mirror of https://github.com/icsharpcode/ILSpy.git
				
				
			
			You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							2231 lines
						
					
					
						
							99 KiB
						
					
					
				
			
		
		
	
	
							2231 lines
						
					
					
						
							99 KiB
						
					
					
				// Copyright (c) 2014 Daniel Grunwald | 
						|
//  | 
						|
// Permission is hereby granted, free of charge, to any person obtaining a copy of this | 
						|
// software and associated documentation files (the "Software"), to deal in the Software | 
						|
// without restriction, including without limitation the rights to use, copy, modify, merge, | 
						|
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons | 
						|
// to whom the Software is furnished to do so, subject to the following conditions: | 
						|
//  | 
						|
// The above copyright notice and this permission notice shall be included in all copies or | 
						|
// substantial portions of the Software. | 
						|
//  | 
						|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, | 
						|
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR | 
						|
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE | 
						|
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR | 
						|
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | 
						|
// DEALINGS IN THE SOFTWARE. | 
						|
 | 
						|
using System; | 
						|
using System.Collections.Generic; | 
						|
using System.Diagnostics; | 
						|
using System.Linq; | 
						|
using ICSharpCode.Decompiler.CSharp.Resolver; | 
						|
using ICSharpCode.Decompiler.CSharp.Syntax; | 
						|
using ICSharpCode.Decompiler.CSharp.Transforms; | 
						|
using ICSharpCode.Decompiler.CSharp.TypeSystem; | 
						|
using ICSharpCode.Decompiler.IL; | 
						|
using ICSharpCode.Decompiler.Semantics; | 
						|
using ICSharpCode.Decompiler.TypeSystem; | 
						|
using ICSharpCode.Decompiler.TypeSystem.Implementation; | 
						|
using ICSharpCode.Decompiler.Util; | 
						|
using ExpressionType = System.Linq.Expressions.ExpressionType; | 
						|
using PrimitiveType = ICSharpCode.Decompiler.CSharp.Syntax.PrimitiveType; | 
						|
using System.Threading; | 
						|
 | 
						|
namespace ICSharpCode.Decompiler.CSharp | 
						|
{ | 
						|
	/// <summary> | 
						|
	/// Translates from ILAst to C# expressions. | 
						|
	/// </summary> | 
						|
	/// <remarks> | 
						|
	/// Every translated expression must have: | 
						|
	/// * an ILInstruction annotation | 
						|
	/// * a ResolveResult annotation | 
						|
	/// Post-condition for Translate() calls: | 
						|
	///   * The type of the ResolveResult must match the StackType of the corresponding ILInstruction, | 
						|
	///     except that the width of integer types does not need to match (I4, I and I8 count as the same stack type here) | 
						|
	///   * Evaluating the resulting C# expression shall produce the same side effects as evaluating the ILInstruction. | 
						|
	///   * If the IL instruction has <c>ResultType == StackType.Void</c>, the C# expression may evaluate to an arbitrary type and value. | 
						|
	///   * Otherwise, evaluating the resulting C# expression shall produce a similar value as evaluating the ILInstruction. | 
						|
	///      * If the IL instruction evaluates to an integer stack type (I4, I, or I8), | 
						|
	///        the C# type of the resulting expression shall also be an integer (or enum/pointer/char/bool) type. | 
						|
	///        * If sizeof(C# type) == sizeof(IL stack type), the values must be the same. | 
						|
	///        * If sizeof(C# type) > sizeof(IL stack type), the C# value truncated to the width of the IL stack type must equal the IL value. | 
						|
	///        * If sizeof(C# type) < sizeof(IL stack type), the C# value (sign/zero-)extended to the width of the IL stack type | 
						|
	///          must equal the IL value. | 
						|
	///          Whether sign or zero extension is used depends on the sign of the C# type (as determined by <c>IType.GetSign()</c>). | 
						|
	///      * If the IL instruction is a lifted nullable operation, and the underlying operation evaluates to an integer stack type, | 
						|
	///        the C# type of the resulting expression shall be Nullable{T}, where T is an integer type (as above). | 
						|
	///        The C# value shall be null iff the IL-level value evaluates to null, and otherwise the values shall correspond | 
						|
	///        as with non-lifted integer operations. | 
						|
	///      * If the IL instruction evaluates to a managed reference (Ref) created by starting tracking of an unmanaged reference, | 
						|
	///        the C# instruction may evaluate to any integral/enum/pointer type that when converted to pointer type | 
						|
	///        is equivalent to the managed reference. | 
						|
	///      * Otherwise, the C# type of the resulting expression shall match the IL stack type, | 
						|
	///        and the evaluated values shall be the same. | 
						|
	/// </remarks> | 
						|
	class ExpressionBuilder : ILVisitor<TranslationContext, TranslatedExpression> | 
						|
	{ | 
						|
		readonly IDecompilerTypeSystem typeSystem; | 
						|
		readonly ITypeResolveContext decompilationContext; | 
						|
		internal readonly ICompilation compilation; | 
						|
		internal readonly CSharpResolver resolver; | 
						|
		readonly TypeSystemAstBuilder astBuilder; | 
						|
		readonly TypeInference typeInference; | 
						|
		internal readonly DecompilerSettings settings; | 
						|
		readonly CancellationToken cancellationToken; | 
						|
		 | 
						|
		public ExpressionBuilder(IDecompilerTypeSystem typeSystem, ITypeResolveContext decompilationContext, DecompilerSettings settings, CancellationToken cancellationToken) | 
						|
		{ | 
						|
			Debug.Assert(decompilationContext != null); | 
						|
			this.typeSystem = typeSystem; | 
						|
			this.decompilationContext = decompilationContext; | 
						|
			this.settings = settings; | 
						|
			this.cancellationToken = cancellationToken; | 
						|
			this.compilation = decompilationContext.Compilation; | 
						|
			this.resolver = new CSharpResolver(new CSharpTypeResolveContext(compilation.MainAssembly, null, decompilationContext.CurrentTypeDefinition, decompilationContext.CurrentMember)); | 
						|
			this.astBuilder = new TypeSystemAstBuilder(resolver); | 
						|
			this.astBuilder.AlwaysUseShortTypeNames = true; | 
						|
			this.astBuilder.AddResolveResultAnnotations = true; | 
						|
			this.typeInference = new TypeInference(compilation) { Algorithm = TypeInferenceAlgorithm.Improved }; | 
						|
		} | 
						|
 | 
						|
		public AstType ConvertType(IType type) | 
						|
		{ | 
						|
			var astType = astBuilder.ConvertType(type); | 
						|
			Debug.Assert(astType.Annotation<TypeResolveResult>() != null); | 
						|
			return astType; | 
						|
		} | 
						|
		 | 
						|
		public ExpressionWithResolveResult ConvertConstantValue(ResolveResult rr, bool allowImplicitConversion = false) | 
						|
		{ | 
						|
			var expr = astBuilder.ConvertConstantValue(rr); | 
						|
			if (!allowImplicitConversion) { | 
						|
				if (expr is NullReferenceExpression && rr.Type.Kind != TypeKind.Null) { | 
						|
					expr = new CastExpression(ConvertType(rr.Type), expr); | 
						|
				} else { | 
						|
					switch (rr.Type.GetDefinition()?.KnownTypeCode) { | 
						|
						case KnownTypeCode.SByte: | 
						|
						case KnownTypeCode.Byte: | 
						|
						case KnownTypeCode.Int16: | 
						|
						case KnownTypeCode.UInt16: | 
						|
							expr = new CastExpression(new PrimitiveType(KnownTypeReference.GetCSharpNameByTypeCode(rr.Type.GetDefinition().KnownTypeCode)), expr); | 
						|
							break; | 
						|
					} | 
						|
				} | 
						|
			} | 
						|
			var exprRR = expr.Annotation<ResolveResult>(); | 
						|
			if (exprRR == null) { | 
						|
				exprRR = rr; | 
						|
				expr.AddAnnotation(rr); | 
						|
			} | 
						|
			return new ExpressionWithResolveResult(expr, exprRR); | 
						|
		} | 
						|
		 | 
						|
		public TranslatedExpression Translate(ILInstruction inst, IType typeHint = null) | 
						|
		{ | 
						|
			Debug.Assert(inst != null); | 
						|
			cancellationToken.ThrowIfCancellationRequested(); | 
						|
			TranslationContext context = new TranslationContext { | 
						|
				TypeHint = typeHint ?? SpecialType.UnknownType | 
						|
			}; | 
						|
			var cexpr = inst.AcceptVisitor(this, context); | 
						|
			#if DEBUG | 
						|
			if (inst.ResultType != StackType.Void && cexpr.Type.Kind != TypeKind.Unknown && inst.ResultType != StackType.Unknown) { | 
						|
				// Validate the Translate post-condition (documented at beginning of this file): | 
						|
				if (inst.ResultType.IsIntegerType()) { | 
						|
					Debug.Assert(cexpr.Type.GetStackType().IsIntegerType(), "IL instructions of integer type must convert into C# expressions of integer type"); | 
						|
					Debug.Assert(cexpr.Type.GetSign() != Sign.None, "Must have a sign specified for zero/sign-extension"); | 
						|
				} else if (inst is ILiftableInstruction liftable && liftable.IsLifted) { | 
						|
					Debug.Assert(NullableType.IsNullable(cexpr.Type)); | 
						|
					IType underlying = NullableType.GetUnderlyingType(cexpr.Type); | 
						|
					if (liftable.UnderlyingResultType.IsIntegerType()) { | 
						|
						Debug.Assert(underlying.GetStackType().IsIntegerType(), "IL instructions of integer type must convert into C# expressions of integer type"); | 
						|
						Debug.Assert(underlying.GetSign() != Sign.None, "Must have a sign specified for zero/sign-extension"); | 
						|
					} else { | 
						|
						Debug.Assert(underlying.GetStackType() == liftable.UnderlyingResultType); | 
						|
					} | 
						|
				} else if (inst.ResultType == StackType.Ref) { | 
						|
					Debug.Assert(cexpr.Type.GetStackType() == StackType.Ref || cexpr.Type.GetStackType().IsIntegerType()); | 
						|
				} else { | 
						|
					Debug.Assert(cexpr.Type.GetStackType() == inst.ResultType); | 
						|
				} | 
						|
			} | 
						|
			#endif | 
						|
			return cexpr; | 
						|
		} | 
						|
		 | 
						|
		public TranslatedExpression TranslateCondition(ILInstruction condition, bool negate = false) | 
						|
		{ | 
						|
			var expr = Translate(condition, compilation.FindType(KnownTypeCode.Boolean)); | 
						|
			return expr.ConvertToBoolean(this, negate); | 
						|
		} | 
						|
		 | 
						|
		internal ExpressionWithResolveResult ConvertVariable(ILVariable variable) | 
						|
		{ | 
						|
			Expression expr; | 
						|
			if (variable.Kind == VariableKind.Parameter && variable.Index < 0) | 
						|
				expr = new ThisReferenceExpression(); | 
						|
			else | 
						|
				expr = new IdentifierExpression(variable.Name); | 
						|
			if (variable.Type.Kind == TypeKind.ByReference) { | 
						|
				// When loading a by-ref parameter, use 'ref paramName'. | 
						|
				// We'll strip away the 'ref' when dereferencing. | 
						|
				 | 
						|
				// Ensure that the IdentifierExpression itself also gets a resolve result, as that might | 
						|
				// get used after the 'ref' is stripped away: | 
						|
				var elementType = ((ByReferenceType)variable.Type).ElementType; | 
						|
				expr.WithRR(new ILVariableResolveResult(variable, elementType)); | 
						|
				 | 
						|
				expr = new DirectionExpression(FieldDirection.Ref, expr); | 
						|
				return expr.WithRR(new ByReferenceResolveResult(elementType, isOut: false)); | 
						|
			} else { | 
						|
				return expr.WithRR(new ILVariableResolveResult(variable, variable.Type)); | 
						|
			} | 
						|
		} | 
						|
 | 
						|
		ExpressionWithResolveResult ConvertField(IField field, ILInstruction target = null) | 
						|
		{ | 
						|
			var lookup = new MemberLookup(resolver.CurrentTypeDefinition, resolver.CurrentTypeDefinition.ParentAssembly); | 
						|
			var targetExpression = TranslateTarget(field, target, true); | 
						|
			 | 
						|
			var result = lookup.Lookup(targetExpression.ResolveResult, field.Name, EmptyList<IType>.Instance, false) as MemberResolveResult; | 
						|
			 | 
						|
			if (result == null || !result.Member.Equals(field)) | 
						|
				targetExpression = targetExpression.ConvertTo(field.DeclaringType, this); | 
						|
			 | 
						|
			return new MemberReferenceExpression(targetExpression, field.Name) | 
						|
				.WithRR(new MemberResolveResult(targetExpression.ResolveResult, field)); | 
						|
		} | 
						|
		 | 
						|
		TranslatedExpression IsType(IsInst inst) | 
						|
		{ | 
						|
			var arg = Translate(inst.Argument); | 
						|
			return new IsExpression(arg.Expression, ConvertType(inst.Type)) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(new TypeIsResolveResult(arg.ResolveResult, inst.Type, compilation.FindType(TypeCode.Boolean))); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitIsInst(IsInst inst, TranslationContext context) | 
						|
		{ | 
						|
			var arg = Translate(inst.Argument); | 
						|
			return new AsExpression(arg.Expression, ConvertType(inst.Type)) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(new ConversionResolveResult(inst.Type, arg.ResolveResult, Conversion.TryCast)); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitNewObj(NewObj inst, TranslationContext context) | 
						|
		{ | 
						|
			return new CallBuilder(this, typeSystem, settings).Build(inst); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitNewArr(NewArr inst, TranslationContext context) | 
						|
		{ | 
						|
			var dimensions = inst.Indices.Count; | 
						|
			var args = inst.Indices.Select(arg => TranslateArrayIndex(arg)).ToArray(); | 
						|
			var expr = new ArrayCreateExpression { Type = ConvertType(inst.Type) }; | 
						|
			if (expr.Type is ComposedType ct) { | 
						|
				// change "new (int[,])[10] to new int[10][,]" | 
						|
				ct.ArraySpecifiers.MoveTo(expr.AdditionalArraySpecifiers); | 
						|
			} | 
						|
			expr.Arguments.AddRange(args.Select(arg => arg.Expression)); | 
						|
			return expr.WithILInstruction(inst) | 
						|
				.WithRR(new ArrayCreateResolveResult(new ArrayType(compilation, inst.Type, dimensions), args.Select(a => a.ResolveResult).ToList(), new ResolveResult[0])); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitLocAlloc(LocAlloc inst, TranslationContext context) | 
						|
		{ | 
						|
			TranslatedExpression countExpression; | 
						|
			PointerType pointerType; | 
						|
			if (inst.Argument.MatchBinaryNumericInstruction(BinaryNumericOperator.Mul, out var left, out var right) | 
						|
				&& right.UnwrapConv(ConversionKind.SignExtend).UnwrapConv(ConversionKind.ZeroExtend).MatchSizeOf(out var elementType)) | 
						|
			{ | 
						|
				// Determine the element type from the sizeof | 
						|
				countExpression = Translate(left.UnwrapConv(ConversionKind.ZeroExtend)); | 
						|
				pointerType = new PointerType(elementType); | 
						|
			} else { | 
						|
				// Determine the element type from the expected pointer type in this context | 
						|
				pointerType = context.TypeHint as PointerType; | 
						|
				if (pointerType != null && GetPointerArithmeticOffset( | 
						|
						inst.Argument, Translate(inst.Argument), | 
						|
						pointerType, checkForOverflow: true, | 
						|
						unwrapZeroExtension: true | 
						|
					) is TranslatedExpression offset) | 
