap.Add(stores[i], si + i); } si += stores.Count; } } firstStoreIndexForVariable[scope.Variables.Count] = si; Debug.Assert(si == allStores.Length); Initialize(CreateInitialState()); } /// /// Fill allStores and storeIndexMap. /// static List[] FindAllStoresByVariable(ILFunction scope, BitSet activeVariables, CancellationToken cancellationToken) { // For each variable, find the list of ILInstructions storing to that variable List[] storesByVar = new List[scope.Variables.Count]; for (int vi = 0; vi < storesByVar.Length; vi++) { if (activeVariables[vi]) storesByVar[vi] = new List { null }; } foreach (var inst in scope.Descendants) { if (inst.HasDirectFlag(InstructionFlags.MayWriteLocals)) { cancellationToken.ThrowIfCancellationRequested(); ILVariable v = ((IInstructionWithVariableOperand)inst).Variable; if (v.Function == scope && activeVariables[v.IndexInFunction]) { storesByVar[v.IndexInFunction].Add(inst); } } } return storesByVar; } /// /// Create the initial state (reachable bit + uninit variable bits set, store bits unset). /// State CreateInitialState() { BitSet initialState = new BitSet(allStores.Length); initialState.Set(ReachableBit); for (int vi = 0; vi < scope.Variables.Count; vi++) { if (analyzedVariables[vi]) { Debug.Assert(allStores[firstStoreIndexForVariable[vi]] == null); initialState.Set(firstStoreIndexForVariable[vi]); } } return new State(initialState); } #endregion #region Analysis void HandleStore(ILInstruction inst, ILVariable v) { cancellationToken.ThrowIfCancellationRequested(); if (v.Function == scope && analyzedVariables[v.IndexInFunction] && state.IsReachable) { // Clear the set of stores for this variable: state.KillStores(firstStoreIndexForVariable[v.IndexInFunction], firstStoreIndexForVariable[v.IndexInFunction + 1]); // And replace it with this store: int si = storeIndexMap[inst]; state.SetStore(si); // We should call PropagateStateOnException() here because we changed the state. // But that's equal to: currentStateOnException.UnionWith(state); // Because we're already guaranteed that state.LessThanOrEqual(currentStateOnException) // when entering HandleStore(), all we really need to do to achieve what PropagateStateOnException() does // is to add the single additional store to the exceptional state as well: currentStateOnException.SetStore(si); } } protected internal override void VisitStLoc(StLoc inst) { inst.Value.AcceptVisitor(this); HandleStore(inst, inst.Variable); } protected override void HandleMatchStore(MatchInstruction inst) { HandleStore(inst, inst.Variable); } protected override void BeginTryCatchHandler(TryCatchHandler inst) { base.BeginTryCatchHandler(inst); HandleStore(inst, inst.Variable); } protected internal override void VisitPinnedRegion(PinnedRegion inst) { inst.Init.AcceptVisitor(this); HandleStore(inst, inst.Variable); inst.Body.AcceptVisitor(this); } public bool IsAnalyzedVariable(ILVariable v) { return v.Function == scope && analyzedVariables[v.IndexInFunction]; } /// /// Gets all stores to v that reach the specified state. /// /// Precondition: v is an analyzed variable. /// protected IEnumerable GetStores(State state, ILVariable v) { Debug.Assert(v.Function == scope && analyzedVariables[v.IndexInFunction]); int endIndex = firstStoreIndexForVariable[v.IndexInFunction + 1]; for (int si = firstStoreIndexForVariable[v.IndexInFunction] + 1; si < endIndex; si++) { if (state.IsReachingStore(si)) { Debug.Assert(((IInstructionWithVariableOperand)allStores[si]).Variable == v); yield return allStores[si]; } } } /// /// Gets whether v is potentially uninitialized in the specified state. /// /// Precondition: v is an analyzed variable. /// protected bool IsPotentiallyUninitialized(State state, ILVariable v) { Debug.Assert(v.Function == scope && analyzedVariables[v.IndexInFunction]); return state.IsReachingStore(firstStoreIndexForVariable[v.IndexInFunction]); } #endregion } }