mirror of https://github.com/icsharpcode/ILSpy.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
552 lines
20 KiB
552 lines
20 KiB
// Copyright (c) 2016 Daniel Grunwald |
|
// |
|
// Permission is hereby granted, free of charge, to any person obtaining a copy of this |
|
// software and associated documentation files (the "Software"), to deal in the Software |
|
// without restriction, including without limitation the rights to use, copy, modify, merge, |
|
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons |
|
// to whom the Software is furnished to do so, subject to the following conditions: |
|
// |
|
// The above copyright notice and this permission notice shall be included in all copies or |
|
// substantial portions of the Software. |
|
// |
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, |
|
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR |
|
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE |
|
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR |
|
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
|
// DEALINGS IN THE SOFTWARE. |
|
|
|
using System; |
|
using System.Collections; |
|
using System.Collections.Generic; |
|
using System.Collections.Immutable; |
|
using System.Diagnostics; |
|
using System.Linq; |
|
using ICSharpCode.Decompiler.IL; |
|
|
|
namespace ICSharpCode.Decompiler.FlowAnalysis |
|
{ |
|
/// <summary> |
|
/// Implements the "reaching definitions" analysis. |
|
/// |
|
/// https://en.wikipedia.org/wiki/Reaching_definition |
|
/// |
|
/// By "definitions", we mean stores to local variables. |
|
/// </summary> |
|
/// <remarks> |
|
/// Possible "definitions" that store to a variable are: |
|
/// * <c>StLoc</c> |
|
/// * <c>TryCatchHandler</c> (for the exception variable) |
|
/// * <c>ReachingDefinitions.UninitializedVariable</c> for uninitialized variables. |
|
/// Note that we do not keep track of <c>LdLoca</c>/references/pointers. |
|
/// The analysis will likely be wrong/incomplete for variables with <c>AddressCount != 0</c>. |
|
/// </remarks> |
|
public class ReachingDefinitions |
|
{ |
|
#region Documentation + member fields |
|
/// <summary> |
|
/// A special Nop instruction that gets used as a fake store if the variable |
|
/// is possibly uninitialized. |
|
/// </summary> |
|
public static readonly ILInstruction UninitializedVariable = new Nop(); |
|
|
|
// The reaching definition analysis tracks a 'state'. |
|
// This 'state' represents the reaching definitions at a given source code position. |
|
// There are many states (one per source code position, i.e. ILInstruction), |
|
// but we don't store all of them. |
|
// We only keep track of: |
|
// a) the current state in the RDVisitor |
|
// This state corresponds to the instruction currently being visited, |
|
// and gets mutated as we traverse the ILAst. |
|
// b) the input state for each control flow node |
|
// This also gets mutated as the analysis learns about new control flow edges. |
|
// |
|
// A state can either be reachable, or unreachable: |
|
// 1) unreachable |
|
// Note that during the analysis, "unreachable" just means we have not yet found a path |
|
// from the entry point to the node. States transition from unreachable to reachable as |
|
// the analysis processes more control flow paths. |
|
// 2) reachable |
|
// In this case, the state contains, for each variable, the set of stores that might have |
|
// written to the variable before the control flow reached the state's source code position. |
|
// This set does not include stores that were definitely overwritten by other stores to the |
