.NET Decompiler with support for PDB generation, ReadyToRun, Metadata (&more) - cross-platform!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

128 lines
5.0 KiB

// Copyright (c) 2019 Daniel Grunwald
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
namespace ICSharpCode.Decompiler.IL.Transforms
{
/// <summary>
/// Context object for the ILInstruction.Extract() operation.
/// </summary>
class ExtractionContext
{
/// <summary>
/// Nearest function, used for registering the new locals that are created by extraction.
/// </summary>
readonly ILFunction Function;
/// <summary>
/// Combined flags of all instructions being moved.
/// </summary>
internal InstructionFlags FlagsBeingMoved;
/// <summary>
/// List of actions to be executed when performing the extraction.
///
/// Each function in this list has the side-effect of replacing the instruction-to-be-moved
/// with a load of a fresh temporary variable; and returns the the store to the temporary variable,
/// which will be inserted at block-level.
/// </summary>
readonly List<Func<ILInstruction>> MoveActions = new List<Func<ILInstruction>>();
ExtractionContext(ILFunction function)
{
Debug.Assert(function != null);
this.Function = function;
}
internal void RegisterMove(ILInstruction predecessor)
{
FlagsBeingMoved |= predecessor.Flags;
MoveActions.Add(delegate {
var v = Function.RegisterVariable(VariableKind.StackSlot, predecessor.ResultType);
predecessor.ReplaceWith(new LdLoc(v));
return new StLoc(v, predecessor);
});
}
internal void RegisterMoveIfNecessary(ILInstruction predecessor)
{
if (!CanReorderWithInstructionsBeingMoved(predecessor)) {
RegisterMove(predecessor);
}
}
/// <summary>
/// Currently, <c>predecessor</c> is evaluated before the instructions being moved.
/// If this function returns true, <c>predecessor</c> can stay as-is, despite the move changing the evaluation order.
/// If this function returns false, <c>predecessor</c> will need to also move, to ensure the evaluation order stays unchanged.
/// </summary>
public bool CanReorderWithInstructionsBeingMoved(ILInstruction predecessor)
{
// We could track the instructions being moved and be smarter about unnecessary moves,
// but given the limited scenarios where extraction is used so far,
// this seems unnecessary.
return predecessor.Flags == InstructionFlags.None;
}
/// <summary>
/// Extracts the specified instruction:
/// The instruction is replaced with a load of a new temporary variable;
/// and the instruction is moved to a store to said variable at block-level.
///
/// May return null if extraction is not possible.
/// </summary>
public static ILVariable Extract(ILInstruction instToExtract)
{
var function = instToExtract.Ancestors.OfType<ILFunction>().First();
ExtractionContext ctx = new ExtractionContext(function);
ctx.FlagsBeingMoved = instToExtract.Flags;
ILInstruction inst = instToExtract;
while (inst != null) {
if (inst.Parent is IfInstruction ifInst && inst.SlotInfo != IfInstruction.ConditionSlot) {
// this context doesn't support extraction, but maybe we can create a block here?
if (ifInst.ResultType == StackType.Void) {
Block newBlock = new Block();
inst.ReplaceWith(newBlock);
newBlock.Instructions.Add(inst);
}
}
if (inst.Parent is Block block && block.Kind == BlockKind.ControlFlow) {
// We've reached the target block, and extraction is possible all the way.
int insertIndex = inst.ChildIndex;
// Move instToExtract itself:
var v = function.RegisterVariable(VariableKind.StackSlot, instToExtract.ResultType);
instToExtract.ReplaceWith(new LdLoc(v));
block.Instructions.Insert(insertIndex, new StLoc(v, instToExtract));
// Apply the other move actions:
foreach (var moveAction in ctx.MoveActions) {
block.Instructions.Insert(insertIndex, moveAction());
}
return v;
}
if (!inst.Parent.PrepareExtract(inst.ChildIndex, ctx))
return null;
inst = inst.Parent;
}
return null;
}
}
}