.NET Decompiler with support for PDB generation, ReadyToRun, Metadata (&more) - cross-platform!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

441 lines
14 KiB

#nullable enable
// Copyright (c) 2014 Daniel Grunwald
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Diagnostics.CodeAnalysis;
using System.Linq;
using ICSharpCode.Decompiler.IL.Transforms;
using ICSharpCode.Decompiler.Util;
namespace ICSharpCode.Decompiler.IL
{
/// <summary>
/// A container of IL blocks.
/// Each block is an extended basic block (branches may only jump to the beginning of blocks, not into the middle),
/// and only branches within this container may reference the blocks in this container.
/// That means that viewed from the outside, the block container has a single entry point (but possibly multiple exit points),
/// and the same holds for every block within the container.
///
/// All blocks in the container must perform unconditional control flow (falling through to the block end is not allowed).
/// To exit the block container, use the 'leave' instruction.
/// </summary>
partial class BlockContainer : ILInstruction
{
public static readonly SlotInfo BlockSlot = new SlotInfo("Block", isCollection: true);
public readonly InstructionCollection<Block> Blocks;
public ContainerKind Kind { get; set; }
public StackType ExpectedResultType { get; set; }
int leaveCount;
/// <summary>
/// Gets the number of 'leave' instructions that target this BlockContainer.
/// </summary>
public int LeaveCount {
get => leaveCount;
internal set {
leaveCount = value;
InvalidateFlags();
}
}
Block? entryPoint;
/// <summary>
/// Gets the container's entry point. This is the first block in the Blocks collection.
/// </summary>
public Block EntryPoint {
get {
// HACK: While it's possible to have BlockContainers without entry point,
// normally every container must have an entry point according to its invariant.
// Thus it's easier on the transforms if this property returns a non-nullable EntryPoint.
return entryPoint!;
}
private set {
if (entryPoint != null && IsConnected)
entryPoint.IncomingEdgeCount--;
entryPoint = value;
if (entryPoint != null && IsConnected)
entryPoint.IncomingEdgeCount++;
}
}
public BlockContainer(ContainerKind kind = ContainerKind.Normal, StackType expectedResultType = StackType.Void) : base(OpCode.BlockContainer)
{
this.Kind = kind;
this.Blocks = new InstructionCollection<Block>(this, 0);
this.ExpectedResultType = expectedResultType;
}
public override ILInstruction Clone()
{
BlockContainer clone = new BlockContainer(this.Kind, this.ExpectedResultType);
clone.AddILRange(this);
clone.Blocks.AddRange(this.Blocks.Select(block => (Block)block.Clone()));
// Adjust branch instructions to point to the new container
foreach (var branch in clone.Descendants.OfType<Branch>())
{
if (branch.TargetBlock != null && branch.TargetBlock.Parent == this)
branch.TargetBlock = clone.Blocks[branch.TargetBlock.ChildIndex];
}
foreach (var leave in clone.Descendants.OfType<Leave>())
{
if (leave.TargetContainer == this)
leave.TargetContainer = clone;
}
return clone;
}
protected internal override void InstructionCollectionUpdateComplete()
{
base.InstructionCollectionUpdateComplete();
this.EntryPoint = this.Blocks.FirstOrDefault()!;
}
protected override void Connected()
{
base.Connected();
if (entryPoint != null)
entryPoint.IncomingEdgeCount++;
}
protected override void Disconnected()
{
base.Disconnected();
if (entryPoint != null)
entryPoint.IncomingEdgeCount--;
}
public override void WriteTo(ITextOutput output, ILAstWritingOptions options)
{
WriteILRange(output, options);
output.WriteLocalReference("BlockContainer", this, isDefinition: true);
output.Write(' ');
switch (Kind)
{
case ContainerKind.Loop:
output.Write("(while-true) ");
break;
case ContainerKind.Switch:
output.Write("(switch) ");