|
// same variable. |
|
// During the analysis, the set of stores gets extended as the analysis processes more code paths. |
|
// For loops, we need to analyze the loop body before we can know the state for the loop backedge, |
|
// but we need to know the input state for the loop body (to which the backedge state contributes) |
|
// before we can analyze the loop body. |
|
// Solution: we repeat the analysis of the loop body multiple times, until the state no longer changes. |
|
// Because all state changes are irreversible (we only add to the set of stores, we never remove from it), |
|
// this algorithm will eventually terminate. |
|
// To make it terminate reasonably quickly, we need to process the control flow nodes in the correct order: |
|
// reverse post-order. This class assumes the blocks in each block container are already sorted appropriately. |
|
// The caller can use BlockContainer.SortBlocks() for this. |
|
|
|
// The state as described above could be represented as a `Dictionary<ILVariable, ImmutableHashSet<ILInstruction>>`. |
|
// To consume less memory, we instead assign an integer index to all stores in the analyzed function ("store index"), |
|
// and store the state as a `BitSet` instead. |
|
// Each bit in the set corresponds to one store instruction, and is `true` iff the store is a reaching definition |
|
// for the variable it is storing to. |
|
// The `allStores` array has the same length as the bit sets and holds the corresponding `ILInstruction` objects (store instructions). |
|
// All stores for a single variable occupy a contiguous segment of the `allStores` array (and thus also of the `state`). |
|
|
|
/// <summary> |
|
/// To distinguish unreachable from reachable states, we use the first bit in the bitset to store the 'reachable bit'. |
|
/// If this bit is set, the state is reachable, and the remaining bits |
|
/// </summary> |
|
const int ReachableBit = 0; |
|
|
|
/// <summary> |
|
/// Because bit number 0 is the ReachableBit, we start counting store indices at 1. |
|
/// </summary> |
|
const int FirstStoreIndex = 1; |
|
|
|
/// <summary> |
|
/// The function being analyzed. |
|
/// </summary> |
|
readonly ILVariableScope scope; |
|
|
|
/// <summary> |
|
/// All stores for all variables in the scope. |
|
/// |
|
/// <c>state[storeIndex]</c> is true iff <c>allStores[storeIndex]</c> is a reaching definition. |
|
/// Invariant: <c>state.Length == allStores.Length</c>. |
|
/// </summary> |
|
readonly ILInstruction[] allStores; |
|
|
|
/// <summary> |
|
/// Maps instructions appearing in <c>allStores</c> to their index. |
|
/// |
|
/// Invariant: <c>allStores[storeIndexMap[inst]] == inst</c> |
|
/// |
|
/// Does not contain <c>UninitializedVariable</c> (as that special instruction has multiple store indices, one per variable) |
|
/// </summary> |
|
readonly Dictionary<ILInstruction, int> storeIndexMap = new Dictionary<ILInstruction, int>(); |
|
|
|
/// <summary> |
|
/// For all variables <c>v</c>: <c>allStores[firstStoreIndexForVariable[v.IndexInScope]]</c> is the <c>UninitializedVariable</c> entry for <c>v</c>. |
|
/// The next few stores (up to <c>firstStoreIndexForVariable[v.IndexInScope + 1]</c>, exclusive) are the full list of stores for <c>v</c>. |
|
/// </summary> |
|
/// <remarks> |
|
/// Invariant: <c>firstStoreIndexForVariable[scope.Variables.Count] == allStores.Length</c> |
|
/// </remarks> |
|
readonly int[] firstStoreIndexForVariable; |
|
|
|
/// <summary> |
|
/// <c>activeVariable[v.IndexInScope]</c> is true iff RD analysis is enabled for the variable. |