						|
				{ | 
						|
					countExpression = offset; | 
						|
					elementType = pointerType.ElementType; | 
						|
				} else { | 
						|
					elementType = compilation.FindType(KnownTypeCode.Byte); | 
						|
					pointerType = new PointerType(elementType); | 
						|
					countExpression = Translate(inst.Argument); | 
						|
				} | 
						|
			} | 
						|
			countExpression = countExpression.ConvertTo(compilation.FindType(KnownTypeCode.Int32), this); | 
						|
			return new StackAllocExpression { | 
						|
				Type = ConvertType(elementType), | 
						|
				CountExpression = countExpression | 
						|
			}.WithILInstruction(inst).WithRR(new ResolveResult(new PointerType(elementType))); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitLdcI4(LdcI4 inst, TranslationContext context) | 
						|
		{ | 
						|
			string literalValue = null; | 
						|
			if (ShouldDisplayAsHex(inst.Value, inst.Parent)) { | 
						|
				literalValue = $"0x{inst.Value:X}"; | 
						|
			} | 
						|
			var expr = new PrimitiveExpression(inst.Value, literalValue) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(new ConstantResolveResult(compilation.FindType(KnownTypeCode.Int32), inst.Value)); | 
						|
			return AdjustConstantExpressionToType(expr, context.TypeHint); | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitLdcI8(LdcI8 inst, TranslationContext context) | 
						|
		{ | 
						|
			string literalValue = null; | 
						|
			if (ShouldDisplayAsHex(inst.Value, inst.Parent)) { | 
						|
				literalValue = $"0x{inst.Value:X}"; | 
						|
			} | 
						|
			return new PrimitiveExpression(inst.Value, literalValue) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(new ConstantResolveResult(compilation.FindType(KnownTypeCode.Int64), inst.Value)); | 
						|
		} | 
						|
 | 
						|
		private bool ShouldDisplayAsHex(long value, ILInstruction parent) | 
						|
		{ | 
						|
			if (parent is Conv conv) | 
						|
				parent = conv.Parent; | 
						|
			if (value <= 9) | 
						|
				return false; | 
						|
			switch (parent) { | 
						|
				case BinaryNumericInstruction bni: | 
						|
					if (bni.Operator == BinaryNumericOperator.BitAnd | 
						|
						|| bni.Operator == BinaryNumericOperator.BitOr | 
						|
						|| bni.Operator == BinaryNumericOperator.BitXor) | 
						|
						return true; | 
						|
					break; | 
						|
			} | 
						|
			return false; | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitLdcF4(LdcF4 inst, TranslationContext context) | 
						|
		{ | 
						|
			return new PrimitiveExpression(inst.Value) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(new ConstantResolveResult(compilation.FindType(KnownTypeCode.Single), inst.Value)); | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitLdcF8(LdcF8 inst, TranslationContext context) | 
						|
		{ | 
						|
			return new PrimitiveExpression(inst.Value) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(new ConstantResolveResult(compilation.FindType(KnownTypeCode.Double), inst.Value)); | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitLdcDecimal(LdcDecimal inst, TranslationContext context) | 
						|
		{ | 
						|
			var expr = astBuilder.ConvertConstantValue(compilation.FindType(KnownTypeCode.Decimal), inst.Value); | 
						|
			return new TranslatedExpression(expr.WithILInstruction(inst)); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitLdStr(LdStr inst, TranslationContext context) | 
						|
		{ | 
						|
			return new PrimitiveExpression(inst.Value) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(new ConstantResolveResult(compilation.FindType(KnownTypeCode.String), inst.Value)); | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitLdNull(LdNull inst, TranslationContext context) | 
						|
		{ | 
						|
			return GetDefaultValueExpression(SpecialType.NullType).WithILInstruction(inst); | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitDefaultValue(DefaultValue inst, TranslationContext context) | 
						|
		{ | 
						|
			return GetDefaultValueExpression(inst.Type).WithILInstruction(inst); | 
						|
		} | 
						|
 | 
						|
		internal ExpressionWithResolveResult GetDefaultValueExpression(IType type) | 
						|
		{ | 
						|
			Expression expr; | 
						|
			IType constantType; | 
						|
			if (type.IsReferenceType == true || type.IsKnownType(KnownTypeCode.NullableOfT)) { | 
						|
				expr = new NullReferenceExpression(); | 
						|
				constantType = SpecialType.NullType; | 
						|
			} else { | 
						|
				expr = new DefaultValueExpression(ConvertType(type)); | 
						|
				constantType = type; | 
						|
			} | 
						|
			return expr.WithRR(new ConstantResolveResult(constantType, null)); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitSizeOf(SizeOf inst, TranslationContext context) | 
						|
		{ | 
						|
			return new SizeOfExpression(ConvertType(inst.Type)) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(new SizeOfResolveResult(compilation.FindType(KnownTypeCode.Int32), inst.Type, null)); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitLdTypeToken(LdTypeToken inst, TranslationContext context) | 
						|
		{ | 
						|
			return new MemberReferenceExpression(new TypeOfExpression(ConvertType(inst.Type)), "TypeHandle") | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(new TypeOfResolveResult(compilation.FindType(new TopLevelTypeName("System", "RuntimeTypeHandle")), inst.Type)); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitBitNot(BitNot inst, TranslationContext context) | 
						|
		{ | 
						|
			var argument = Translate(inst.Argument); | 
						|
			var argUType = NullableType.GetUnderlyingType(argument.Type); | 
						|
 | 
						|
			if (argUType.GetStackType().GetSize() < inst.UnderlyingResultType.GetSize() | 
						|
			    || argUType.Kind == TypeKind.Enum && argUType.IsSmallIntegerType() | 
						|
				|| argUType.GetStackType() == StackType.I | 
						|
				|| argUType.IsKnownType(KnownTypeCode.Boolean) | 
						|
				|| argUType.IsKnownType(KnownTypeCode.Char)) | 
						|
			{ | 
						|
				// Argument is undersized (even after implicit integral promotion to I4) | 
						|
				// -> we need to perform sign/zero-extension before the BitNot. | 
						|
				// Same if the argument is an enum based on a small integer type | 
						|
				// (those don't undergo numeric promotion in C# the way non-enum small integer types do). | 
						|
				// Same if the type is one that does not support ~ (IntPtr, bool and char). | 
						|
				StackType targetStackType = inst.UnderlyingResultType; | 
						|
				if (targetStackType == StackType.I) { | 
						|
					// IntPtr doesn't support operator ~. | 
						|
					// Note that it's OK to use a type that's larger than necessary. | 
						|
					targetStackType = StackType.I8; | 
						|
				} | 
						|
				IType targetType = compilation.FindType(targetStackType.ToKnownTypeCode(argUType.GetSign())); | 
						|
				if (inst.IsLifted) { | 
						|
					targetType = NullableType.Create(compilation, targetType); | 
						|
				} | 
						|
				argument = argument.ConvertTo(targetType, this); | 
						|
			} | 
						|
			 | 
						|
			return new UnaryOperatorExpression(UnaryOperatorType.BitNot, argument) | 
						|
				.WithRR(resolver.ResolveUnaryOperator(UnaryOperatorType.BitNot, argument.ResolveResult)) | 
						|
				.WithILInstruction(inst); | 
						|
		} | 
						|
		 | 
						|
		internal ExpressionWithResolveResult LogicNot(TranslatedExpression expr) | 
						|
		{ | 
						|
			return new UnaryOperatorExpression(UnaryOperatorType.Not, expr.Expression) | 
						|
				.WithRR(new OperatorResolveResult(compilation.FindType(KnownTypeCode.Boolean), ExpressionType.Not, expr.ResolveResult)); | 
						|
		} | 
						|
		 | 
						|
		readonly HashSet<ILVariable> loadedVariablesSet = new HashSet<ILVariable>(); | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitLdLoc(LdLoc inst, TranslationContext context) | 
						|
		{ | 
						|
			if (inst.Variable.Kind == VariableKind.StackSlot && inst.Variable.IsSingleDefinition) { | 
						|
				loadedVariablesSet.Add(inst.Variable); | 
						|
			} | 
						|
			return ConvertVariable(inst.Variable).WithILInstruction(inst); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitLdLoca(LdLoca inst, TranslationContext context) | 
						|
		{ | 
						|
			var expr = ConvertVariable(inst.Variable).WithILInstruction(inst); | 
						|
			// Note that we put the instruction on the IdentifierExpression instead of the DirectionExpression, | 
						|
			// because the DirectionExpression might get removed by dereferencing instructions such as LdObj | 
						|
			return new DirectionExpression(FieldDirection.Ref, expr.Expression) | 
						|
				.WithoutILInstruction() | 
						|
				.WithRR(new ByReferenceResolveResult(expr.ResolveResult, isOut: false)); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitStLoc(StLoc inst, TranslationContext context) | 
						|
		{ | 
						|
			var translatedValue = Translate(inst.Value, typeHint: inst.Variable.Type); | 
						|
			if (inst.Variable.Kind == VariableKind.StackSlot && !loadedVariablesSet.Contains(inst.Variable)) { | 
						|
				// Stack slots in the ILAst have inaccurate types (e.g. System.Object for StackType.O) | 
						|
				// so we should replace them with more accurate types where possible: | 
						|
				if ((inst.Variable.IsSingleDefinition || IsOtherValueType(translatedValue.Type) || inst.Variable.StackType == StackType.Ref) | 
						|
						&& inst.Variable.StackType == translatedValue.Type.GetStackType() | 
						|
						&& translatedValue.Type.Kind != TypeKind.Null) { | 
						|
					inst.Variable.Type = translatedValue.Type; | 
						|
				} else if (inst.Value.MatchDefaultValue(out var type) && IsOtherValueType(type)) { | 
						|
					inst.Variable.Type = type; | 
						|
				} | 
						|
			} | 
						|
			return Assignment(ConvertVariable(inst.Variable).WithoutILInstruction(), translatedValue).WithILInstruction(inst); | 
						|
 | 
						|
			bool IsOtherValueType(IType type) | 
						|
			{ | 
						|
				return type.IsReferenceType == false && type.GetStackType() == StackType.O; | 
						|
			} | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitComp(Comp inst, TranslationContext context) | 
						|
		{ | 
						|
			if (inst.LiftingKind == ComparisonLiftingKind.ThreeValuedLogic) { | 
						|
				if (inst.Kind == ComparisonKind.Equality && inst.Right.MatchLdcI4(0)) { | 
						|
					// lifted logic.not | 
						|
					var targetType = NullableType.Create(compilation, compilation.FindType(KnownTypeCode.Boolean)); | 
						|
					var arg = Translate(inst.Left, targetType).ConvertTo(targetType, this); | 
						|
					return new UnaryOperatorExpression(UnaryOperatorType.Not, arg.Expression) | 
						|
						.WithRR(new OperatorResolveResult(targetType, ExpressionType.Not, arg.ResolveResult)) | 
						|
						.WithILInstruction(inst); | 
						|
				} | 
						|
				return ErrorExpression("Nullable comparisons with three-valued-logic not supported in C#"); | 
						|
			} | 
						|
			if (inst.Kind.IsEqualityOrInequality()) { | 
						|
				bool negateOutput; | 
						|
				var result = TranslateCeq(inst, out negateOutput); | 
						|
				if (negateOutput) | 
						|
					return LogicNot(result).WithILInstruction(inst); | 
						|
				else | 
						|
					return result; | 
						|
			} else { | 
						|
				return TranslateComp(inst); | 
						|
			} | 
						|
		} | 
						|
		 | 
						|
		/// <summary> | 
						|
		/// Translates the equality comparison between left and right. | 
						|
		/// </summary> | 
						|
		TranslatedExpression TranslateCeq(Comp inst, out bool negateOutput) | 
						|
		{ | 
						|
			Debug.Assert(inst.Kind.IsEqualityOrInequality()); | 
						|
			// Translate '(e as T) == null' to '!(e is T)'. | 
						|
			// This is necessary for correctness when T is a value type. | 
						|
			if (inst.Left.OpCode == OpCode.IsInst && inst.Right.OpCode == OpCode.LdNull) { | 
						|
				negateOutput = inst.Kind == ComparisonKind.Equality; | 
						|
				return IsType((IsInst)inst.Left); | 
						|
			} else if (inst.Right.OpCode == OpCode.IsInst && inst.Left.OpCode == OpCode.LdNull) { | 
						|
				negateOutput = inst.Kind == ComparisonKind.Equality; | 
						|
				return IsType((IsInst)inst.Right); | 
						|
			} | 
						|
			 | 
						|
			var left = Translate(inst.Left); | 
						|
			var right = Translate(inst.Right); | 
						|
			 | 
						|
			// Remove redundant bool comparisons | 
						|
			if (left.Type.IsKnownType(KnownTypeCode.Boolean)) { | 
						|
				if (inst.Right.MatchLdcI4(0)) { | 
						|
					// 'b == 0' => '!b' | 
						|
					// 'b != 0' => 'b' | 
						|
					negateOutput = inst.Kind == ComparisonKind.Equality; | 
						|
					return left; | 
						|
				} | 
						|
				if (inst.Right.MatchLdcI4(1)) { | 
						|
					// 'b == 1' => 'b' | 
						|
					// 'b != 1' => '!b' | 
						|
					negateOutput = inst.Kind == ComparisonKind.Inequality; | 
						|
					return left; | 
						|
				} | 
						|
			} else if (right.Type.IsKnownType(KnownTypeCode.Boolean)) { | 
						|
				if (inst.Left.MatchLdcI4(0)) { | 
						|
					// '0 == b' => '!b' | 
						|
					// '0 != b' => 'b' | 
						|
					negateOutput = inst.Kind == ComparisonKind.Equality; | 
						|
					return right; | 
						|
				} | 
						|
				if (inst.Left.MatchLdcI4(1)) { | 
						|
					// '1 == b' => 'b' | 
						|
					// '1 != b' => '!b' | 
						|
					negateOutput = inst.Kind == ComparisonKind.Inequality; | 
						|
					return right; | 
						|
				} | 
						|
			} | 
						|
			// Handle comparisons between unsafe pointers and null: | 
						|
			if (left.Type.Kind == TypeKind.Pointer && inst.Right.MatchLdcI(0)) { | 
						|
				negateOutput = false; | 
						|
				right = new NullReferenceExpression().WithRR(new ConstantResolveResult(SpecialType.NullType, null)) | 
						|
					.WithILInstruction(inst.Right); | 
						|
				return CreateBuiltinBinaryOperator(left, inst.Kind.ToBinaryOperatorType(), right) | 
						|
					.WithILInstruction(inst); | 
						|
			} else if (right.Type.Kind == TypeKind.Pointer && inst.Left.MatchLdcI(0)) { | 
						|
				negateOutput = false; | 
						|
				left = new NullReferenceExpression().WithRR(new ConstantResolveResult(SpecialType.NullType, null)) | 
						|
					.WithILInstruction(inst.Left); | 
						|
				return CreateBuiltinBinaryOperator(left, inst.Kind.ToBinaryOperatorType(), right) | 
						|
					.WithILInstruction(inst); | 
						|
			} | 
						|
 | 
						|
			// Special case comparisons with enum and char literals | 
						|
			left = AdjustConstantExpressionToType(left, right.Type); | 
						|
			right = AdjustConstantExpressionToType(right, left.Type); | 
						|
			 | 
						|
			if (IsSpecialCasedReferenceComparisonWithNull(left, right)) { | 
						|
				// When comparing a string/delegate with null, the C# compiler generates a reference comparison. | 
						|
				negateOutput = false; | 
						|
				return CreateBuiltinBinaryOperator(left, inst.Kind.ToBinaryOperatorType(), right) | 
						|
					.WithILInstruction(inst); | 
						|
			} | 
						|
 | 
						|
			OperatorResolveResult rr; | 
						|
			if (left.Type.IsKnownType(KnownTypeCode.String) && right.Type.IsKnownType(KnownTypeCode.String)) { | 
						|
				rr = null; // it's a string comparison by-value, which is not a reference comparison | 
						|
			} else { | 