break;
case ContainerKind.While:
output.Write("(while) ");
break;
case ContainerKind.DoWhile:
output.Write("(do-while) ");
break;
case ContainerKind.For:
output.Write("(for) ");
break;
}
output.MarkFoldStart("{...}");
output.WriteLine("{");
output.Indent();
foreach (var inst in Blocks)
{
if (inst.Parent == this)
{
inst.WriteTo(output, options);
}
else
{
output.Write("stale reference to ");
output.WriteLocalReference(inst.Label, inst);
}
output.WriteLine();
output.WriteLine();
}
output.Unindent();
output.Write("}");
output.MarkFoldEnd();
}
protected override int GetChildCount()
{
return Blocks.Count;
}
protected override ILInstruction GetChild(int index)
{
return Blocks[index];
}
protected override void SetChild(int index, ILInstruction? value)
{
if (Blocks[index] != value)
throw new InvalidOperationException("Cannot replace blocks in BlockContainer");
}
protected override SlotInfo GetChildSlot(int index)
{
return BlockSlot;
}
internal override void CheckInvariant(ILPhase phase)
{
base.CheckInvariant(phase);
Debug.Assert(Blocks.Count > 0 && EntryPoint == Blocks[0]);
Debug.Assert(!IsConnected || EntryPoint.IncomingEdgeCount >= 1);
Debug.Assert(Parent is ILFunction || !ILRangeIsEmpty);
Debug.Assert(Blocks.All(b => b.HasFlag(InstructionFlags.EndPointUnreachable)));
Debug.Assert(Blocks.All(b => b.Kind == BlockKind.ControlFlow)); // this also implies that the blocks don't use FinalInstruction
Debug.Assert(TopologicalSort(deleteUnreachableBlocks: true).Count == Blocks.Count, "Container should not have any unreachable blocks");
Block? bodyStartBlock;
switch (Kind)
{
case ContainerKind.Normal:
break;
case ContainerKind.Loop:
Debug.Assert(EntryPoint.IncomingEdgeCount > 1);
break;
case ContainerKind.Switch:
Debug.Assert(EntryPoint.Instructions.Count == 1);
Debug.Assert(EntryPoint.Instructions[0] is SwitchInstruction);
Debug.Assert(EntryPoint.IncomingEdgeCount == 1);
break;
case ContainerKind.While:
Debug.Assert(EntryPoint.IncomingEdgeCount > 1);
Debug.Assert(Blocks.Count >= 2);
Debug.Assert(MatchConditionBlock(EntryPoint, out _, out bodyStartBlock));
Debug.Assert(bodyStartBlock == Blocks[1]);
break;
case ContainerKind.DoWhile:
Debug.Assert(EntryPoint.IncomingEdgeCount > 1);
Debug.Assert(Blocks.Count >= 2);
Debug.Assert(MatchConditionBlock(Blocks.Last(), out _, out bodyStartBlock));
Debug.Assert(bodyStartBlock == EntryPoint);
break;
case ContainerKind.For:
Debug.Assert(EntryPoint.IncomingEdgeCount == 2);
Debug.Assert(Blocks.Count >= 3);
Debug.Assert(MatchConditionBlock(EntryPoint, out _, out bodyStartBlock));
Debug.Assert(MatchIncrementBlock(Blocks.Last()));
Debug.Assert(bodyStartBlock == Blocks[1]);
break;
}
}
protected override InstructionFlags ComputeFlags()
{
InstructionFlags flags = InstructionFlags.ControlFlow;
foreach (var block in Blocks)
{
flags |= block.Flags;
}
// The end point of the BlockContainer is only reachable if there's a leave instruction
if (LeaveCount == 0)
flags |= InstructionFlags.EndPointUnreachable;
else
flags &= ~InstructionFlags.EndPointUnreachable;
return flags;
}
public override InstructionFlags DirectFlags {
get {
return InstructionFlags.ControlFlow;
}
}
internal override bool CanInlineIntoSlot(int childIndex, ILInstruction expressionBeingMoved)
{
// Inlining into the entry-point is allowed as long as we're not moving code into a loop.
// This is used to inline into the switch expression.
return childIndex == 0 && this.EntryPoint.IncomingEdgeCount == 1;
}
internal override bool PrepareExtract(int childIndex, ExtractionContext ctx)
{
// Un-inlining from the entry-point is allowed as long as we're not moving code out of a loop
return childIndex == 0 && this.EntryPoint.IncomingEdgeCount == 1;
}
/// <summary>
/// Topologically sort the blocks.
/// The new order is returned without modifying the BlockContainer.