|
/// </summary> |
|
readonly BitSet activeVariables; |
|
|
|
/// <summary> |
|
/// Holds the state for incoming branches. |
|
/// </summary> |
|
/// <remarks> |
|
/// Only used for blocks in block containers; not for inline blocks. |
|
/// </remarks> |
|
readonly Dictionary<Block, BitSet> stateOnBranch = new Dictionary<Block, BitSet>(); |
|
|
|
/// <summary> |
|
/// Holds the state at the block container end-point. (=state for incoming 'leave' instructions) |
|
/// </summary> |
|
readonly Dictionary<BlockContainer, BitSet> stateOnLeave = new Dictionary<BlockContainer, BitSet>(); |
|
#endregion |
|
|
|
#region Constructor |
|
/// <summary> |
|
/// Run reaching definitions analysis for the specified variable scope. |
|
/// </summary> |
|
public ReachingDefinitions(ILVariableScope scope, Predicate<ILVariable> pred) |
|
: this(scope, GetActiveVariableBitSet(scope, pred)) |
|
{ |
|
} |
|
|
|
static BitSet GetActiveVariableBitSet(ILVariableScope scope, Predicate<ILVariable> pred) |
|
{ |
|
if (scope == null) |
|
throw new ArgumentNullException("scope"); |
|
BitSet activeVariables = new BitSet(scope.Variables.Count); |
|
for (int vi = 0; vi < scope.Variables.Count; vi++) { |
|
activeVariables[vi] = pred(scope.Variables[vi]); |
|
} |
|
return activeVariables; |
|
} |
|
|
|
/// <summary> |
|
/// Run reaching definitions analysis for the specified variable scope. |
|
/// </summary> |
|
public ReachingDefinitions(ILVariableScope scope, BitSet activeVariables) |
|
{ |
|
if (scope == null) |
|
throw new ArgumentNullException("scope"); |
|
if (activeVariables == null) |
|
throw new ArgumentNullException("activeVariables"); |
|
this.scope = scope; |
|
this.activeVariables = activeVariables; |
|
|
|
// Fill `allStores` and `storeIndexMap` and `firstStoreIndexForVariable`. |
|
var storesByVar = FindAllStoresByVariable(scope, activeVariables); |
|
allStores = new ILInstruction[FirstStoreIndex + storesByVar.Sum(l => l != null ? l.Count : 0)]; |
|
firstStoreIndexForVariable = new int[scope.Variables.Count + 1]; |
|
int si = FirstStoreIndex; |
|
for (int vi = 0; vi < storesByVar.Length; vi++) { |
|
firstStoreIndexForVariable[vi] = si; |
|
var stores = storesByVar[vi]; |
|
if (stores != null) { |
|
int expectedStoreCount = scope.Variables[vi].StoreCount; |
|
if (scope.Variables[vi].Kind != VariableKind.Parameter && scope.Variables[vi].Kind != VariableKind.This) { |
|
// Extra store for UninitializedVariable |
|
expectedStoreCount += 1; |
|
// Note that for VariableKind.Parameter/This, this extra store |
|
// is already accounted for in ILVariable.StoreCount. |
|
} |
|
Debug.Assert(stores.Count == expectedStoreCount); |
|
stores.CopyTo(allStores, si); |
|
// Add all stores except for UninitializedVariable to storeIndexMap. |
|
for (int i = 1; i < stores.Count; i++) { |
|
storeIndexMap.Add(stores[i], si + i); |
|
} |
|
si += stores.Count; |
|
} |
|
} |
|
firstStoreIndexForVariable[scope.Variables.Count] = si; |
|
Debug.Assert(si == allStores.Length); |
|
|
|
this.workList = CreateWorkLists(scope); |
|
InitStateDictionaries(); |
|
RDVisitor visitor = new RDVisitor(this); |
|
scope.Children.Single().AcceptVisitor(visitor); |
|
} |
|
|
|
/// <summary> |
|
/// Fill <c>allStores</c> and <c>storeIndexMap</c>. |
|
/// </summary> |
|
static List<ILInstruction>[] FindAllStoresByVariable(ILVariableScope scope, BitSet activeVariables) |
|
{ |
|
// For each variable, find the list of ILInstructions storing to that variable |
|
List<ILInstruction>[] storesByVar = new List<ILInstruction>[scope.Variables.Count]; |
|