						|
				rr = resolver.ResolveBinaryOperator(inst.Kind.ToBinaryOperatorType(), left.ResolveResult, right.ResolveResult) | 
						|
					as OperatorResolveResult; | 
						|
			} | 
						|
			if (rr == null || rr.IsError || rr.UserDefinedOperatorMethod != null | 
						|
			    || NullableType.GetUnderlyingType(rr.Operands[0].Type).GetStackType() != inst.InputType) | 
						|
			{ | 
						|
				IType targetType; | 
						|
				if (inst.InputType == StackType.O) { | 
						|
					targetType = compilation.FindType(KnownTypeCode.Object); | 
						|
				} else { | 
						|
					var leftUType = NullableType.GetUnderlyingType(left.Type); | 
						|
					var rightUType = NullableType.GetUnderlyingType(right.Type); | 
						|
					if (leftUType.GetStackType() == inst.InputType && !leftUType.IsSmallIntegerType()) { | 
						|
						targetType = leftUType; | 
						|
					} else if (rightUType.GetStackType() == inst.InputType && !rightUType.IsSmallIntegerType()) { | 
						|
						targetType = rightUType; | 
						|
					} else { | 
						|
						targetType = compilation.FindType(inst.InputType.ToKnownTypeCode(leftUType.GetSign())); | 
						|
					} | 
						|
				} | 
						|
				if (inst.IsLifted) { | 
						|
					targetType = NullableType.Create(compilation, targetType); | 
						|
				} | 
						|
				if (targetType.Equals(left.Type)) { | 
						|
					right = right.ConvertTo(targetType, this); | 
						|
				} else { | 
						|
					left = left.ConvertTo(targetType, this); | 
						|
				} | 
						|
				rr = resolver.ResolveBinaryOperator(inst.Kind.ToBinaryOperatorType(), | 
						|
					left.ResolveResult, right.ResolveResult) as OperatorResolveResult; | 
						|
				if (rr == null || rr.IsError || rr.UserDefinedOperatorMethod != null | 
						|
					|| NullableType.GetUnderlyingType(rr.Operands[0].Type).GetStackType() != inst.InputType) | 
						|
				{ | 
						|
					// If converting one input wasn't sufficient, convert both: | 
						|
					left = left.ConvertTo(targetType, this); | 
						|
					right = right.ConvertTo(targetType, this); | 
						|
					rr = new OperatorResolveResult( | 
						|
						compilation.FindType(KnownTypeCode.Boolean), | 
						|
						BinaryOperatorExpression.GetLinqNodeType(inst.Kind.ToBinaryOperatorType(), false), | 
						|
						left.ResolveResult, right.ResolveResult); | 
						|
				} | 
						|
			} | 
						|
			negateOutput = false; | 
						|
			return new BinaryOperatorExpression(left.Expression, inst.Kind.ToBinaryOperatorType(), right.Expression) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(rr); | 
						|
		} | 
						|
 | 
						|
		bool IsSpecialCasedReferenceComparisonWithNull(TranslatedExpression lhs, TranslatedExpression rhs) | 
						|
		{ | 
						|
			if (lhs.Type.Kind == TypeKind.Null) | 
						|
				ExtensionMethods.Swap(ref lhs, ref rhs); | 
						|
			return rhs.Type.Kind == TypeKind.Null | 
						|
				&& (lhs.Type.Kind == TypeKind.Delegate || lhs.Type.IsKnownType(KnownTypeCode.String)); | 
						|
		} | 
						|
 | 
						|
		ExpressionWithResolveResult CreateBuiltinBinaryOperator( | 
						|
			TranslatedExpression left, BinaryOperatorType type, TranslatedExpression right, | 
						|
			bool checkForOverflow = false) | 
						|
		{ | 
						|
			return new BinaryOperatorExpression(left.Expression, type, right.Expression) | 
						|
			.WithRR(new OperatorResolveResult( | 
						|
				compilation.FindType(KnownTypeCode.Boolean), | 
						|
				BinaryOperatorExpression.GetLinqNodeType(type, checkForOverflow), | 
						|
				left.ResolveResult, right.ResolveResult)); | 
						|
		} | 
						|
		 | 
						|
		/// <summary> | 
						|
		/// Handle Comp instruction, operators other than equality/inequality. | 
						|
		/// </summary> | 
						|
		TranslatedExpression TranslateComp(Comp inst) | 
						|
		{ | 
						|
			var op = inst.Kind.ToBinaryOperatorType(); | 
						|
			var left = Translate(inst.Left); | 
						|
			var right = Translate(inst.Right); | 
						|
 | 
						|
			if (left.Type.Kind == TypeKind.Pointer && right.Type.Kind == TypeKind.Pointer) { | 
						|
				return CreateBuiltinBinaryOperator(left, op, right) | 
						|
					.WithILInstruction(inst); | 
						|
			} | 
						|
 | 
						|
			left = PrepareArithmeticArgument(left, inst.InputType, inst.Sign, inst.IsLifted); | 
						|
			right = PrepareArithmeticArgument(right, inst.InputType, inst.Sign, inst.IsLifted); | 
						|
 | 
						|
			// Special case comparisons with enum and char literals | 
						|
			left = AdjustConstantExpressionToType(left, right.Type); | 
						|
			right = AdjustConstantExpressionToType(right, left.Type); | 
						|
 | 
						|
			// attempt comparison without any additional casts | 
						|
			var rr = resolver.ResolveBinaryOperator(inst.Kind.ToBinaryOperatorType(), left.ResolveResult, right.ResolveResult) | 
						|
				as OperatorResolveResult; | 
						|
			if (rr != null && !rr.IsError) { | 
						|
				IType compUType = NullableType.GetUnderlyingType(rr.Operands[0].Type); | 
						|
				if (compUType.GetSign() == inst.Sign && compUType.GetStackType() == inst.InputType) { | 
						|
					return new BinaryOperatorExpression(left.Expression, op, right.Expression) | 
						|
						.WithILInstruction(inst) | 
						|
						.WithRR(rr); | 
						|
				} | 
						|
			} | 
						|
 | 
						|
			// Ensure the inputs have the correct sign: | 
						|
			KnownTypeCode inputType = KnownTypeCode.None; | 
						|
			switch (inst.InputType) { | 
						|
				case StackType.I: // In order to generate valid C# we need to treat (U)IntPtr as (U)Int64 in comparisons. | 
						|
				case StackType.I8: | 
						|
					inputType = inst.Sign == Sign.Unsigned ? KnownTypeCode.UInt64 : KnownTypeCode.Int64; | 
						|
					break; | 
						|
				case StackType.I4: | 
						|
					inputType = inst.Sign == Sign.Unsigned ? KnownTypeCode.UInt32 : KnownTypeCode.Int32; | 
						|
					break; | 
						|
			} | 
						|
			if (inputType != KnownTypeCode.None) { | 
						|
				IType targetType = compilation.FindType(inputType); | 
						|
				if (inst.IsLifted) { | 
						|
					targetType = NullableType.Create(compilation, targetType); | 
						|
				} | 
						|
				left = left.ConvertTo(targetType, this); | 
						|
				right = right.ConvertTo(targetType, this); | 
						|
			} | 
						|
			return new BinaryOperatorExpression(left.Expression, op, right.Expression) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(new OperatorResolveResult(compilation.FindType(TypeCode.Boolean), | 
						|
				                                  BinaryOperatorExpression.GetLinqNodeType(op, false), | 
						|
				                                  left.ResolveResult, right.ResolveResult)); | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitThreeValuedLogicAnd(ThreeValuedLogicAnd inst, TranslationContext context) | 
						|
		{ | 
						|
			return HandleThreeValuedLogic(inst, BinaryOperatorType.BitwiseAnd, ExpressionType.And); | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitThreeValuedLogicOr(ThreeValuedLogicOr inst, TranslationContext context) | 
						|
		{ | 
						|
			return HandleThreeValuedLogic(inst, BinaryOperatorType.BitwiseOr, ExpressionType.Or); | 
						|
		} | 
						|
 | 
						|
		TranslatedExpression HandleThreeValuedLogic(BinaryInstruction inst, BinaryOperatorType op, ExpressionType eop) | 
						|
		{ | 
						|
			var left = Translate(inst.Left); | 
						|
			var right = Translate(inst.Right); | 
						|
			IType boolType = compilation.FindType(KnownTypeCode.Boolean); | 
						|
			IType nullableBoolType = NullableType.Create(compilation, boolType); | 
						|
			if (NullableType.IsNullable(left.Type)) { | 
						|
				left = left.ConvertTo(nullableBoolType, this); | 
						|
				if (NullableType.IsNullable(right.Type)) { | 
						|
					right = right.ConvertTo(nullableBoolType, this); | 
						|
				} else { | 
						|
					right = right.ConvertTo(boolType, this); | 
						|
				} | 
						|
			} else { | 
						|
				left = left.ConvertTo(boolType, this); | 
						|
				right = right.ConvertTo(nullableBoolType, this); | 
						|
			} | 
						|
			return new BinaryOperatorExpression(left.Expression, op, right.Expression) | 
						|
				.WithRR(new OperatorResolveResult(nullableBoolType, eop, null, true, new[] { left.ResolveResult, right.ResolveResult })) | 
						|
				.WithILInstruction(inst); | 
						|
		} | 
						|
 | 
						|
		ExpressionWithResolveResult Assignment(TranslatedExpression left, TranslatedExpression right) | 
						|
		{ | 
						|
			right = right.ConvertTo(left.Type, this, allowImplicitConversion: true); | 
						|
			return new AssignmentExpression(left.Expression, right.Expression) | 
						|
				.WithRR(new OperatorResolveResult(left.Type, ExpressionType.Assign, left.ResolveResult, right.ResolveResult)); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitBinaryNumericInstruction(BinaryNumericInstruction inst, TranslationContext context) | 
						|
		{ | 
						|
			switch (inst.Operator) { | 
						|
				case BinaryNumericOperator.Add: | 
						|
					return HandleBinaryNumeric(inst, BinaryOperatorType.Add); | 
						|
				case BinaryNumericOperator.Sub: | 
						|
					return HandleBinaryNumeric(inst, BinaryOperatorType.Subtract); | 
						|
				case BinaryNumericOperator.Mul: | 
						|
					return HandleBinaryNumeric(inst, BinaryOperatorType.Multiply); | 
						|
				case BinaryNumericOperator.Div: | 
						|
					return HandlePointerSubtraction(inst) | 
						|
						?? HandleBinaryNumeric(inst, BinaryOperatorType.Divide); | 
						|
				case BinaryNumericOperator.Rem: | 
						|
					return HandleBinaryNumeric(inst, BinaryOperatorType.Modulus); | 
						|
				case BinaryNumericOperator.BitAnd: | 
						|
					return HandleBinaryNumeric(inst, BinaryOperatorType.BitwiseAnd); | 
						|
				case BinaryNumericOperator.BitOr: | 
						|
					return HandleBinaryNumeric(inst, BinaryOperatorType.BitwiseOr); | 
						|
				case BinaryNumericOperator.BitXor: | 
						|
					return HandleBinaryNumeric(inst, BinaryOperatorType.ExclusiveOr); | 
						|
				case BinaryNumericOperator.ShiftLeft: | 
						|
					return HandleShift(inst, BinaryOperatorType.ShiftLeft); | 
						|
				case BinaryNumericOperator.ShiftRight: | 
						|
					return HandleShift(inst, BinaryOperatorType.ShiftRight); | 
						|
				default: | 
						|
					throw new ArgumentOutOfRangeException(); | 
						|
			} | 
						|
		} | 
						|
 | 
						|
		/// <summary> | 
						|
		/// Translates pointer arithmetic: | 
						|
		///   ptr + int | 
						|
		///   int + ptr | 
						|
		///   ptr - int | 
						|
		/// Returns null if 'inst' is not performing pointer arithmetic. | 
						|
		/// This function not handle 'ptr - ptr'! | 
						|
		/// </summary> | 
						|
		TranslatedExpression? HandlePointerArithmetic(BinaryNumericInstruction inst, TranslatedExpression left, TranslatedExpression right) | 
						|
		{ | 
						|
			if (!(inst.Operator == BinaryNumericOperator.Add || inst.Operator == BinaryNumericOperator.Sub)) | 
						|
				return null; | 
						|
			if (inst.CheckForOverflow || inst.IsLifted) | 
						|
				return null; | 
						|
			if (!(inst.LeftInputType == StackType.I && inst.RightInputType == StackType.I)) | 
						|
				return null; | 
						|
			PointerType pointerType; | 
						|
			ILInstruction byteOffsetInst; | 
						|
			TranslatedExpression byteOffsetExpr; | 
						|
			if (left.Type.Kind == TypeKind.Pointer) { | 
						|
				byteOffsetInst = inst.Right; | 
						|
				byteOffsetExpr = right; | 
						|
				pointerType = (PointerType)left.Type; | 
						|
			} else if (right.Type.Kind == TypeKind.Pointer) { | 
						|
				if (inst.Operator != BinaryNumericOperator.Add) | 
						|
					return null; | 
						|
				byteOffsetInst = inst.Left; | 
						|
				byteOffsetExpr = left; | 
						|
				pointerType = (PointerType)right.Type; | 
						|
			} else { | 
						|
				return null; | 
						|
			} | 
						|
			TranslatedExpression offsetExpr = GetPointerArithmeticOffset(byteOffsetInst, byteOffsetExpr, pointerType, inst.CheckForOverflow) | 
						|
				?? FallBackToBytePointer(); | 
						|
			if (!offsetExpr.Type.IsCSharpPrimitiveIntegerType()) { | 
						|
				// pointer arithmetic accepts all primitive integer types, but no enums etc. | 
						|
				StackType targetType = offsetExpr.Type.GetStackType() == StackType.I4 ? StackType.I4 : StackType.I8; | 
						|
				offsetExpr = offsetExpr.ConvertTo( | 
						|
					compilation.FindType(targetType.ToKnownTypeCode(offsetExpr.Type.GetSign())), | 
						|
					this); | 
						|
			} | 
						|
 | 
						|
			if (left.Type.Kind == TypeKind.Pointer) { | 
						|
				Debug.Assert(inst.Operator == BinaryNumericOperator.Add || inst.Operator == BinaryNumericOperator.Sub); | 
						|
				left = left.ConvertTo(pointerType, this); | 
						|
				right = offsetExpr; | 
						|
			} else { | 
						|
				Debug.Assert(inst.Operator == BinaryNumericOperator.Add); | 
						|
				Debug.Assert(right.Type.Kind == TypeKind.Pointer); | 
						|
				left = offsetExpr; | 
						|
				right = right.ConvertTo(pointerType, this); | 
						|
			} | 
						|
			var operatorType = inst.Operator == BinaryNumericOperator.Add ? BinaryOperatorType.Add : BinaryOperatorType.Subtract; | 
						|
			return new BinaryOperatorExpression(left, operatorType, right) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(new OperatorResolveResult( | 
						|
					pointerType, BinaryOperatorExpression.GetLinqNodeType(operatorType, inst.CheckForOverflow), | 
						|
					left.ResolveResult, right.ResolveResult)); | 
						|
 | 
						|
			TranslatedExpression FallBackToBytePointer() | 
						|
			{ | 
						|
				pointerType = new PointerType(compilation.FindType(KnownTypeCode.Byte)); | 
						|
				return byteOffsetExpr; | 
						|
			} | 
						|
		} | 
						|
 | 
						|
		TranslatedExpression? GetPointerArithmeticOffset(ILInstruction byteOffsetInst, TranslatedExpression byteOffsetExpr, | 
						|
			PointerType pointerType, bool checkForOverflow, bool unwrapZeroExtension = false) | 
						|
		{ | 
						|
			if (byteOffsetInst is Conv conv && conv.InputType == StackType.I8 && conv.ResultType == StackType.I) { | 
						|
				byteOffsetInst = conv.Argument; | 
						|
			} | 
						|
			int? elementSize = ComputeSizeOf(pointerType.ElementType); | 
						|
			if (elementSize == 1) { | 
						|
				return byteOffsetExpr; | 
						|
			} else if (byteOffsetInst is BinaryNumericInstruction mul && mul.Operator == BinaryNumericOperator.Mul) { | 
						|
				if (mul.CheckForOverflow != checkForOverflow) | 
						|
					return null; | 
						|
				if (mul.IsLifted) | 
						|
					return null; | 
						|
				if (elementSize > 0 && mul.Right.MatchLdcI(elementSize.Value) | 
						|
					|| mul.Right.UnwrapConv(ConversionKind.SignExtend) is SizeOf sizeOf && sizeOf.Type.Equals(pointerType.ElementType)) | 
						|
				{ | 
						|
					var countOffsetInst = mul.Left; | 
						|
					if (unwrapZeroExtension) { | 
						|
						countOffsetInst = countOffsetInst.UnwrapConv(ConversionKind.ZeroExtend); | 
						|
					} | 
						|
					return Translate(countOffsetInst); | 
						|
				} | 
						|
			} else if (byteOffsetInst.UnwrapConv(ConversionKind.SignExtend) is SizeOf sizeOf && sizeOf.Type.Equals(pointerType.ElementType)) { | 
						|
				return new PrimitiveExpression(1) | 
						|
					.WithILInstruction(byteOffsetInst) | 
						|