/// </summary>
/// <param name="deleteUnreachableBlocks">If true, unreachable blocks are not included in the new order.</param>
public List<Block> TopologicalSort(bool deleteUnreachableBlocks = false)
{
// Visit blocks in post-order
BitSet visited = new BitSet(Blocks.Count);
List<Block> postOrder = new List<Block>();
GraphTraversal.DepthFirstSearch(new[] { EntryPoint }, MarkAsVisited, Successors, postOrder.Add, reverseSuccessors: true);
postOrder.Reverse();
if (!deleteUnreachableBlocks)
{
for (int i = 0; i < Blocks.Count; i++)
{
if (!visited[i])
postOrder.Add(Blocks[i]);
}
}
return postOrder;
bool MarkAsVisited(Block block)
{
Debug.Assert(block.Parent == this);
if (!visited[block.ChildIndex])
{
visited[block.ChildIndex] = true;
return true;
}
else
{
return false;
}
}
IEnumerable<Block> Successors(Block block)
{
foreach (var branch in block.Descendants.OfType<Branch>())
{
if (branch.TargetBlock.Parent == this)
{
yield return branch.TargetBlock;
}
}
}
}
/// <summary>
/// Topologically sort the blocks.
/// </summary>
/// <param name="deleteUnreachableBlocks">If true, delete unreachable blocks.</param>
public void SortBlocks(bool deleteUnreachableBlocks = false)
{
if (Blocks.Count < 2)
return;
var newOrder = TopologicalSort(deleteUnreachableBlocks);
Debug.Assert(newOrder[0] == Blocks[0]);
Blocks.ReplaceList(newOrder);
}
public static BlockContainer? FindClosestContainer(ILInstruction? inst)
{
while (inst != null)
{
if (inst is BlockContainer bc)
return bc;
inst = inst.Parent;
}
return null;
}
public static BlockContainer? FindClosestSwitchContainer(ILInstruction? inst)
{
while (inst != null)
{
if (inst is BlockContainer { Kind: ContainerKind.Switch } bc)
return bc;
inst = inst.Parent;
}
return null;
}
public bool MatchConditionBlock(Block block, [NotNullWhen(true)] out ILInstruction? condition, [NotNullWhen(true)] out Block? bodyStartBlock)
{
condition = null;
bodyStartBlock = null;
if (block.Instructions.Count != 1)
return false;
if (!block.Instructions[0].MatchIfInstruction(out condition, out var trueInst, out var falseInst))
return false;
return falseInst.MatchLeave(this) && trueInst.MatchBranch(out bodyStartBlock);
}
public bool MatchIncrementBlock(Block block)
{
if (block.Instructions.Count == 0)
return false;
if (!block.Instructions.Last().MatchBranch(EntryPoint))
return false;
return true;
}
/// <summary>
/// If the container consists of a single block with a single instruction,
/// returns that instruction.
/// Otherwise returns the block, or the container itself if it has multiple blocks.
/// </summary>
public ILInstruction SingleInstruction()
{
if (Blocks.Count != 1)
return this;
if (Blocks[0].Instructions.Count != 1)
return Blocks[0];
return Blocks[0].Instructions[0];
}
}
public enum ContainerKind
{
/// <summary>
/// Normal container that contains control-flow blocks.
/// </summary>
Normal,
/// <summary>
/// A while-true loop.
/// Continue is represented as branch to entry-point.
/// Return/break is represented as leave.
/// </summary>
Loop,
/// <summary>
/// Container that has a switch instruction as entry-point.
/// Goto case is represented as branch.
/// Break is represented as leave.
/// </summary>
Switch,
/// <summary>
/// while-loop.
/// The entry-point is a block consisting of a single if instruction
/// that if true: jumps to the head of the loop body,
/// if false: leaves the block.
/// Continue is a branch to the entry-point.
/// Break is a leave.
/// </summary>
While,
/// <summary>
/// do-while-loop.
/// The entry-point is a block that is the head of the loop body.
/// The last block consists of a single if instruction
/// that if true: jumps to the head of the loop body,
/// if false: leaves the block.
/// Only the last block is allowed to jump to the entry-point.
/// Continue is a branch to the last block.
/// Break is a leave.
/// </summary>
DoWhile,
/// <summary>
/// for-loop.
/// The entry-point is a block consisting of a single if instruction
/// that if true: jumps to the head of the loop body,
/// if false: leaves the block.
/// The last block is the increment block.
/// Only the last block is allowed to jump to the entry-point.
/// Continue is a branch to the last block.
/// Break is a leave.
/// </summary>
For
}
}