for (int vi = 0; vi < storesByVar.Length; vi++) { |
|
if (activeVariables[vi]) |
|
storesByVar[vi] = new List<ILInstruction> { UninitializedVariable }; |
|
} |
|
foreach (var inst in scope.Descendants) { |
|
ILVariable v; |
|
if (inst.MatchStLoc(out v) || inst.MatchTryCatchHandler(out v)) { |
|
if (v.Scope == scope && activeVariables[v.IndexInScope]) { |
|
storesByVar[v.IndexInScope].Add(inst); |
|
} |
|
} |
|
} |
|
return storesByVar; |
|
} |
|
#endregion |
|
|
|
#region State Management |
|
/// <summary> |
|
/// Create the initial state (reachable + all variables uninitialized). |
|
/// </summary> |
|
BitSet CreateInitialState() |
|
{ |
|
BitSet initialState = new BitSet(allStores.Length); |
|
initialState.Set(ReachableBit); |
|
for (int vi = 0; vi < scope.Variables.Count; vi++) { |
|
if (activeVariables[vi]) { |
|
Debug.Assert(allStores[firstStoreIndexForVariable[vi]] == UninitializedVariable); |
|
initialState.Set(firstStoreIndexForVariable[vi]); |
|
} |
|
} |
|
return initialState; |
|
} |
|
|
|
BitSet CreateUnreachableState() |
|
{ |
|
return new BitSet(allStores.Length); |
|
} |
|
|
|
void InitStateDictionaries() |
|
{ |
|
foreach (var container in scope.Descendants.OfType<BlockContainer>()) { |
|
foreach (var block in container.Blocks) { |
|
stateOnBranch.Add(block, CreateUnreachableState()); |
|
} |
|
stateOnLeave.Add(container, CreateUnreachableState()); |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Merge <c>incomingState</c> into <c>state</c>. |
|
/// </summary> |
|
/// <returns> |
|
/// Returns true if <c>state</c> was modified. |
|
/// </returns> |
|
static bool MergeState(BitSet state, BitSet incomingState) |
|
{ |
|
if (!incomingState[ReachableBit]) { |
|
// MergeState() is a no-op if the incoming state is unreachable |
|
return false; |
|
} |
|
if (state[ReachableBit]) { |
|
// both reachable: state |= incomingState; |
|
if (state.IsSupersetOf(incomingState)) { |
|
// UnionWith() wouldn't actually change the state, |
|
// so we have to return false |
|
return false; |
|
} |
|
state.UnionWith(incomingState); |
|
} else { |
|
state.ReplaceWith(incomingState); |
|
} |
|
return true; |
|
} |
|
#endregion |
|
|
|
#region Worklist |
|
/// <summary> |
|
/// For each block container, stores the set of blocks (via Block.ChildIndex) that had their incoming state |
|
/// changed and were not processed yet. |
|
/// </summary> |
|
readonly Dictionary<BlockContainer, SortedSet<int>> workList; |
|
|
|
static Dictionary<BlockContainer, SortedSet<int>> CreateWorkLists(ILVariableScope scope) |
|
{ |
|
var worklists = new Dictionary<BlockContainer, SortedSet<int>>(); |
|
foreach (var container in scope.Descendants.OfType<BlockContainer>()) { |
|
worklists.Add(container, new SortedSet<int>()); |
|
} |
|
return worklists; |
|
} |
|
|
|
/// <summary> |
|
/// The work list keeps track of which blocks had their incoming state updated, |
|
/// but did not run yet. |
|
/// </summary> |
|
void AddToWorkList(Block block) |
|
{ |
|
BlockContainer container = (BlockContainer)block.Parent; |
|
workList[container].Add(block.ChildIndex); |
|
} |
|
#endregion |
|
|
|
/// <summary> |
|
/// Visitor that traverses the ILInstruction tree. |
|
/// </summary> |
|
class RDVisitor : ILVisitor |
|
{ |
|
readonly ReachingDefinitions rd; |
|
|
|
internal RDVisitor(ReachingDefinitions rd) |
|
{ |
|
this.rd = rd; |
|
this.state = rd.CreateInitialState(); |
|
this.stateOnException = rd.CreateUnreachableState(); |
|
} |
|
|
|
/// <summary> |
|
/// Combines state of all possible exceptional control flow paths in the current try block. |