					.WithRR(new ConstantResolveResult(compilation.FindType(KnownTypeCode.Int32), 1)); | 
						|
			} else if (byteOffsetInst.MatchLdcI(out long val)) { | 
						|
				// If the offset is a constant, it's possible that the compiler | 
						|
				// constant-folded the multiplication. | 
						|
				if (elementSize > 0 && (val % elementSize == 0) && val > 0) { | 
						|
					val /= elementSize.Value; | 
						|
					if (val <= int.MaxValue) { | 
						|
						return new PrimitiveExpression((int)val) | 
						|
							.WithILInstruction(byteOffsetInst) | 
						|
							.WithRR(new ConstantResolveResult(compilation.FindType(KnownTypeCode.Int32), val)); | 
						|
					} | 
						|
				} | 
						|
			} | 
						|
			return null; | 
						|
		} | 
						|
 | 
						|
		/// <summary> | 
						|
		/// Called for divisions, detect and handles the code pattern: | 
						|
		///   div(sub(a, b), sizeof(T)) | 
						|
		/// when a,b are of type T*. | 
						|
		/// This is what the C# compiler generates for pointer subtraction. | 
						|
		/// </summary> | 
						|
		TranslatedExpression? HandlePointerSubtraction(BinaryNumericInstruction inst) | 
						|
		{ | 
						|
			Debug.Assert(inst.Operator == BinaryNumericOperator.Div); | 
						|
			if (inst.CheckForOverflow || inst.LeftInputType != StackType.I) | 
						|
				return null; | 
						|
			if (!(inst.Left is BinaryNumericInstruction sub && sub.Operator == BinaryNumericOperator.Sub)) | 
						|
				return null; | 
						|
			if (sub.CheckForOverflow) | 
						|
				return null; | 
						|
			// First, attempt to parse the 'sizeof' on the RHS | 
						|
			IType elementType; | 
						|
			if (inst.Right.MatchLdcI(out long elementSize)) { | 
						|
				elementType = null; | 
						|
				// OK, might be pointer subtraction if the element size matches | 
						|
			} else if (inst.Right.UnwrapConv(ConversionKind.SignExtend).MatchSizeOf(out elementType)) { | 
						|
				// OK, might be pointer subtraction if the element type matches | 
						|
			} else { | 
						|
				return null; | 
						|
			} | 
						|
			var left = Translate(sub.Left); | 
						|
			var right = Translate(sub.Right); | 
						|
			IType pointerType; | 
						|
			if (IsMatchingPointerType(left.Type)) { | 
						|
				pointerType = left.Type; | 
						|
			} else if (IsMatchingPointerType(right.Type)) { | 
						|
				pointerType = right.Type; | 
						|
			} else if (elementSize == 1 && left.Type.Kind == TypeKind.Pointer && right.Type.Kind == TypeKind.Pointer) { | 
						|
				// two pointers (neither matching), we're dividing by 1 (debug builds only), | 
						|
				// -> subtract two byte pointers | 
						|
				pointerType = new PointerType(compilation.FindType(KnownTypeCode.Byte)); | 
						|
			} else { | 
						|
				// neither is a matching pointer type | 
						|
				// -> not a pointer subtraction after all | 
						|
				return null; | 
						|
			} | 
						|
			// We got a pointer subtraction. | 
						|
			left = left.ConvertTo(pointerType, this); | 
						|
			right = right.ConvertTo(pointerType, this); | 
						|
			var rr = new OperatorResolveResult( | 
						|
				compilation.FindType(KnownTypeCode.Int64), | 
						|
				ExpressionType.Subtract, | 
						|
				left.ResolveResult, right.ResolveResult | 
						|
			); | 
						|
			var result = new BinaryOperatorExpression( | 
						|
				left.Expression, BinaryOperatorType.Subtract, right.Expression | 
						|
			).WithILInstruction(new[] { inst, sub }) | 
						|
			 .WithRR(rr); | 
						|
			return result; | 
						|
 | 
						|
			bool IsMatchingPointerType(IType type) | 
						|
			{ | 
						|
				if (type is PointerType pt) { | 
						|
					if (elementType != null) | 
						|
						return elementType.Equals(pt.ElementType); | 
						|
					else if (elementSize > 0) | 
						|
						return ComputeSizeOf(pt.ElementType) == elementSize; | 
						|
				} | 
						|
				return false; | 
						|
			} | 
						|
		} | 
						|
 | 
						|
		int? ComputeSizeOf(IType type) | 
						|
		{ | 
						|
			var rr = resolver.ResolveSizeOf(type); | 
						|
			if (rr.IsCompileTimeConstant && rr.ConstantValue is int size) | 
						|
				return size; | 
						|
			else | 
						|
				return null; | 
						|
		} | 
						|
 | 
						|
		TranslatedExpression HandleBinaryNumeric(BinaryNumericInstruction inst, BinaryOperatorType op) | 
						|
		{ | 
						|
			var resolverWithOverflowCheck = resolver.WithCheckForOverflow(inst.CheckForOverflow); | 
						|
			var left = Translate(inst.Left); | 
						|
			var right = Translate(inst.Right); | 
						|
 | 
						|
			if (left.Type.Kind == TypeKind.Pointer || right.Type.Kind == TypeKind.Pointer) { | 
						|
				var ptrResult = HandlePointerArithmetic(inst, left, right); | 
						|
				if (ptrResult != null) | 
						|
					return ptrResult.Value; | 
						|
			} | 
						|
 | 
						|
			left = PrepareArithmeticArgument(left, inst.LeftInputType, inst.Sign, inst.IsLifted); | 
						|
			right = PrepareArithmeticArgument(right, inst.RightInputType, inst.Sign, inst.IsLifted); | 
						|
 | 
						|
			if (op == BinaryOperatorType.Subtract && inst.Left.MatchLdcI(0)) { | 
						|
				IType rightUType = NullableType.GetUnderlyingType(right.Type); | 
						|
				if (rightUType.IsKnownType(KnownTypeCode.Int32) || rightUType.IsKnownType(KnownTypeCode.Int64) || rightUType.IsCSharpSmallIntegerType()) { | 
						|
					// unary minus is supported on signed int and long, and on the small integer types (since they promote to int) | 
						|
					var uoe = new UnaryOperatorExpression(UnaryOperatorType.Minus, right.Expression); | 
						|
					uoe.AddAnnotation(inst.CheckForOverflow ? AddCheckedBlocks.CheckedAnnotation : AddCheckedBlocks.UncheckedAnnotation); | 
						|
					var resultType = rightUType.IsKnownType(KnownTypeCode.Int64) ? rightUType : compilation.FindType(KnownTypeCode.Int32); | 
						|
					if (inst.IsLifted) | 
						|
						resultType = NullableType.Create(compilation, resultType); | 
						|
					return uoe.WithILInstruction(inst).WithRR(new OperatorResolveResult( | 
						|
						resultType, | 
						|
						inst.CheckForOverflow ? ExpressionType.NegateChecked : ExpressionType.Negate, | 
						|
						right.ResolveResult)); | 
						|
				} | 
						|
			} | 
						|
 | 
						|
			if (op.IsBitwise() && (left.Type.Kind == TypeKind.Enum || right.Type.Kind == TypeKind.Enum)) { | 
						|
				left = AdjustConstantExpressionToType(left, right.Type); | 
						|
				right = AdjustConstantExpressionToType(right, left.Type); | 
						|
			} | 
						|
 | 
						|
			var rr = resolverWithOverflowCheck.ResolveBinaryOperator(op, left.ResolveResult, right.ResolveResult); | 
						|
			if (rr.IsError || NullableType.GetUnderlyingType(rr.Type).GetStackType() != inst.UnderlyingResultType | 
						|
			    || !IsCompatibleWithSign(left.Type, inst.Sign) || !IsCompatibleWithSign(right.Type, inst.Sign)) | 
						|
			{ | 
						|
				// Left and right operands are incompatible, so convert them to a common type | 
						|
				StackType targetStackType = inst.UnderlyingResultType == StackType.I ? StackType.I8 : inst.UnderlyingResultType; | 
						|
				IType targetType = compilation.FindType(targetStackType.ToKnownTypeCode(inst.Sign)); | 
						|
				left = left.ConvertTo(NullableType.IsNullable(left.Type) ? NullableType.Create(compilation, targetType) : targetType, this); | 
						|
				right = right.ConvertTo(NullableType.IsNullable(right.Type) ? NullableType.Create(compilation, targetType) : targetType, this); | 
						|
				rr = resolverWithOverflowCheck.ResolveBinaryOperator(op, left.ResolveResult, right.ResolveResult); | 
						|
			} | 
						|
			var resultExpr = new BinaryOperatorExpression(left.Expression, op, right.Expression) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(rr); | 
						|
			if (BinaryOperatorMightCheckForOverflow(op)) | 
						|
				resultExpr.Expression.AddAnnotation(inst.CheckForOverflow ? AddCheckedBlocks.CheckedAnnotation : AddCheckedBlocks.UncheckedAnnotation); | 
						|
			return resultExpr; | 
						|
		} | 
						|
 | 
						|
		/// <summary> | 
						|
		/// Handle oversized arguments needing truncation; and avoid IntPtr/pointers in arguments. | 
						|
		/// </summary> | 
						|
		TranslatedExpression PrepareArithmeticArgument(TranslatedExpression arg, StackType argStackType, Sign sign, bool isLifted) | 
						|
		{ | 
						|
			if (isLifted && !NullableType.IsNullable(arg.Type)) { | 
						|
				isLifted = false; // don't cast to nullable if this input wasn't already nullable | 
						|
			} | 
						|
			IType argUType = isLifted ? NullableType.GetUnderlyingType(arg.Type) : arg.Type; | 
						|
			if (argStackType.IsIntegerType() && argStackType.GetSize() < argUType.GetSize()) { | 
						|
				// If the argument is oversized (needs truncation to match stack size of its ILInstruction), | 
						|
				// perform the truncation now. | 
						|
				IType targetType = compilation.FindType(argStackType.ToKnownTypeCode(sign)); | 
						|
				argUType = targetType; | 
						|
				if (isLifted) | 
						|
					targetType = NullableType.Create(compilation, targetType); | 
						|
				arg = arg.ConvertTo(targetType, this); | 
						|
			} | 
						|
			if (argUType.GetStackType() == StackType.I) { | 
						|
				// None of the operators we might want to apply are supported by IntPtr/UIntPtr. | 
						|
				// Also, pointer arithmetic has different semantics (works in number of elements, not bytes). | 
						|
				// So any inputs of size StackType.I must be converted to long/ulong. | 
						|
				IType targetType = compilation.FindType(StackType.I8.ToKnownTypeCode(sign)); | 
						|
				if (isLifted) | 
						|
					targetType = NullableType.Create(compilation, targetType); | 
						|
				arg = arg.ConvertTo(targetType, this); | 
						|
			} | 
						|
			return arg; | 
						|
		} | 
						|
		 | 
						|
		/// <summary> | 
						|
		/// Gets whether <paramref name="type"/> has the specified <paramref name="sign"/>. | 
						|
		/// If <paramref name="sign"/> is None, always returns true. | 
						|
		/// </summary> | 
						|
		static bool IsCompatibleWithSign(IType type, Sign sign) | 
						|
		{ | 
						|
			return sign == Sign.None || NullableType.GetUnderlyingType(type).GetSign() == sign; | 
						|
		} | 
						|
		 | 
						|
		static bool BinaryOperatorMightCheckForOverflow(BinaryOperatorType op) | 
						|
		{ | 
						|
			switch (op) { | 
						|
				case BinaryOperatorType.BitwiseAnd: | 
						|
				case BinaryOperatorType.BitwiseOr: | 
						|
				case BinaryOperatorType.ExclusiveOr: | 
						|
				case BinaryOperatorType.ShiftLeft: | 
						|
				case BinaryOperatorType.ShiftRight: | 
						|
					return false; | 
						|
				default: | 
						|
					return true; | 
						|
			} | 
						|
		} | 
						|
 | 
						|
		TranslatedExpression HandleShift(BinaryNumericInstruction inst, BinaryOperatorType op) | 
						|
		{ | 
						|
			var left = Translate(inst.Left); | 
						|
			var right = Translate(inst.Right); | 
						|
 | 
						|
			Sign sign = inst.Sign; | 
						|
			var leftUType = NullableType.GetUnderlyingType(left.Type); | 
						|
			if (leftUType.IsCSharpSmallIntegerType() && sign != Sign.Unsigned && inst.UnderlyingResultType == StackType.I4) { | 
						|
				// With small integer types, C# will promote to int and perform signed shifts. | 
						|
				// We thus don't need any casts in this case. | 
						|
			} else { | 
						|
				// Insert cast to target type. | 
						|
				if (sign == Sign.None) { | 
						|
					// if we don't need a specific sign, prefer keeping that of the input: | 
						|
					sign = leftUType.GetSign(); | 
						|
				} | 
						|
				IType targetType; | 
						|
				if (inst.UnderlyingResultType == StackType.I4) { | 
						|
					targetType = compilation.FindType(sign == Sign.Unsigned ? KnownTypeCode.UInt32 : KnownTypeCode.Int32); | 
						|
				} else { | 
						|
					targetType = compilation.FindType(sign == Sign.Unsigned ? KnownTypeCode.UInt64 : KnownTypeCode.Int64); | 
						|
				} | 
						|
				if (NullableType.IsNullable(left.Type)) { | 
						|
					targetType = NullableType.Create(compilation, targetType); | 
						|
				} | 
						|
				left = left.ConvertTo(targetType, this); | 
						|
			} | 
						|
 | 
						|
			// Shift operators in C# always expect type 'int' on the right-hand-side | 
						|
			if (NullableType.IsNullable(right.Type)) { | 
						|
				right = right.ConvertTo(NullableType.Create(compilation, compilation.FindType(KnownTypeCode.Int32)), this); | 
						|
			} else { | 
						|
				right = right.ConvertTo(compilation.FindType(KnownTypeCode.Int32), this); | 
						|
			} | 
						|
 | 
						|
			return new BinaryOperatorExpression(left.Expression, op, right.Expression) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(resolver.ResolveBinaryOperator(op, left.ResolveResult, right.ResolveResult)); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitCompoundAssignmentInstruction(CompoundAssignmentInstruction inst, TranslationContext context) | 
						|
		{ | 
						|
			switch (inst.Operator) { | 
						|
				case BinaryNumericOperator.Add: | 
						|
					return HandleCompoundAssignment(inst, AssignmentOperatorType.Add); | 
						|
				case BinaryNumericOperator.Sub: | 
						|
					return HandleCompoundAssignment(inst, AssignmentOperatorType.Subtract); | 
						|
				case BinaryNumericOperator.Mul: | 
						|
					return HandleCompoundAssignment(inst, AssignmentOperatorType.Multiply); | 
						|
				case BinaryNumericOperator.Div: | 
						|
					return HandleCompoundAssignment(inst, AssignmentOperatorType.Divide); | 
						|
				case BinaryNumericOperator.Rem: | 
						|
					return HandleCompoundAssignment(inst, AssignmentOperatorType.Modulus); | 
						|
				case BinaryNumericOperator.BitAnd: | 
						|
					return HandleCompoundAssignment(inst, AssignmentOperatorType.BitwiseAnd); | 
						|
				case BinaryNumericOperator.BitOr: | 
						|
					return HandleCompoundAssignment(inst, AssignmentOperatorType.BitwiseOr); | 
						|
				case BinaryNumericOperator.BitXor: | 
						|
					return HandleCompoundAssignment(inst, AssignmentOperatorType.ExclusiveOr); | 
						|
				case BinaryNumericOperator.ShiftLeft: | 
						|
					return HandleCompoundShift(inst, AssignmentOperatorType.ShiftLeft); | 
						|
				case BinaryNumericOperator.ShiftRight: | 
						|
					return HandleCompoundShift(inst, AssignmentOperatorType.ShiftRight); | 
						|
				default: | 
						|
					throw new ArgumentOutOfRangeException(); | 
						|
			} | 
						|
		} | 
						|
		 | 
						|
		TranslatedExpression HandleCompoundAssignment(CompoundAssignmentInstruction inst, AssignmentOperatorType op) | 
						|
		{ | 
						|
			var target = Translate(inst.Target); | 
						|
			var value = Translate(inst.Value); | 
						|
			value = PrepareArithmeticArgument(value, inst.RightInputType, inst.Sign, inst.IsLifted); | 
						|
			 | 
						|
			TranslatedExpression resultExpr; | 
						|
			if (inst.CompoundAssignmentType == CompoundAssignmentType.EvaluatesToOldValue) { | 
						|
				Debug.Assert(op == AssignmentOperatorType.Add || op == AssignmentOperatorType.Subtract); | 
						|
				Debug.Assert(value.ResolveResult.IsCompileTimeConstant && 1.Equals(value.ResolveResult.ConstantValue)); | 
						|
				UnaryOperatorType unary; | 
						|
				ExpressionType exprType; | 
						|
				if (op == AssignmentOperatorType.Add) { | 
