.NET Decompiler with support for PDB generation, ReadyToRun, Metadata (&more) - cross-platform!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

177 lines
5.6 KiB

// Copyright (c) 2014 Daniel Grunwald
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace ICSharpCode.Decompiler.IL
{
public enum CompoundAssignmentType : byte
{
None,
EvaluatesToOldValue,
EvaluatesToNewValue
}
public abstract partial class BinaryNumericInstruction : BinaryInstruction
{
/// <summary>
/// Gets whether this instruction is a compound assignment.
/// </summary>
public readonly CompoundAssignmentType CompoundAssignmentType;
/// <summary>
/// Gets whether the instruction checks for overflow.
/// </summary>
public readonly bool CheckForOverflow;
/// <summary>
/// For integer operations that depend on the sign, specifies whether the operation
/// is signed or unsigned.
/// For instructions that produce the same result for either sign, returns Sign.None.
/// </summary>
public readonly Sign Sign;
readonly StackType resultType;
protected BinaryNumericInstruction(OpCode opCode, ILInstruction left, ILInstruction right, bool checkForOverflow, Sign sign, CompoundAssignmentType compoundAssignmentType)
: base(opCode, left, right)
{
this.CheckForOverflow = checkForOverflow;
this.Sign = sign;
this.CompoundAssignmentType = compoundAssignmentType;
this.resultType = ComputeResultType(opCode, left.ResultType, right.ResultType);
Debug.Assert(resultType != StackType.Unknown);
Debug.Assert(CompoundAssignmentType == CompoundAssignmentType.None || IsValidCompoundAssignmentTarget(Left));
}
internal static bool IsValidCompoundAssignmentTarget(ILInstruction inst)
{
switch (inst.OpCode) {
case OpCode.LdLoc:
case OpCode.LdFld:
case OpCode.LdsFld:
case OpCode.LdObj:
return true;
case OpCode.Call:
case OpCode.CallVirt:
return true; // TODO: check if corresponding setter exists
default:
return false;
}
}
internal static StackType ComputeResultType(OpCode opCode, StackType left, StackType right)
{
// Based on Table 2: Binary Numeric Operations
// also works for Table 5: Integer Operations
// and for Table 7: Overflow Arithmetic Operations
if (left == right || opCode == OpCode.Shl || opCode == OpCode.Shr) {
// Shift op codes use Table 6
return left;
}
if (left == StackType.Ref || right == StackType.Ref) {
if (left == StackType.Ref && right == StackType.Ref) {
// sub(&, &) = I
Debug.Assert(opCode == OpCode.Sub);
return StackType.I;
} else {
// add/sub with I or I4 and &
Debug.Assert(opCode == OpCode.Add || opCode == OpCode.Sub);
return StackType.Ref;
}
}
if (left == StackType.I || right == StackType.I)
return StackType.I;
return StackType.Unknown;
}
public sealed override StackType ResultType {
get {
return resultType;
}
}
internal override void CheckInvariant(ILPhase phase)
{
base.CheckInvariant(phase);
Debug.Assert(CompoundAssignmentType == CompoundAssignmentType.None || IsValidCompoundAssignmentTarget(Left));
}
protected override void Connected()
{
base.Connected();
// Count the local variable store due to the compound assignment:
ILVariable v;
if (CompoundAssignmentType != CompoundAssignmentType.None && Left.MatchLdLoc(out v)) {
v.StoreCount++;
}
}
protected override void Disconnected()
{
base.Disconnected();
// Count the local variable store due to the compound assignment:
ILVariable v;
if (CompoundAssignmentType != CompoundAssignmentType.None && Left.MatchLdLoc(out v)) {
v.StoreCount--;
}
}
protected override InstructionFlags ComputeFlags()
{
var flags = base.ComputeFlags();
if (CheckForOverflow)
flags |= InstructionFlags.MayThrow;
// Set MayWriteLocals if this is a compound assignment to a local variable
if (CompoundAssignmentType != CompoundAssignmentType.None && Left.OpCode == OpCode.LdLoc)
flags |= InstructionFlags.MayWriteLocals;
return flags;
}
public override void WriteTo(ITextOutput output)
{
switch (CompoundAssignmentType) {
case CompoundAssignmentType.EvaluatesToNewValue:
output.Write("compound.assign");
break;
case CompoundAssignmentType.EvaluatesToOldValue:
output.Write("compound.assign.oldvalue");
break;
}
output.Write(OpCode);
if (CheckForOverflow)
output.Write(".ovf");
if (Sign == Sign.Unsigned)
output.Write(".unsigned");
else if (Sign == Sign.Signed)
output.Write(".signed");
output.Write('(');
Left.WriteTo(output);
output.Write(", ");
Right.WriteTo(output);
output.Write(')');
}
}
}