|
/// </summary> |
|
BitSet stateOnException; |
|
|
|
/// <summary> |
|
/// Current state. |
|
/// Gets mutated as the visitor traverses the ILAst. |
|
/// </summary> |
|
BitSet state; |
|
|
|
protected override void Default(ILInstruction inst) |
|
{ |
|
// This method assumes normal control flow and no branches. |
|
if ((inst.DirectFlags & (InstructionFlags.ControlFlow | InstructionFlags.MayBranch | InstructionFlags.EndPointUnreachable)) != 0) { |
|
throw new NotImplementedException("RDVisitor is missing implementation for " + inst.GetType().Name); |
|
} |
|
|
|
// Since this instruction has normal control flow, we can evaluate our children left-to-right. |
|
foreach (var child in inst.Children) { |
|
child.AcceptVisitor(this); |
|
Debug.Assert(!(state[ReachableBit] && child.HasFlag(InstructionFlags.EndPointUnreachable))); |
|
} |
|
|
|
// If this instruction can throw an exception, handle the exceptional control flow edge. |
|
if ((inst.DirectFlags & InstructionFlags.MayThrow) != 0) { |
|
MayThrow(); |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Handle control flow when `throwInst` throws an exception. |
|
/// </summary> |
|
void MayThrow() |
|
{ |
|
MergeState(stateOnException, state); |
|
} |
|
|
|
void MarkUnreachable() |
|
{ |
|
state.Clear(ReachableBit); |
|
} |
|
|
|
protected internal override void VisitStLoc(StLoc inst) |
|
{ |
|
Default(inst); |
|
ILVariable v = inst.Variable; |
|
if (v.Scope == rd.scope && rd.activeVariables[v.IndexInScope]) { |
|
// Clear the set of stores for this variable: |
|
state.Clear(rd.firstStoreIndexForVariable[v.IndexInScope], |
|
rd.firstStoreIndexForVariable[v.IndexInScope + 1]); |
|
// And replace it with this store: |
|
state.Set(rd.storeIndexMap[inst]); |
|
} |
|
} |
|
|
|
protected internal override void VisitBlockContainer(BlockContainer container) |
|
{ |
|
SortedSet<int> worklist = rd.workList[container]; |
|
if (MergeState(rd.stateOnBranch[container.EntryPoint], state)) { |
|
worklist.Add(0); // add container entry point to work list |
|
} |
|
// Because we use a SortedSet for the work list, |
|
// we always process the blocks in the same order as they are in the container |
|
// (usually reverse post-order). |
|
while (worklist.Count > 0) { |
|
int blockIndex = worklist.Min; |
|
worklist.Remove(blockIndex); |
|
Block block = container.Blocks[blockIndex]; |
|
state.ReplaceWith(rd.stateOnBranch[block]); |
|
block.AcceptVisitor(this); |
|
} |
|
state.ReplaceWith(rd.stateOnLeave[container]); |
|
} |
|
|
|
protected internal override void VisitBranch(Branch inst) |
|
{ |
|
if (MergeState(rd.stateOnBranch[inst.TargetBlock], state)) { |
|
rd.AddToWorkList(inst.TargetBlock); |
|
} |
|
MarkUnreachable(); |
|
} |
|
|
|
protected internal override void VisitLeave(Leave inst) |
|
{ |
|
Debug.Assert(inst.IsDescendantOf(inst.TargetContainer)); |
|
MergeState(rd.stateOnLeave[inst.TargetContainer], state); |
|
// Note: We don't have to put the block container onto the work queue, |
|
// because it's an ancestor of the Leave instruction, and hence |
|
// we are currently somewhere within the VisitBlockContainer() call. |
|
MarkUnreachable(); |
|
} |
|
|
|
protected internal override void VisitReturn(Return inst) |
|
{ |
|
if (inst.ReturnValue != null) |
|
inst.ReturnValue.AcceptVisitor(this); |
|
MarkUnreachable(); |
|
} |
|
|
|
protected internal override void VisitThrow(Throw inst) |
|
{ |
|
inst.Argument.AcceptVisitor(this); |
|
MayThrow(); |
|
MarkUnreachable(); |
|
} |
|
|
|
protected internal override void VisitRethrow(Rethrow inst) |
|
{ |
|