						|
					unary = UnaryOperatorType.PostIncrement; | 
						|
					exprType = ExpressionType.PostIncrementAssign; | 
						|
				} else { | 
						|
					unary = UnaryOperatorType.PostDecrement; | 
						|
					exprType = ExpressionType.PostDecrementAssign; | 
						|
				} | 
						|
				resultExpr = new UnaryOperatorExpression(unary, target) | 
						|
					.WithILInstruction(inst) | 
						|
					.WithRR(new OperatorResolveResult(target.Type, exprType, target.ResolveResult)); | 
						|
			} else { | 
						|
				switch (op) { | 
						|
					case AssignmentOperatorType.Add: | 
						|
					case AssignmentOperatorType.Subtract: { | 
						|
							IType targetType = NullableType.GetUnderlyingType(target.Type).GetEnumUnderlyingType(); | 
						|
							if (NullableType.IsNullable(value.Type)) { | 
						|
								targetType = NullableType.Create(compilation, targetType); | 
						|
							} | 
						|
							value = value.ConvertTo(targetType, this, inst.CheckForOverflow, allowImplicitConversion: true); | 
						|
							break; | 
						|
						} | 
						|
					case AssignmentOperatorType.Multiply: | 
						|
					case AssignmentOperatorType.Divide: | 
						|
					case AssignmentOperatorType.Modulus: | 
						|
					case AssignmentOperatorType.BitwiseAnd: | 
						|
					case AssignmentOperatorType.BitwiseOr: | 
						|
					case AssignmentOperatorType.ExclusiveOr: { | 
						|
							IType targetType = NullableType.GetUnderlyingType(target.Type); | 
						|
							if (NullableType.IsNullable(value.Type)) { | 
						|
								targetType = NullableType.Create(compilation, targetType); | 
						|
							} | 
						|
							value = value.ConvertTo(targetType, this, inst.CheckForOverflow, allowImplicitConversion: true); | 
						|
							break; | 
						|
						} | 
						|
				} | 
						|
				resultExpr = new AssignmentExpression(target.Expression, op, value.Expression) | 
						|
					.WithILInstruction(inst) | 
						|
					.WithRR(new OperatorResolveResult(target.Type, AssignmentExpression.GetLinqNodeType(op, inst.CheckForOverflow), target.ResolveResult, value.ResolveResult)); | 
						|
			} | 
						|
			if (AssignmentOperatorMightCheckForOverflow(op)) | 
						|
				resultExpr.Expression.AddAnnotation(inst.CheckForOverflow ? AddCheckedBlocks.CheckedAnnotation : AddCheckedBlocks.UncheckedAnnotation); | 
						|
			return resultExpr; | 
						|
		} | 
						|
		 | 
						|
		TranslatedExpression HandleCompoundShift(CompoundAssignmentInstruction inst, AssignmentOperatorType op) | 
						|
		{ | 
						|
			Debug.Assert(inst.CompoundAssignmentType == CompoundAssignmentType.EvaluatesToNewValue); | 
						|
			var target = Translate(inst.Target); | 
						|
			var value = Translate(inst.Value); | 
						|
 | 
						|
			// Shift operators in C# always expect type 'int' on the right-hand-side | 
						|
			if (NullableType.IsNullable(value.Type)) { | 
						|
				value = value.ConvertTo(NullableType.Create(compilation, compilation.FindType(KnownTypeCode.Int32)), this); | 
						|
			} else { | 
						|
				value = value.ConvertTo(compilation.FindType(KnownTypeCode.Int32), this); | 
						|
			} | 
						|
 | 
						|
			return new AssignmentExpression(target.Expression, op, value.Expression) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(resolver.ResolveAssignment(op, target.ResolveResult, value.ResolveResult)); | 
						|
		} | 
						|
		 | 
						|
		static bool AssignmentOperatorMightCheckForOverflow(AssignmentOperatorType op) | 
						|
		{ | 
						|
			switch (op) { | 
						|
				case AssignmentOperatorType.BitwiseAnd: | 
						|
				case AssignmentOperatorType.BitwiseOr: | 
						|
				case AssignmentOperatorType.ExclusiveOr: | 
						|
				case AssignmentOperatorType.ShiftLeft: | 
						|
				case AssignmentOperatorType.ShiftRight: | 
						|
					return false; | 
						|
				default: | 
						|
					return true; | 
						|
			} | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitConv(Conv inst, TranslationContext context) | 
						|
		{ | 
						|
			var arg = Translate(inst.Argument); | 
						|
			IType inputType = NullableType.GetUnderlyingType(arg.Type); | 
						|
			StackType inputStackType = inst.InputType; | 
						|
			// Note: we're dealing with two conversions here: | 
						|
			// a) the implicit conversion from `inputType` to `inputStackType` | 
						|
			//    (due to the ExpressionBuilder post-condition being flexible with regards to the integer type width) | 
						|
			//    If this is a widening conversion, I'm calling the argument C# type "oversized". | 
						|
			//    If this is a narrowing conversion, I'm calling the argument C# type "undersized". | 
						|
			// b) the actual conversion instruction from `inputStackType` to `inst.TargetType` | 
						|
 | 
						|
			// Also, we need to be very careful with regards to the conversions we emit: | 
						|
			// In C#, zero vs. sign-extension depends on the input type, | 
						|
			// but in the ILAst conv instruction it depends on the output type. | 
						|
			// However, in the conv.ovf instructions, the .NET runtime behavior seems to depend on the input type, | 
						|
			// in violation of the ECMA-335 spec! | 
						|
 | 
						|
			IType GetType(KnownTypeCode typeCode) | 
						|
			{ | 
						|
				IType type = compilation.FindType(typeCode); | 
						|
				if (inst.IsLifted) | 
						|
					type = NullableType.Create(compilation, type); | 
						|
				return type; | 
						|
			} | 
						|
 | 
						|
			if (inst.CheckForOverflow || inst.Kind == ConversionKind.IntToFloat) { | 
						|
				// We need to first convert the argument to the expected sign. | 
						|
				// We also need to perform any input narrowing conversion so that it doesn't get mixed up with the overflow check. | 
						|
				Debug.Assert(inst.InputSign != Sign.None); | 
						|
				if (inputType.GetSize() > inputStackType.GetSize() || inputType.GetSign() != inst.InputSign) { | 
						|
					arg = arg.ConvertTo(GetType(inputStackType.ToKnownTypeCode(inst.InputSign)), this); | 
						|
				} | 
						|
				// Because casts with overflow check match C# semantics (zero/sign-extension depends on source type), | 
						|
				// we can just directly cast to the target type. | 
						|
				return arg.ConvertTo(GetType(inst.TargetType.ToKnownTypeCode()), this, inst.CheckForOverflow) | 
						|
					.WithILInstruction(inst); | 
						|
			} | 
						|
			 | 
						|
			switch (inst.Kind) { | 
						|
				case ConversionKind.StartGCTracking: | 
						|
					// A "start gc tracking" conversion is inserted in the ILAst whenever | 
						|
					// some instruction expects a managed pointer, but we pass an unmanaged pointer. | 
						|
					// We'll leave the C#-level conversion (from T* to ref T) to the consumer that expects the managed pointer. | 
						|
					return arg; | 
						|
				case ConversionKind.StopGCTracking: | 
						|
					if (inputType.Kind == TypeKind.ByReference) { | 
						|
						// cast to corresponding pointer type: | 
						|
						var pointerType = new PointerType(((ByReferenceType)inputType).ElementType); | 
						|
						return arg.ConvertTo(pointerType, this).WithILInstruction(inst); | 
						|
					} else { | 
						|
						// ConversionKind.StopGCTracking should only be used with managed references, | 
						|
						// but it's possible that we're supposed to stop tracking something we just started to track. | 
						|
						return arg; | 
						|
					} | 
						|
				case ConversionKind.SignExtend: | 
						|
					// We just need to ensure the input type before the conversion is signed. | 
						|
					// Also, if the argument was translated into an oversized C# type, | 
						|
					// we need to perform the truncatation to the input stack type. | 
						|
					if (inputType.GetSign() != Sign.Signed || ValueMightBeOversized(arg.ResolveResult, inputStackType)) { | 
						|
						// Note that an undersized C# type is handled just fine: | 
						|
						// If it is unsigned we'll zero-extend it to the width of the inputStackType here, | 
						|
						// and it is signed we just combine the two sign-extensions into a single sign-extending conversion. | 
						|
						arg = arg.ConvertTo(GetType(inputStackType.ToKnownTypeCode(Sign.Signed)), this); | 
						|
					} | 
						|
					// Then, we can just return the argument as-is: the ExpressionBuilder post-condition allows us | 
						|
					// to force our parent instruction to handle the actual sign-extension conversion. | 
						|
					// (our caller may have more information to pick a better fitting target type) | 
						|
					return arg.WithILInstruction(inst); | 
						|
				case ConversionKind.ZeroExtend: | 
						|
					// If overflow check cannot fail, handle this just like sign extension (except for swapped signs) | 
						|
					if (inputType.GetSign() != Sign.Unsigned || inputType.GetSize() > inputStackType.GetSize()) { | 
						|
						arg = arg.ConvertTo(GetType(inputStackType.ToKnownTypeCode(Sign.Unsigned)), this); | 
						|
					} | 
						|
					return arg.WithILInstruction(inst); | 
						|
				case ConversionKind.Nop: | 
						|
					// no need to generate any C# code for a nop conversion | 
						|
					return arg.WithILInstruction(inst); | 
						|
				case ConversionKind.Truncate: | 
						|
					// Note: there are three sizes involved here: | 
						|
					// A = inputType.GetSize() | 
						|
					// B = inputStackType.GetSize() | 
						|
					// C = inst.TargetType.GetSize(). | 
						|
					// We know that C <= B (otherwise this wouldn't be the truncation case). | 
						|
					// 1) If C < B < A, we just combine the two truncations into one. | 
						|
					// 2) If C < B = A, there's no input conversion, just the truncation | 
						|
					// 3) If C <= A < B, all the extended bits get removed again by the truncation. | 
						|
					// 4) If A < C < B, some extended bits remain even after truncation. | 
						|
					// In cases 1-3, the overall conversion is a truncation or no-op. | 
						|
					// In case 4, the overall conversion is a zero/sign extension, but to a smaller | 
						|
					// size than the original conversion. | 
						|
					if (inst.TargetType.IsSmallIntegerType()) { | 
						|
						// If the target type is a small integer type, IL will implicitly sign- or zero-extend | 
						|
						// the result after the truncation back to StackType.I4. | 
						|
						// (which means there's actually 3 conversions involved!) | 
						|
						// Note that we must handle truncation to small integer types ourselves: | 
						|
						// our caller only sees the StackType.I4 and doesn't know to truncate to the small type. | 
						|
						 | 
						|
						if (inputType.GetSize() <= inst.TargetType.GetSize() && inputType.GetSign() == inst.TargetType.GetSign()) { | 
						|
							// There's no actual truncation involved, and the result of the Conv instruction is extended | 
						|
							// the same way as the original instruction | 
						|
							// -> we can return arg directly | 
						|
							return arg.WithILInstruction(inst); | 
						|
						} else { | 
						|
							// We need to actually truncate; *or* we need to change the sign for the remaining extension to I4. | 
						|
							goto default; // Emit simple cast to inst.TargetType | 
						|
						} | 
						|
					} else { | 
						|
						Debug.Assert(inst.TargetType.GetSize() == inst.UnderlyingResultType.GetSize()); | 
						|
						// For non-small integer types, we can let the whole unchecked truncation | 
						|
						// get handled by our caller (using the ExpressionBuilder post-condition). | 
						|
						 | 
						|
						// Case 4 (left-over extension from implicit conversion) can also be handled by our caller. | 
						|
						return arg.WithILInstruction(inst); | 
						|
					} | 
						|
				default: { | 
						|
						// We need to convert to inst.TargetType, or to an equivalent type. | 
						|
						IType targetType; | 
						|
						if (inst.TargetType == NullableType.GetUnderlyingType(context.TypeHint).ToPrimitiveType() | 
						|
							&& NullableType.IsNullable(context.TypeHint) == inst.IsLifted) | 
						|
						{ | 
						|
							targetType = context.TypeHint; | 
						|
						} else { | 
						|
							targetType = GetType(inst.TargetType.ToKnownTypeCode()); | 
						|
						} | 
						|
						return arg.ConvertTo(targetType, this, inst.CheckForOverflow) | 
						|
							.WithILInstruction(inst); | 
						|
					} | 
						|
			} | 
						|
		} | 
						|
 | 
						|
		/// <summary> | 
						|
		/// Gets whether the ResolveResult computes a value that might be oversized for the specified stack type. | 
						|
		/// </summary> | 
						|
		bool ValueMightBeOversized(ResolveResult rr, StackType stackType) | 
						|
		{ | 
						|
			IType inputType = NullableType.GetUnderlyingType(rr.Type); | 
						|
			if (inputType.GetSize() <= stackType.GetSize()) { | 
						|
				// The input type is smaller or equal to the stack type, | 
						|
				// it can't be an oversized value. | 
						|
				return false; | 
						|
			} | 
						|
			if (rr is OperatorResolveResult orr) { | 
						|
				if (stackType == StackType.I && orr.OperatorType == ExpressionType.Subtract | 
						|
					&& orr.Operands.Count == 2 | 
						|
					&& orr.Operands[0].Type.Kind == TypeKind.Pointer | 
						|
					&& orr.Operands[1].Type.Kind == TypeKind.Pointer) | 
						|
				{ | 
						|
					// Even though a pointer subtraction produces a value of type long in C#, | 
						|
					// the value will always fit in a native int. | 
						|
					return false; | 
						|
				} | 
						|
			} | 
						|
			// We don't have any information about the value, so it might be oversized. | 
						|
			return true; | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitCall(Call inst, TranslationContext context) | 
						|
		{ | 
						|
			return WrapInRef(new CallBuilder(this, typeSystem, settings).Build(inst), inst.Method.ReturnType); | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitCallVirt(CallVirt inst, TranslationContext context) | 
						|
		{ | 
						|
			return WrapInRef(new CallBuilder(this, typeSystem, settings).Build(inst), inst.Method.ReturnType); | 
						|
		} | 
						|
 | 
						|
		TranslatedExpression WrapInRef(TranslatedExpression expr, IType type) | 
						|
		{ | 
						|
			if (type.Kind == TypeKind.ByReference) { | 
						|
				return new DirectionExpression(FieldDirection.Ref, expr.Expression) | 
						|
					.WithoutILInstruction() | 
						|
					.WithRR(new ByReferenceResolveResult(expr.ResolveResult, isOut: false)); | 
						|
			} | 
						|
			return expr; | 
						|
		} | 
						|
 | 
						|
		internal ExpressionWithResolveResult TranslateFunction(IType delegateType, ILFunction function) | 
						|
		{ | 
						|
			var method = function.Method?.MemberDefinition as IMethod; | 
						|
 | 
						|
			// Create AnonymousMethodExpression and prepare parameters | 
						|
			AnonymousMethodExpression ame = new AnonymousMethodExpression(); | 
						|
			ame.IsAsync = function.IsAsync; | 
						|
			ame.Parameters.AddRange(MakeParameters(function.Parameters, function)); | 
						|
			ame.HasParameterList = ame.Parameters.Count > 0; | 
						|
			var context = method == null ? decompilationContext : new SimpleTypeResolveContext(method); | 
						|
