.NET Decompiler with support for PDB generation, ReadyToRun, Metadata (&more) - cross-platform!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

193 lines
8.1 KiB

// Copyright (c) 2018 Daniel Grunwald
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Collections.Generic;
using System.Linq;
using SRM = System.Reflection.Metadata;
using ICSharpCode.Decompiler.TypeSystem.Implementation;
using ICSharpCode.Decompiler.Util;
using static ICSharpCode.Decompiler.Metadata.MetadataExtensions;
using System.Diagnostics;
using System.Collections.Immutable;
using ICSharpCode.Decompiler.Metadata;
namespace ICSharpCode.Decompiler.TypeSystem
{
/// <summary>
/// Options that control how metadata is represented in the type system.
/// </summary>
[Flags]
public enum TypeSystemOptions
{
/// <summary>
/// No options enabled; stay as close to the metadata as possible.
/// </summary>
None = 0,
/// <summary>
/// [DynamicAttribute] is used to replace 'object' types with the 'dynamic' type.
///
/// If this option is not active, the 'dynamic' type is not used, and the attribute is preserved.
/// </summary>
Dynamic = 1,
/// <summary>
/// Tuple types are represented using the TupleType class.
/// [TupleElementNames] is used to name the tuple elements.
///
/// If this option is not active, the tuples are represented using their underlying type, and the attribute is preserved.
/// </summary>
Tuple = 2,
/// <summary>
/// If this option is active, [ExtensionAttribute] is removed and methods are marked as IsExtensionMethod.
/// Otherwise, the attribute is preserved but the methods are not marked.
/// </summary>
ExtensionMethods = 4,
/// <summary>
/// Only load the public API into the type system.
/// </summary>
OnlyPublicAPI = 8,
/// <summary>
/// Do not cache accessed entities.
/// In a normal type system (without this option), every type or member definition has exactly one ITypeDefinition/IMember
/// instance. This instance is kept alive until the whole type system can be garbage-collected.
/// When this option is specified, the type system avoids these caches.
/// This reduces the memory usage in many cases, but increases the number of allocations.
/// Also, some code in the decompiler expects to be able to compare type/member definitions by reference equality,
/// and thus will fail with uncached type systems.
/// </summary>
Uncached = 0x10,
/// <summary>
/// Default settings: all features enabled.
/// </summary>
Default = Dynamic | Tuple | ExtensionMethods
}
/// <summary>
/// Manages the NRefactory type system for the decompiler.
/// </summary>
/// <remarks>
/// This class is thread-safe.
/// </remarks>
public class DecompilerTypeSystem : SimpleCompilation, IDecompilerTypeSystem
{
public static TypeSystemOptions GetOptions(DecompilerSettings settings)
{
var typeSystemOptions = TypeSystemOptions.None;
if (settings.Dynamic)
typeSystemOptions |= TypeSystemOptions.Dynamic;
if (settings.TupleTypes)
typeSystemOptions |= TypeSystemOptions.Tuple;
if (settings.ExtensionMethods)
typeSystemOptions |= TypeSystemOptions.ExtensionMethods;
return typeSystemOptions;
}
public DecompilerTypeSystem(PEFile mainModule, IAssemblyResolver assemblyResolver)
: this(mainModule, assemblyResolver, TypeSystemOptions.Default)
{
}
public DecompilerTypeSystem(PEFile mainModule, IAssemblyResolver assemblyResolver, DecompilerSettings settings)
: this(mainModule, assemblyResolver, GetOptions(settings ?? throw new ArgumentNullException(nameof(settings))))
{
}
public DecompilerTypeSystem(PEFile mainModule, IAssemblyResolver assemblyResolver, TypeSystemOptions typeSystemOptions)
{
if (mainModule == null)
throw new ArgumentNullException(nameof(mainModule));
if (assemblyResolver == null)
throw new ArgumentNullException(nameof(assemblyResolver));
// Load referenced assemblies and type-forwarder references.
// This is necessary to make .NET Core/PCL binaries work better.
var referencedAssemblies = new List<PEFile>();
var assemblyReferenceQueue = new Queue<(bool IsAssembly, PEFile MainModule, object Reference)>();
var mainMetadata = mainModule.Metadata;
foreach (var h in mainMetadata.GetModuleReferences()) {
var moduleRef = mainMetadata.GetModuleReference(h);
var moduleName = mainMetadata.GetString(moduleRef.Name);
foreach (var fileHandle in mainMetadata.AssemblyFiles) {
var file = mainMetadata.GetAssemblyFile(fileHandle);
if (mainMetadata.StringComparer.Equals(file.Name, moduleName) && file.ContainsMetadata) {
assemblyReferenceQueue.Enqueue((false, mainModule, moduleName));
break;
}
}
}
foreach (var refs in mainModule.AssemblyReferences) {
assemblyReferenceQueue.Enqueue((true, mainModule, refs));
}
var comparer = KeyComparer.Create(((bool IsAssembly, PEFile MainModule, object Reference) reference) =>
reference.IsAssembly ? "A:" + ((AssemblyReference)reference.Reference).FullName :
"M:" + reference.Reference);
var processedAssemblyReferences = new HashSet<(bool IsAssembly, PEFile Parent, object Reference)>(comparer);
while (assemblyReferenceQueue.Count > 0) {
var asmRef = assemblyReferenceQueue.Dequeue();
if (!processedAssemblyReferences.Add(asmRef))
continue;
PEFile asm;
if (asmRef.IsAssembly) {
asm = assemblyResolver.Resolve((AssemblyReference)asmRef.Reference);
} else {
asm = assemblyResolver.ResolveModule(asmRef.MainModule, (string)asmRef.Reference);
}
if (asm != null) {
referencedAssemblies.Add(asm);
var metadata = asm.Metadata;
foreach (var h in metadata.ExportedTypes) {
var exportedType = metadata.GetExportedType(h);
switch (exportedType.Implementation.Kind) {
case SRM.HandleKind.AssemblyReference:
assemblyReferenceQueue.Enqueue((true, asm, new AssemblyReference(asm, (SRM.AssemblyReferenceHandle)exportedType.Implementation)));
break;
case SRM.HandleKind.AssemblyFile:
var file = metadata.GetAssemblyFile((SRM.AssemblyFileHandle)exportedType.Implementation);
assemblyReferenceQueue.Enqueue((false, asm, metadata.GetString(file.Name)));
break;
}
}
}
}
var mainModuleWithOptions = mainModule.WithOptions(typeSystemOptions);
var referencedAssembliesWithOptions = referencedAssemblies.Select(file => file.WithOptions(typeSystemOptions));
// Primitive types are necessary to avoid assertions in ILReader.
// Fallback to MinimalCorlib to provide the primitive types.
if (!HasType(KnownTypeCode.Void) || !HasType(KnownTypeCode.Int32)) {
Init(mainModule.WithOptions(typeSystemOptions), referencedAssembliesWithOptions.Concat(new[] { MinimalCorlib.Instance }));
} else {
Init(mainModuleWithOptions, referencedAssembliesWithOptions);
}
this.MainModule = (MetadataModule)base.MainModule;
bool HasType(KnownTypeCode code)
{
TopLevelTypeName name = KnownTypeReference.Get(code).TypeName;
if (mainModule.GetTypeDefinition(name) != null)
return true;
foreach (var file in referencedAssemblies) {
if (file.GetTypeDefinition(name) != null)
return true;
}
return false;
}
}
public new MetadataModule MainModule { get; }
}
}