MayThrow(); |
|
MarkUnreachable(); |
|
} |
|
|
|
/// <summary> |
|
/// Visits the TryBlock. |
|
/// |
|
/// Returns a new BitSet representing the state of exceptional control flow transfer |
|
/// out of the try block. |
|
/// </summary> |
|
BitSet HandleTryBlock(TryInstruction inst) |
|
{ |
|
BitSet oldStateOnException = stateOnException; |
|
BitSet newStateOnException = rd.CreateUnreachableState(); |
|
|
|
stateOnException = newStateOnException; |
|
inst.TryBlock.AcceptVisitor(this); |
|
stateOnException = oldStateOnException; |
|
|
|
return newStateOnException; |
|
} |
|
|
|
protected internal override void VisitTryCatch(TryCatch inst) |
|
{ |
|
BitSet caughtState = HandleTryBlock(inst); |
|
BitSet endpointState = state.Clone(); |
|
// The exception might get propagated if no handler matches the type: |
|
MergeState(stateOnException, caughtState); |
|
foreach (var handler in inst.Handlers) { |
|
state.ReplaceWith(caughtState); |
|
handler.Filter.AcceptVisitor(this); |
|
// if the filter return false, any mutations done by the filter |
|
// will be visible by the remaining handlers |
|
// (but it's also possible that the filter didn't get executed at all |
|
// because the exception type doesn't match) |
|
MergeState(caughtState, state); |
|
|
|
handler.Body.AcceptVisitor(this); |
|
MergeState(endpointState, state); |
|
} |
|
state = endpointState; |
|
} |
|
|
|
protected internal override void VisitTryFinally(TryFinally inst) |
|
{ |
|
// I don't think there's a good way to track dataflow across finally blocks |
|
// without duplicating the whole finally block. |
|
// We'll just approximate 'try { .. } finally { .. }' as 'try { .. } catch {} .. if (?) rethrow; }' |
|
BitSet caughtState = HandleTryBlock(inst); |
|
MergeState(state, caughtState); |
|
inst.FinallyBlock.AcceptVisitor(this); |
|
MayThrow(); |
|
// Our approximation allows the impossible code path where the try block wasn't fully executed |
|
// and the finally block did not rethrow the exception. |
|
// This can cause us to not be marked unreachable in cases where the simple InstructionFlags |
|
// know the path is unreachable -- so use the flag to fix the reachable bit. |
|
if (inst.HasFlag(InstructionFlags.EndPointUnreachable)) { |
|
MarkUnreachable(); |
|
} |
|
} |
|
|
|
protected internal override void VisitTryFault(TryFault inst) |
|
{ |
|
// try-fault executes fault block if an exception occurs in try, |
|
// and always rethrows the exception at the end. |
|
BitSet caughtState = HandleTryBlock(inst); |
|
BitSet noException = state; |
|
state = caughtState; |
|
inst.FaultBlock.AcceptVisitor(this); |
|
MayThrow(); // rethrow the exception after the fault block |
|
|
|
// try-fault exits normally only if no exception occurred |
|
state = noException; |
|
} |
|
|
|
protected internal override void VisitIfInstruction(IfInstruction inst) |
|
{ |
|
inst.Condition.AcceptVisitor(this); |
|
BitSet branchState = state.Clone(); |
|
inst.TrueInst.AcceptVisitor(this); |
|
BitSet afterTrueState = state; |
|
state = branchState; |
|
inst.FalseInst.AcceptVisitor(this); |
|
MergeState(state, afterTrueState); |
|
} |
|
|
|
protected internal override void VisitSwitchInstruction(SwitchInstruction inst) |
|
{ |
|
inst.Value.AcceptVisitor(this); |
|
BitSet beforeSections = state.Clone(); |
|
BitSet afterSections = rd.CreateUnreachableState(); |
|
foreach (var section in inst.Sections) { |
|
state.ReplaceWith(beforeSections); |
|
section.AcceptVisitor(this); |
|
MergeState(afterSections, state); |
|
} |
|
state = afterSections; |
|
} |
|
} |
|
} |
|
}
|
|
|