			StatementBuilder builder = new StatementBuilder(typeSystem.GetSpecializingTypeSystem(context), this.decompilationContext, function, settings, cancellationToken); | 
						|
			var body = builder.ConvertAsBlock(function.Body); | 
						|
 | 
						|
			Comment prev = null; | 
						|
			foreach (string warning in function.Warnings) { | 
						|
				body.InsertChildAfter(prev, prev = new Comment(warning), Roles.Comment); | 
						|
			} | 
						|
 | 
						|
			bool isLambda = false; | 
						|
			if (ame.Parameters.Any(p => p.Type.IsNull)) { | 
						|
				// if there is an anonymous type involved, we are forced to use a lambda expression. | 
						|
				isLambda = true; | 
						|
			} else if (ame.Parameters.All(p => p.ParameterModifier == ParameterModifier.None)) { | 
						|
				// otherwise use lambda only if an expression lambda is possible | 
						|
				isLambda = (body.Statements.Count == 1 && body.Statements.Single() is ReturnStatement); | 
						|
			} | 
						|
			// Remove the parameter list from an AnonymousMethodExpression if the parameters are not used in the method body | 
						|
			var parameterReferencingIdentifiers = | 
						|
				from ident in body.Descendants.OfType<IdentifierExpression>() | 
						|
				let v = ident.GetILVariable() | 
						|
				where v != null && v.Function == function && v.Kind == VariableKind.Parameter | 
						|
				select ident; | 
						|
			if (!isLambda && !parameterReferencingIdentifiers.Any()) { | 
						|
				ame.Parameters.Clear(); | 
						|
				ame.HasParameterList = false; | 
						|
			} | 
						|
 | 
						|
			Expression replacement; | 
						|
			IType inferredReturnType; | 
						|
			if (isLambda) { | 
						|
				LambdaExpression lambda = new LambdaExpression(); | 
						|
				lambda.IsAsync = ame.IsAsync; | 
						|
				lambda.CopyAnnotationsFrom(ame); | 
						|
				ame.Parameters.MoveTo(lambda.Parameters); | 
						|
				if (body.Statements.Count == 1 && body.Statements.Single() is ReturnStatement returnStmt) { | 
						|
					lambda.Body = returnStmt.Expression.Detach(); | 
						|
					inferredReturnType = lambda.Body.GetResolveResult().Type; | 
						|
				} else { | 
						|
					lambda.Body = body; | 
						|
					inferredReturnType = InferReturnType(body); | 
						|
				} | 
						|
				replacement = lambda; | 
						|
			} else { | 
						|
				ame.Body = body; | 
						|
				inferredReturnType = InferReturnType(body); | 
						|
				replacement = ame; | 
						|
			} | 
						|
			if (ame.IsAsync) { | 
						|
				inferredReturnType = GetTaskType(inferredReturnType); | 
						|
			} | 
						|
 | 
						|
			var rr = new DecompiledLambdaResolveResult( | 
						|
				function, delegateType, inferredReturnType, | 
						|
				hasParameterList: isLambda || ame.HasParameterList, | 
						|
				isAnonymousMethod: !isLambda, | 
						|
				isImplicitlyTyped: ame.Parameters.Any(p => p.Type.IsNull)); | 
						|
 | 
						|
			TranslatedExpression translatedLambda = replacement.WithILInstruction(function).WithRR(rr); | 
						|
			return new CastExpression(ConvertType(delegateType), translatedLambda) | 
						|
				.WithRR(new ConversionResolveResult(delegateType, rr, LambdaConversion.Instance)); | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitILFunction(ILFunction function, TranslationContext context) | 
						|
		{ | 
						|
			return TranslateFunction(function.DelegateType, function) | 
						|
				.WithILInstruction(function); | 
						|
		} | 
						|
 | 
						|
		IType InferReturnType(BlockStatement body) | 
						|
		{ | 
						|
			var returnExpressions = new List<ResolveResult>(); | 
						|
			CollectReturnExpressions(body); | 
						|
			var ti = new TypeInference(compilation, resolver.conversions); | 
						|
			return ti.GetBestCommonType(returnExpressions, out _); | 
						|
			// Failure to infer a return type does not make the lambda invalid, | 
						|
			// so we can ignore the 'success' value | 
						|
 | 
						|
			void CollectReturnExpressions(AstNode node) | 
						|
			{ | 
						|
				if (node is ReturnStatement ret) { | 
						|
					if (!ret.Expression.IsNull) { | 
						|
						returnExpressions.Add(ret.Expression.GetResolveResult()); | 
						|
					} | 
						|
				} else if (node is LambdaExpression || node is AnonymousMethodExpression) { | 
						|
					// do not recurse into nested lambdas | 
						|
					return; | 
						|
				} | 
						|
				foreach (var child in node.Children) { | 
						|
					CollectReturnExpressions(child); | 
						|
				} | 
						|
			} | 
						|
		} | 
						|
 | 
						|
		IType GetTaskType(IType resultType) | 
						|
		{ | 
						|
			if (resultType.Kind == TypeKind.Unknown) | 
						|
				return SpecialType.UnknownType; | 
						|
			if (resultType.Kind == TypeKind.Void) | 
						|
				return compilation.FindType(KnownTypeCode.Task); | 
						|
 | 
						|
			ITypeDefinition def = compilation.FindType(KnownTypeCode.TaskOfT).GetDefinition(); | 
						|
			if (def != null) | 
						|
				return new ParameterizedType(def, new[] { resultType }); | 
						|
			else | 
						|
				return SpecialType.UnknownType; | 
						|
		} | 
						|
 | 
						|
		IEnumerable<ParameterDeclaration> MakeParameters(IReadOnlyList<IParameter> parameters, ILFunction function) | 
						|
		{ | 
						|
			var variables = function.Variables.Where(v => v.Kind == VariableKind.Parameter).ToDictionary(v => v.Index); | 
						|
			int i = 0; | 
						|
			foreach (var parameter in parameters) { | 
						|
				var pd = astBuilder.ConvertParameter(parameter); | 
						|
				if (settings.AnonymousTypes && parameter.Type.ContainsAnonymousType()) | 
						|
					pd.Type = null; | 
						|
				ILVariable v; | 
						|
				if (variables.TryGetValue(i, out v)) | 
						|
					pd.AddAnnotation(new ILVariableResolveResult(v, parameters[i].Type)); | 
						|
				yield return pd; | 
						|
				i++; | 
						|
			} | 
						|
		} | 
						|
		 | 
						|
		internal TranslatedExpression TranslateTarget(IMember member, ILInstruction target, bool nonVirtualInvocation, IType constrainedTo = null) | 
						|
		{ | 
						|
			// If references are missing member.IsStatic might not be set correctly. | 
						|
			// Additionally check target for null, in order to avoid a crash. | 
						|
			if (!member.IsStatic && target != null) { | 
						|
				if (nonVirtualInvocation && target.MatchLdThis() && member.DeclaringTypeDefinition != resolver.CurrentTypeDefinition) { | 
						|
					return new BaseReferenceExpression() | 
						|
						.WithILInstruction(target) | 
						|
						.WithRR(new ThisResolveResult(member.DeclaringType, nonVirtualInvocation)); | 
						|
				} else { | 
						|
					var translatedTarget = Translate(target, constrainedTo ?? member.DeclaringType); | 
						|
					if (CallInstruction.ExpectedTypeForThisPointer(constrainedTo ?? member.DeclaringType) == StackType.Ref && translatedTarget.Type.GetStackType().IsIntegerType()) { | 
						|
						// when accessing members on value types, ensure we use a reference and not a pointer | 
						|
						translatedTarget = translatedTarget.ConvertTo(new ByReferenceType(constrainedTo ?? member.DeclaringType), this); | 
						|
					} | 
						|
					if (translatedTarget.Expression is DirectionExpression) { | 
						|
						// (ref x).member => x.member | 
						|
						translatedTarget = translatedTarget.UnwrapChild(((DirectionExpression)translatedTarget).Expression); | 
						|
					} else if (translatedTarget.Expression is UnaryOperatorExpression uoe  | 
						|
						&& uoe.Operator == UnaryOperatorType.NullConditional | 
						|
						&& uoe.Expression is DirectionExpression) { | 
						|
						// (ref x)?.member => x?.member | 
						|
						translatedTarget = translatedTarget.UnwrapChild(((DirectionExpression)uoe.Expression).Expression); | 
						|
						// note: we need to create a new ResolveResult for the null-conditional operator, | 
						|
						// using the underlying type of the input expression without the DirectionExpression | 
						|
						translatedTarget = new UnaryOperatorExpression(UnaryOperatorType.NullConditional, translatedTarget) | 
						|
							.WithRR(new ResolveResult(NullableType.GetUnderlyingType(translatedTarget.Type))) | 
						|
							.WithoutILInstruction(); | 
						|
					} | 
						|
					return translatedTarget; | 
						|
				} | 
						|
			} else { | 
						|
				return new TypeReferenceExpression(ConvertType(member.DeclaringType)) | 
						|
					.WithoutILInstruction() | 
						|
					.WithRR(new TypeResolveResult(member.DeclaringType)); | 
						|
			} | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitLdObj(LdObj inst, TranslationContext context) | 
						|
		{ | 
						|
			var target = Translate(inst.Target); | 
						|
			if (TypeUtils.IsCompatibleTypeForMemoryAccess(target.Type, inst.Type)) { | 
						|
				TranslatedExpression result; | 
						|
				if (target.Expression is DirectionExpression dirExpr) { | 
						|
					// we can dereference the managed reference by stripping away the 'ref' | 
						|
					result = target.UnwrapChild(dirExpr.Expression); | 
						|
					result.Expression.AddAnnotation(inst); // add LdObj in addition to the existing ILInstruction annotation | 
						|
				} else if (target.Type is PointerType pointerType) { | 
						|
					if (target.Expression is UnaryOperatorExpression uoe && uoe.Operator == UnaryOperatorType.AddressOf) { | 
						|
						// We can dereference the pointer by stripping away the '&' | 
						|
						result = target.UnwrapChild(uoe.Expression); | 
						|
						result.Expression.AddAnnotation(inst); // add LdObj in addition to the existing ILInstruction annotation | 
						|
					} else { | 
						|
						// Dereference the existing pointer | 
						|
						result = new UnaryOperatorExpression(UnaryOperatorType.Dereference, target.Expression) | 
						|
							.WithILInstruction(inst) | 
						|
							.WithRR(new ResolveResult(pointerType.ElementType)); | 
						|
					} | 
						|
				} else { | 
						|
					// reference type behind non-DirectionExpression? | 
						|
					// this case should be impossible, but we can use a pointer cast | 
						|
					// just to make sure | 
						|
					target = target.ConvertTo(new PointerType(inst.Type), this); | 
						|
					return new UnaryOperatorExpression(UnaryOperatorType.Dereference, target.Expression) | 
						|
						.WithILInstruction(inst) | 
						|
						.WithRR(new ResolveResult(inst.Type)); | 
						|
				} | 
						|
				// we don't convert result to inst.Type, because the LdObj type | 
						|
				// might be inaccurate (it's often System.Object for all reference types), | 
						|
				// and our parent node should already insert casts where necessary | 
						|
 | 
						|
				if (target.Type.IsSmallIntegerType() && inst.Type.IsSmallIntegerType() && target.Type.GetSign() != inst.Type.GetSign()) | 
						|
					return result.ConvertTo(inst.Type, this); | 
						|
				return result; | 
						|
			} else { | 
						|
				// We need to cast the pointer type: | 
						|
				target = target.ConvertTo(new PointerType(inst.Type), this); | 
						|
				return new UnaryOperatorExpression(UnaryOperatorType.Dereference, target.Expression) | 
						|
					.WithILInstruction(inst) | 
						|
					.WithRR(new ResolveResult(inst.Type)); | 
						|
			} | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitStObj(StObj inst, TranslationContext context) | 
						|
		{ | 
						|
			var target = Translate(inst.Target); | 
						|
			TranslatedExpression result; | 
						|
			if (target.Expression is DirectionExpression && TypeUtils.IsCompatibleTypeForMemoryAccess(target.Type, inst.Type)) { | 
						|
				// we can deference the managed reference by stripping away the 'ref' | 
						|
				result = target.UnwrapChild(((DirectionExpression)target.Expression).Expression); | 
						|
			} else { | 
						|
				// Cast pointer type if necessary: | 
						|
				if (!TypeUtils.IsCompatibleTypeForMemoryAccess(target.Type, inst.Type)) { | 
						|
					target = target.ConvertTo(new PointerType(inst.Type), this); | 
						|
				} | 
						|
				if (target.Expression is UnaryOperatorExpression uoe && uoe.Operator == UnaryOperatorType.AddressOf) { | 
						|
					// *&ptr -> ptr | 
						|
					result = target.UnwrapChild(uoe.Expression); | 
						|
				} else { | 
						|
					result = new UnaryOperatorExpression(UnaryOperatorType.Dereference, target.Expression) | 
						|
						.WithoutILInstruction() | 
						|
						.WithRR(new ResolveResult(((TypeWithElementType)target.Type).ElementType)); | 
						|
				} | 
						|
			} | 
						|
			var value = Translate(inst.Value, typeHint: result.Type); | 
						|
			return Assignment(result, value).WithILInstruction(inst); | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitLdLen(LdLen inst, TranslationContext context) | 
						|
		{ | 
						|
			TranslatedExpression arrayExpr = Translate(inst.Array); | 
						|
			if (arrayExpr.Type.Kind != TypeKind.Array) { | 
						|
				arrayExpr = arrayExpr.ConvertTo(compilation.FindType(KnownTypeCode.Array), this); | 
						|
			} | 
						|
			if (inst.ResultType == StackType.I4) { | 
						|
				return new MemberReferenceExpression(arrayExpr.Expression, "Length") | 
						|
					.WithILInstruction(inst) | 
						|
					.WithRR(new ResolveResult(compilation.FindType(KnownTypeCode.Int32))); | 
						|
			} else { | 
						|
				return new MemberReferenceExpression(arrayExpr.Expression, "LongLength") | 
						|
					.WithILInstruction(inst) | 
						|
					.WithRR(new ResolveResult(compilation.FindType(KnownTypeCode.Int64))); | 
						|
			} | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitLdFlda(LdFlda inst, TranslationContext context) | 
						|
		{ | 
						|
			if (settings.FixedBuffers && inst.Field.Name == "FixedElementField" | 
						|
				&& inst.Target is LdFlda nestedLdFlda | 
						|
				&& CSharpDecompiler.IsFixedField(nestedLdFlda.Field, out var elementType, out _)) | 
						|
			{ | 
						|
				Expression fieldAccess = ConvertField(nestedLdFlda.Field, nestedLdFlda.Target); | 
						|
				fieldAccess.RemoveAnnotations<ResolveResult>(); | 
						|
				var result = fieldAccess.WithRR(new ResolveResult(new PointerType(elementType))) | 
						|
					.WithILInstruction(inst); | 
						|
				if (inst.ResultType == StackType.Ref) { | 
						|
					// convert pointer back to ref | 
						|
					return result.ConvertTo(new ByReferenceType(elementType), this); | 
						|
				} else { | 
						|
					return result; | 
						|
				} | 
						|
			} | 
						|
			var expr = ConvertField(inst.Field, inst.Target).WithILInstruction(inst); | 
						|
			if (inst.ResultType == StackType.I) { | 
						|
				// ldflda producing native pointer | 
						|
				return new UnaryOperatorExpression(UnaryOperatorType.AddressOf, expr) | 
						|
					.WithoutILInstruction().WithRR(new ResolveResult(new PointerType(expr.Type))); | 
						|
			} else { | 
						|
				// ldflda producing managed pointer | 
						|
				return new DirectionExpression(FieldDirection.Ref, expr) | 
						|
					.WithoutILInstruction().WithRR(new ByReferenceResolveResult(expr.Type, isOut: false)); | 
						|
			} | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitLdsFlda(LdsFlda inst, TranslationContext context) | 
						|
		{ | 
						|
			var expr = ConvertField(inst.Field).WithILInstruction(inst); | 
						|
			return new DirectionExpression(FieldDirection.Ref, expr) | 
						|
				.WithoutILInstruction().WithRR(new ByReferenceResolveResult(expr.Type, isOut: false)); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitLdElema(LdElema inst, TranslationContext context) | 
						|
		{ | 
						|
			TranslatedExpression arrayExpr = Translate(inst.Array); | 
						|
			var arrayType = arrayExpr.Type as ArrayType; | 
						|
			if (arrayType == null) { | 
						|
				arrayType  = new ArrayType(compilation, inst.Type, inst.Indices.Count); | 
						|
				arrayExpr = arrayExpr.ConvertTo(arrayType, this); | 
						|
			} | 
						|
			TranslatedExpression expr = new IndexerExpression( | 
						|
				arrayExpr, inst.Indices.Select(i => TranslateArrayIndex(i).Expression) | 
						|
			).WithILInstruction(inst).WithRR(new ResolveResult(arrayType.ElementType)); | 
						|
			return new DirectionExpression(FieldDirection.Ref, expr) | 
						|
				.WithoutILInstruction().WithRR(new ByReferenceResolveResult(expr.Type, isOut: false)); | 
						|
		} | 
						|
		 | 
						|
		TranslatedExpression TranslateArrayIndex(ILInstruction i) | 
						|
		{ | 
						|
			var input = Translate(i); | 
						|
			KnownTypeCode targetType; | 
						|
			if (i.ResultType == StackType.I4) { | 
						|
				if (input.Type.IsSmallIntegerType() && input.Type.Kind != TypeKind.Enum) { | 
						|
					return input; // we don't need a cast, just let small integers be promoted to int | 
						|
				} | 
						|
				targetType = input.Type.GetSign() == Sign.Unsigned ? KnownTypeCode.UInt32 : KnownTypeCode.Int32; | 
						|
			} else { | 
						|
				targetType = input.Type.GetSign() == Sign.Unsigned ? KnownTypeCode.UInt64 : KnownTypeCode.Int64; | 
						|
			} | 
						|
			return input.ConvertTo(compilation.FindType(targetType), this); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitUnboxAny(UnboxAny inst, TranslationContext context) | 
						|
		{ | 
						|
			var arg = Translate(inst.Argument); | 
						|
			if (arg.Type.IsReferenceType != true) { | 
						|
				// ensure we treat the input as a reference type | 
						|
				arg = arg.ConvertTo(compilation.FindType(KnownTypeCode.Object), this); | 
						|
			} | 
						|
 | 
						|
			IType targetType = inst.Type; | 
						|
			if (targetType.Kind == TypeKind.TypeParameter) { | 
						|
				var rr = resolver.ResolveCast(targetType, arg.ResolveResult); | 
						|
				if (rr.IsError) { | 
						|
					// C# 6.2.7 Explicit conversions involving type parameters: | 
						|
					// if we can't directly convert to a type parameter, | 
						|
					// try via its effective base class. | 
						|
					arg = arg.ConvertTo(((ITypeParameter)targetType).EffectiveBaseClass, this); | 
						|
				} | 
						|
			} | 
						|
			return new CastExpression(ConvertType(targetType), arg.Expression) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(new ConversionResolveResult(targetType, arg.ResolveResult, Conversion.UnboxingConversion)); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitUnbox(Unbox inst, TranslationContext context) | 
						|
		{ | 
						|
			var arg = Translate(inst.Argument); | 
						|
			var castExpression = new CastExpression(ConvertType(inst.Type), arg.Expression) | 
						|
				.WithRR(new ConversionResolveResult(inst.Type, arg.ResolveResult, Conversion.UnboxingConversion)); | 
						|
			return new DirectionExpression(FieldDirection.Ref, castExpression) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(new ByReferenceResolveResult(castExpression.ResolveResult, isOut: false)); | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitBox(Box inst, TranslationContext context) | 
						|
		{ | 
						|
			var obj = compilation.FindType(KnownTypeCode.Object); | 
						|
			var arg = Translate(inst.Argument, typeHint: inst.Type).ConvertTo(inst.Type, this); | 
						|
			return new CastExpression(ConvertType(obj), arg.Expression) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(new ConversionResolveResult(obj, arg.ResolveResult, Conversion.BoxingConversion)); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitCastClass(CastClass inst, TranslationContext context) | 
						|
		{ | 
						|
			return Translate(inst.Argument).ConvertTo(inst.Type, this); | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitExpressionTreeCast(ExpressionTreeCast inst, TranslationContext context) | 
						|
		{ | 
						|
			return Translate(inst.Argument).ConvertTo(inst.Type, this, inst.IsChecked); | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitArglist(Arglist inst, TranslationContext context) | 
						|
		{ | 
						|
			return new UndocumentedExpression { UndocumentedExpressionType = UndocumentedExpressionType.ArgListAccess } | 
						|
			.WithILInstruction(inst) | 
						|
				.WithRR(new TypeResolveResult(compilation.FindType(new TopLevelTypeName("System", "RuntimeArgumentHandle")))); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitMakeRefAny(MakeRefAny inst, TranslationContext context) | 
						|
		{ | 
						|
			var arg = Translate(inst.Argument).Expression; | 
						|
			if (arg is DirectionExpression) { | 
						|
				arg = ((DirectionExpression)arg).Expression; | 
						|
			} | 
						|
			return new UndocumentedExpression { | 
						|
				UndocumentedExpressionType = UndocumentedExpressionType.MakeRef, | 
						|
				Arguments = { arg.Detach() } | 
						|
			} | 
						|
			.WithILInstruction(inst) | 
						|
				.WithRR(new TypeResolveResult(compilation.FindType(new TopLevelTypeName("System", "TypedReference")))); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitRefAnyType(RefAnyType inst, TranslationContext context) | 
						|
		{ | 
						|
			return new MemberReferenceExpression(new UndocumentedExpression { | 
						|
				UndocumentedExpressionType = UndocumentedExpressionType.RefType, | 
						|
				Arguments = { Translate(inst.Argument).Expression.Detach() } | 
						|
			}, "TypeHandle") | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(new TypeResolveResult(compilation.FindType(new TopLevelTypeName("System", "RuntimeTypeHandle")))); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitRefAnyValue(RefAnyValue inst, TranslationContext context) | 
						|
		{ | 
						|
			var expr = new UndocumentedExpression { | 
						|
				UndocumentedExpressionType = UndocumentedExpressionType.RefValue, | 
						|
				Arguments = { Translate(inst.Argument).Expression, new TypeReferenceExpression(ConvertType(inst.Type)) } | 
						|
			}.WithRR(new ResolveResult(inst.Type)); | 
						|
			return new DirectionExpression(FieldDirection.Ref, expr.WithILInstruction(inst)).WithoutILInstruction() | 
						|
				.WithRR(new ByReferenceResolveResult(inst.Type, false)); | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitBlock(Block block, TranslationContext context) | 
						|
		{ | 
						|
			switch (block.Kind) { | 
						|
				case BlockKind.ArrayInitializer: | 
						|
					return TranslateArrayInitializer(block); | 
						|
				case BlockKind.CollectionInitializer: | 
						|
				case BlockKind.ObjectInitializer: | 
						|
					return TranslateObjectAndCollectionInitializer(block); | 
						|
				case BlockKind.PostfixOperator: | 
						|
					return TranslatePostfixOperator(block); | 
						|
				case BlockKind.CallInlineAssign: | 
						|
					return TranslateSetterCallAssignment(block); | 
						|
				default: | 
						|
					return ErrorExpression("Unknown block type: " + block.Kind); | 
						|
			} | 
						|
		} | 
						|
 | 
						|
		private TranslatedExpression TranslateSetterCallAssignment(Block block) | 
						|
		{ | 
						|
			if (!block.MatchInlineAssignBlock(out var call, out var value)) { | 
						|
				// should never happen unless the ILAst is invalid | 
						|
				return ErrorExpression("Error: MatchInlineAssignBlock() returned false"); | 
						|
			} | 
						|
			var arguments = call.Arguments.ToList(); | 
						|
			arguments[arguments.Count - 1] = value; | 
						|
			return new CallBuilder(this, typeSystem, settings) | 
						|
				.Build(call.OpCode, call.Method, arguments) | 
						|
				.WithILInstruction(call); | 
						|
		} | 
						|
 | 
						|
		TranslatedExpression TranslateObjectAndCollectionInitializer(Block block) | 
						|
		{ | 
						|
			var stloc = block.Instructions.FirstOrDefault() as StLoc; | 
						|
			var final = block.FinalInstruction as LdLoc; | 
						|
			if (stloc == null || final == null || stloc.Variable != final.Variable || stloc.Variable.Kind != VariableKind.InitializerTarget) | 
						|
				throw new ArgumentException("given Block is invalid!"); | 
						|
			InitializedObjectResolveResult initObjRR; | 
						|
			TranslatedExpression expr; | 
						|
			switch (stloc.Value) { | 
						|
				case NewObj newObjInst: | 
						|
					initObjRR = new InitializedObjectResolveResult(newObjInst.Method.DeclaringType); | 
						|
					expr = new CallBuilder(this, typeSystem, settings).Build(newObjInst); | 
						|
					break; | 
						|
				case DefaultValue defaultVal: | 
						|
					initObjRR = new InitializedObjectResolveResult(defaultVal.Type); | 
						|
					expr = new ObjectCreateExpression(ConvertType(defaultVal.Type)) | 
						|
						.WithILInstruction(defaultVal) | 
						|
						.WithRR(new TypeResolveResult(defaultVal.Type)); | 
						|
					break; | 
						|
				default: | 
						|
					throw new ArgumentException("given Block is invalid!"); | 
						|
			} | 
						|
			var elementsStack = new Stack<List<Expression>>(); | 
						|
			var elements = new List<Expression>(block.Instructions.Count); | 
						|
			elementsStack.Push(elements); | 
						|
			List<IL.Transforms.AccessPathElement> currentPath = null; | 
						|
			var indexVariables = new Dictionary<ILVariable, ILInstruction>(); | 
						|
			foreach (var inst in block.Instructions.Skip(1)) { | 
						|
				if (inst is StLoc indexStore) { | 
						|
					indexVariables.Add(indexStore.Variable, indexStore.Value); | 
						|
					continue; | 
						|
				} | 
						|
				var info = IL.Transforms.AccessPathElement.GetAccessPath(inst, initObjRR.Type); | 
						|
				if (info.Kind == IL.Transforms.AccessPathKind.Invalid) continue; | 
						|
				if (currentPath == null) { | 
						|
					currentPath = info.Path; | 
						|
				} else { | 
						|
					int minLen = Math.Min(currentPath.Count, info.Path.Count); | 
						|
					int firstDifferenceIndex = 0; | 
						|
					while (firstDifferenceIndex < minLen && info.Path[firstDifferenceIndex] == currentPath[firstDifferenceIndex]) | 
						|
						firstDifferenceIndex++; | 
						|
					while (elementsStack.Count - 1 > firstDifferenceIndex) { | 
						|
						var methodElement = currentPath[elementsStack.Count - 1]; | 
						|
						var pathElement = currentPath[elementsStack.Count - 2]; | 
						|
						var values = elementsStack.Pop(); | 
						|
						elementsStack.Peek().Add(MakeInitializerAssignment(methodElement.Member, pathElement, values, indexVariables)); | 
						|
					} | 
						|
					currentPath = info.Path; | 
						|
				} | 
						|
				while (elementsStack.Count < currentPath.Count) | 
						|
					elementsStack.Push(new List<Expression>()); | 
						|
				var lastElement = currentPath.Last(); | 
						|
				var memberRR = new MemberResolveResult(initObjRR, lastElement.Member); | 
						|
				switch (info.Kind) { | 
						|
					case IL.Transforms.AccessPathKind.Adder: | 
						|
						elementsStack.Peek().Add(MakeInitializerElements(info.Values, ((IMethod)lastElement.Member).Parameters)); | 
						|
						break; | 
						|
					case IL.Transforms.AccessPathKind.Setter: | 
						|
						if (lastElement.Indices?.Length > 0) { | 
						|
							var indexer = new IndexerExpression(null, lastElement.Indices.SelectArray(i => Translate(i is LdLoc ld ? indexVariables[ld.Variable] : i).Expression)) | 
						|
								.WithILInstruction(inst).WithRR(memberRR); | 
						|
							elementsStack.Peek().Add(Assignment(indexer, Translate(info.Values.Single(), typeHint: indexer.Type))); | 
						|
						} else { | 
						|
							var target = new IdentifierExpression(lastElement.Member.Name) | 
						|
								.WithILInstruction(inst).WithRR(memberRR); | 
						|
							elementsStack.Peek().Add(Assignment(target, Translate(info.Values.Single(), typeHint: target.Type))); | 
						|
						} | 
						|
						break; | 
						|
				} | 
						|
			} | 
						|
			while (elementsStack.Count > 1) { | 
						|
				var methodElement = currentPath[elementsStack.Count - 1]; | 
						|
				var pathElement = currentPath[elementsStack.Count - 2]; | 
						|
				var values = elementsStack.Pop(); | 
						|
				elementsStack.Peek().Add(MakeInitializerAssignment(methodElement.Member, pathElement, values, indexVariables)); | 
						|
			} | 
						|
			var oce = (ObjectCreateExpression)expr.Expression; | 
						|
			oce.Initializer = new ArrayInitializerExpression(elements); | 
						|
			return expr.WithILInstruction(block); | 
						|
		} | 
						|
 | 
						|
		Expression MakeInitializerAssignment(IMember method, IL.Transforms.AccessPathElement member, List<Expression> values, Dictionary<ILVariable, ILInstruction> indexVariables) | 
						|
		{ | 
						|
			var target = member.Indices?.Length > 0 ? (Expression)new IndexerExpression(null, member.Indices.SelectArray(i => Translate(i is LdLoc ld ? indexVariables[ld.Variable] : i).Expression)) : new IdentifierExpression(member.Member.Name); | 
						|
			Expression value; | 
						|
			if (values.Count == 1 && !(values[0] is AssignmentExpression) && !(method.SymbolKind == SymbolKind.Method && method.Name == "Add")) | 
						|
				value = values[0]; | 
						|
			else | 
						|
				value = new ArrayInitializerExpression(values); | 
						|
			return new AssignmentExpression(target, value); | 
						|
		} | 
						|
 | 
						|
		Expression MakeInitializerElements(List<ILInstruction> values, IReadOnlyList<IParameter> parameters) | 
						|
		{ | 
						|
			if (values.Count == 1) { | 
						|
				return Translate(values[0], typeHint: parameters[0].Type).ConvertTo(parameters[0].Type, this); | 
						|
			} | 
						|
			var expressions = new Expression[values.Count]; | 
						|
			for (int i = 0; i < values.Count; i++) { | 
						|
				expressions[i] = Translate(values[i], typeHint: parameters[i].Type).ConvertTo(parameters[i].Type, this); | 
						|
			} | 
						|
			return new ArrayInitializerExpression(expressions); | 
						|
		} | 
						|
 | 
						|
		readonly static ArraySpecifier[] NoSpecifiers = new ArraySpecifier[0]; | 
						|
 | 
						|
		TranslatedExpression TranslateArrayInitializer(Block block) | 
						|
		{ | 
						|
			var stloc = block.Instructions.FirstOrDefault() as StLoc; | 
						|
			var final = block.FinalInstruction as LdLoc; | 
						|
			IType type; | 
						|
			if (stloc == null || final == null || !stloc.Value.MatchNewArr(out type) || stloc.Variable != final.Variable || stloc.Variable.Kind != VariableKind.InitializerTarget) | 
						|
				throw new ArgumentException("given Block is invalid!"); | 
						|
			var newArr = (NewArr)stloc.Value; | 
						|
			 | 
						|
			var translatedDimensions = newArr.Indices.Select(i => Translate(i)).ToArray(); | 
						|
			 | 
						|
			if (!translatedDimensions.All(dim => dim.ResolveResult.IsCompileTimeConstant)) | 
						|
				throw new ArgumentException("given Block is invalid!"); | 
						|
			int dimensions = newArr.Indices.Count; | 
						|
			int[] dimensionSizes = translatedDimensions.Select(dim => (int)dim.ResolveResult.ConstantValue).ToArray(); | 
						|
			var container = new Stack<ArrayInitializerExpression>(); | 
						|
			var root = new ArrayInitializerExpression(); | 
						|
			container.Push(root); | 
						|
			var elementResolveResults = new List<ResolveResult>(); | 
						|
			 | 
						|
			for (int i = 1; i < block.Instructions.Count; i++) { | 
						|
				ILInstruction target, value, array; | 
						|
				IType t; | 
						|
				ILVariable v; | 
						|
				if (!block.Instructions[i].MatchStObj(out target, out value, out t) || !type.Equals(t)) | 
						|
					throw new ArgumentException("given Block is invalid!"); | 
						|
				if (!target.MatchLdElema(out t, out array) || !type.Equals(t)) | 
						|
					throw new ArgumentException("given Block is invalid!"); | 
						|
				if (!array.MatchLdLoc(out v) || v != final.Variable) | 
						|
					throw new ArgumentException("given Block is invalid!"); | 
						|
				while (container.Count < dimensions) { | 
						|
					var aie = new ArrayInitializerExpression(); | 
						|
					container.Peek().Elements.Add(aie); | 
						|
					container.Push(aie); | 
						|
				} | 
						|
				var val = Translate(value, typeHint: type).ConvertTo(type, this, allowImplicitConversion: true); | 
						|
				container.Peek().Elements.Add(val); | 
						|
				elementResolveResults.Add(val.ResolveResult); | 
						|
				while (container.Count > 0 && container.Peek().Elements.Count == dimensionSizes[container.Count - 1]) { | 
						|
					container.Pop(); | 
						|
				} | 
						|
			} | 
						|
			ArraySpecifier[] additionalSpecifiers; | 
						|
			AstType typeExpression; | 
						|
			if (settings.AnonymousTypes && type.ContainsAnonymousType()) { | 
						|
				typeExpression = null; | 
						|
				additionalSpecifiers = new[] { new ArraySpecifier() }; | 
						|
			} else { | 
						|
				typeExpression = ConvertType(type); | 
						|
				if (typeExpression is ComposedType compType && compType.ArraySpecifiers.Count > 0) { | 
						|
					additionalSpecifiers = compType.ArraySpecifiers.Select(a => (ArraySpecifier)a.Clone()).ToArray(); | 
						|
					compType.ArraySpecifiers.Clear(); | 
						|
				} else { | 
						|
					additionalSpecifiers = NoSpecifiers; | 
						|
				} | 
						|
			} | 
						|
			var expr = new ArrayCreateExpression { | 
						|
				Type = typeExpression, | 
						|
				Initializer = root | 
						|
			}; | 
						|
			expr.AdditionalArraySpecifiers.AddRange(additionalSpecifiers); | 
						|
			if (!(bool)type.ContainsAnonymousType()) | 
						|
				expr.Arguments.AddRange(newArr.Indices.Select(i => Translate(i).Expression)); | 
						|
			return expr.WithILInstruction(block) | 
						|
				.WithRR(new ArrayCreateResolveResult(new ArrayType(compilation, type, dimensions), newArr.Indices.Select(i => Translate(i).ResolveResult).ToArray(), elementResolveResults)); | 
						|
		} | 
						|
		 | 
						|
		TranslatedExpression TranslatePostfixOperator(Block block) | 
						|
		{ | 
						|
			var targetInst = (block.Instructions.ElementAtOrDefault(0) as StLoc)?.Value; | 
						|
			var inst = (block.Instructions.ElementAtOrDefault(1) as StLoc)?.Value as BinaryNumericInstruction; | 
						|
			if (targetInst == null || inst == null || (inst.Operator != BinaryNumericOperator.Add && inst.Operator != BinaryNumericOperator.Sub)) | 
						|
				throw new ArgumentException("given Block is invalid!"); | 
						|
			var op = inst.Operator == BinaryNumericOperator.Add ? UnaryOperatorType.PostIncrement : UnaryOperatorType.PostDecrement; | 
						|
			var target = Translate(targetInst); | 
						|
			return new UnaryOperatorExpression(op, target) | 
						|
				.WithILInstruction(block) | 
						|
				.WithRR(resolver.WithCheckForOverflow(inst.CheckForOverflow).ResolveUnaryOperator(op, target.ResolveResult)); | 
						|
		} | 
						|
 | 
						|
		/// <summary> | 
						|
		/// If expr is a constant integer expression, and its value fits into type, | 
						|
		/// convert the expression into the target type. | 
						|
		/// Otherwise, returns the expression unmodified. | 
						|
		/// </summary> | 
						|
		TranslatedExpression AdjustConstantExpressionToType(TranslatedExpression expr, IType type) | 
						|
		{ | 
						|
			if (!expr.ResolveResult.IsCompileTimeConstant) { | 
						|
				return expr; | 
						|
			} | 
						|
			type = NullableType.GetUnderlyingType(type); | 
						|
			if (type.IsKnownType(KnownTypeCode.Boolean) | 
						|
				&& (object.Equals(expr.ResolveResult.ConstantValue, 0) || object.Equals(expr.ResolveResult.ConstantValue, 1))) { | 
						|
				return expr.ConvertToBoolean(this); | 
						|
			} else if (type.Kind == TypeKind.Enum || type.IsKnownType(KnownTypeCode.Char)) { | 
						|
				var castRR = resolver.WithCheckForOverflow(true).ResolveCast(type, expr.ResolveResult); | 
						|
				if (castRR.IsCompileTimeConstant && !castRR.IsError) { | 
						|
					return ConvertConstantValue(castRR).WithILInstruction(expr.ILInstructions); | 
						|
				} | 
						|
			} | 
						|
			return expr; | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitNullCoalescingInstruction(NullCoalescingInstruction inst, TranslationContext context) | 
						|
		{ | 
						|
			var value = Translate(inst.ValueInst); | 
						|
			var fallback = Translate(inst.FallbackInst); | 
						|
			fallback = AdjustConstantExpressionToType(fallback, value.Type); | 
						|
			var rr = resolver.ResolveBinaryOperator(BinaryOperatorType.NullCoalescing, value.ResolveResult, fallback.ResolveResult); | 
						|
			if (rr.IsError) { | 
						|
				IType targetType; | 
						|
				if (!value.Type.Equals(SpecialType.NullType) && !fallback.Type.Equals(SpecialType.NullType) && !value.Type.Equals(fallback.Type)) { | 
						|
					targetType = compilation.FindType(inst.UnderlyingResultType.ToKnownTypeCode()); | 
						|
				} else { | 
						|
					targetType = value.Type.Equals(SpecialType.NullType) ? fallback.Type : value.Type; | 
						|
				} | 
						|
				if (inst.Kind != NullCoalescingKind.Ref) { | 
						|
					value = value.ConvertTo(NullableType.Create(compilation, targetType), this); | 
						|
				} else { | 
						|
					value = value.ConvertTo(targetType, this); | 
						|
				} | 
						|
				if (inst.Kind == NullCoalescingKind.Nullable) { | 
						|
					value = value.ConvertTo(NullableType.Create(compilation, targetType), this); | 
						|
				} else { | 
						|
					fallback = fallback.ConvertTo(targetType, this); | 
						|
				} | 
						|
				rr = new ResolveResult(targetType); | 
						|
			} | 
						|
			return new BinaryOperatorExpression(value, BinaryOperatorType.NullCoalescing, fallback) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(rr); | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitIfInstruction(IfInstruction inst, TranslationContext context) | 
						|
		{ | 
						|
			var condition = TranslateCondition(inst.Condition); | 
						|
			var trueBranch = Translate(inst.TrueInst, typeHint: context.TypeHint); | 
						|
			var falseBranch = Translate(inst.FalseInst, typeHint: context.TypeHint); | 
						|
			BinaryOperatorType op = BinaryOperatorType.Any; | 
						|
			TranslatedExpression rhs = default(TranslatedExpression); | 
						|
 | 
						|
			if (inst.MatchLogicAnd(out var lhsInst, out var rhsInst)) { | 
						|
				op = BinaryOperatorType.ConditionalAnd; | 
						|
				Debug.Assert(rhsInst == inst.TrueInst); | 
						|
				rhs = trueBranch; | 
						|
			} else if (inst.MatchLogicOr(out lhsInst, out rhsInst)) { | 
						|
				op = BinaryOperatorType.ConditionalOr; | 
						|
				Debug.Assert(rhsInst == inst.FalseInst); | 
						|
				rhs = falseBranch; | 
						|
			} | 
						|
			// ILAst LogicAnd/LogicOr can return a different value than 0 or 1 | 
						|
			// if the rhs is evaluated. | 
						|
			// We can only correctly translate it to C# if the rhs is of type boolean: | 
						|
			if (op != BinaryOperatorType.Any && (rhs.Type.IsKnownType(KnownTypeCode.Boolean) || IfInstruction.IsInConditionSlot(inst))) { | 
						|
				rhs = rhs.ConvertToBoolean(this); | 
						|
				return new BinaryOperatorExpression(condition, op, rhs) | 
						|
					.WithILInstruction(inst) | 
						|
					.WithRR(new ResolveResult(compilation.FindType(KnownTypeCode.Boolean))); | 
						|
			} | 
						|
 | 
						|
			trueBranch = AdjustConstantExpressionToType(trueBranch, falseBranch.Type); | 
						|
			falseBranch = AdjustConstantExpressionToType(falseBranch, trueBranch.Type); | 
						|
 | 
						|
			var rr = resolver.ResolveConditional(condition.ResolveResult, trueBranch.ResolveResult, falseBranch.ResolveResult); | 
						|
			if (rr.IsError) { | 
						|
				IType targetType; | 
						|
				if (!trueBranch.Type.Equals(SpecialType.NullType) && !falseBranch.Type.Equals(SpecialType.NullType) && !trueBranch.Type.Equals(falseBranch.Type)) { | 
						|
					targetType = typeInference.GetBestCommonType(new[] { trueBranch.ResolveResult, falseBranch.ResolveResult }, out bool success); | 
						|
					if (!success || targetType.GetStackType() != inst.ResultType) { | 
						|
						// Figure out the target type based on inst.ResultType. | 
						|
						if (inst.ResultType == StackType.Ref) { | 
						|
							// targetType should be a ref-type | 
						|
							if (trueBranch.Type.Kind == TypeKind.ByReference) { | 
						|
								targetType = trueBranch.Type; | 
						|
							} else if (falseBranch.Type.Kind == TypeKind.ByReference) { | 
						|
								targetType = falseBranch.Type; | 
						|
							} else { | 
						|
								// fall back to 'ref byte' if we can't determine a referenced type otherwise | 
						|
								targetType = new ByReferenceType(compilation.FindType(KnownTypeCode.Byte)); | 
						|
							} | 
						|
						} else { | 
						|
							targetType = compilation.FindType(inst.ResultType.ToKnownTypeCode()); | 
						|
						} | 
						|
					} | 
						|
				} else { | 
						|
					targetType = trueBranch.Type.Equals(SpecialType.NullType) ? falseBranch.Type : trueBranch.Type; | 
						|
				} | 
						|
				trueBranch = trueBranch.ConvertTo(targetType, this); | 
						|
				falseBranch = falseBranch.ConvertTo(targetType, this); | 
						|
				rr = new ResolveResult(targetType); | 
						|
			} | 
						|
			if (rr.Type.Kind == TypeKind.ByReference) { | 
						|
				// C# conditional ref looks like this: | 
						|
				// ref (arr != null ? ref trueBranch : ref falseBranch); | 
						|
				var conditionalResolveResult = new ResolveResult(((ByReferenceType)rr.Type).ElementType); | 
						|
				return new DirectionExpression(FieldDirection.Ref, | 
						|
					new ConditionalExpression(condition.Expression, trueBranch.Expression, falseBranch.Expression) | 
						|
						.WithILInstruction(inst) | 
						|
						.WithRR(conditionalResolveResult) | 
						|
				).WithoutILInstruction().WithRR(new ByReferenceResolveResult(conditionalResolveResult, isOut: false)); | 
						|
			} else { | 
						|
				return new ConditionalExpression(condition.Expression, trueBranch.Expression, falseBranch.Expression) | 
						|
					.WithILInstruction(inst) | 
						|
					.WithRR(rr); | 
						|
			} | 
						|
		} | 
						|
		 | 
						|
		protected internal override TranslatedExpression VisitAddressOf(AddressOf inst, TranslationContext context) | 
						|
		{ | 
						|
			// HACK: this is only correct if the argument is an R-value; otherwise we're missing the copy to the temporary | 
						|
			var value = Translate(inst.Value); | 
						|
			return new DirectionExpression(FieldDirection.Ref, value) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(new ByReferenceResolveResult(value.ResolveResult, false)); | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitAwait(Await inst, TranslationContext context) | 
						|
		{ | 
						|
			IType expectedType = null; | 
						|
			if (inst.GetAwaiterMethod != null) { | 
						|
				if (inst.GetAwaiterMethod.IsStatic) { | 
						|
					expectedType = inst.GetAwaiterMethod.Parameters.FirstOrDefault()?.Type; | 
						|
				} else { | 
						|
					expectedType = inst.GetAwaiterMethod.DeclaringType; | 
						|
				} | 
						|
			} | 
						|
 | 
						|
			var value = Translate(inst.Value, typeHint: expectedType); | 
						|
			if (value.Expression is DirectionExpression) { | 
						|
				// we can deference the managed reference by stripping away the 'ref' | 
						|
				value = value.UnwrapChild(((DirectionExpression)value.Expression).Expression); | 
						|
			} | 
						|
			if (expectedType != null) { | 
						|
				value = value.ConvertTo(expectedType, this, allowImplicitConversion: true); | 
						|
			} | 
						|
			return new UnaryOperatorExpression(UnaryOperatorType.Await, value.Expression) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(new ResolveResult(inst.GetResultMethod?.ReturnType ?? SpecialType.UnknownType)); | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitNullableRewrap(NullableRewrap inst, TranslationContext context) | 
						|
		{ | 
						|
			var arg = Translate(inst.Argument); | 
						|
			IType type = arg.Type; | 
						|
			if (NullableType.IsNonNullableValueType(type)) { | 
						|
				type = NullableType.Create(compilation, type); | 
						|
			} | 
						|
			return new UnaryOperatorExpression(UnaryOperatorType.NullConditionalRewrap, arg) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(new ResolveResult(type)); | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitNullableUnwrap(NullableUnwrap inst, TranslationContext context) | 
						|
		{ | 
						|
			var arg = Translate(inst.Argument); | 
						|
			if (inst.RefInput && !inst.RefOutput && arg.Expression is DirectionExpression dir) { | 
						|
				arg = arg.UnwrapChild(dir.Expression); | 
						|
			} | 
						|
			return new UnaryOperatorExpression(UnaryOperatorType.NullConditional, arg) | 
						|
				.WithILInstruction(inst) | 
						|
				.WithRR(new ResolveResult(NullableType.GetUnderlyingType(arg.Type))); | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitInvalidBranch(InvalidBranch inst, TranslationContext context) | 
						|
		{ | 
						|
			string message = "Error"; | 
						|
			if (inst.ILRange.Start != 0) { | 
						|
				message += $" near IL_{inst.ILRange.Start:x4}"; | 
						|
			} | 
						|
			if (!string.IsNullOrEmpty(inst.Message)) { | 
						|
				message += ": " + inst.Message; | 
						|
			} | 
						|
			return ErrorExpression(message); | 
						|
		} | 
						|
 | 
						|
		protected internal override TranslatedExpression VisitInvalidExpression(InvalidExpression inst, TranslationContext context) | 
						|
		{ | 
						|
			string message = "Error"; | 
						|
			if (inst.ILRange.Start != 0) { | 
						|
				message += $" near IL_{inst.ILRange.Start:x4}"; | 
						|
			} | 
						|
			if (!string.IsNullOrEmpty(inst.Message)) { | 
						|
				message += ": " + inst.Message; | 
						|
			} | 
						|
			return ErrorExpression(message); | 
						|
		} | 
						|
 | 
						|
		protected override TranslatedExpression Default(ILInstruction inst, TranslationContext context) | 
						|
		{ | 
						|
			return ErrorExpression("OpCode not supported: " + inst.OpCode); | 
						|
		} | 
						|
		 | 
						|
		static TranslatedExpression ErrorExpression(string message) | 
						|
		{ | 
						|
			var e = new ErrorExpression(); | 
						|
			e.AddChild(new Comment(message, CommentType.MultiLine), Roles.Comment); | 
						|
			return e.WithoutILInstruction().WithRR(ErrorResolveResult.UnknownError); | 
						|
		} | 
						|
	} | 
						|
}
 | 
						|
 |