.NET Decompiler with support for PDB generation, ReadyToRun, Metadata (&more) - cross-platform!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

640 lines
24 KiB

// Copyright (c) 2016 Daniel Grunwald
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Collections.Generic;
using System.Diagnostics;
using ICSharpCode.Decompiler.IL;
namespace ICSharpCode.Decompiler.FlowAnalysis
{
/// <summary>
/// Interface for use with DataFlowVisitor.
///
/// A mutable container for the state tracked by the data flow analysis.
/// </summary>
/// <remarks>
/// States must form a join-semilattice: https://en.wikipedia.org/wiki/Semilattice
///
/// To handle <c>try{} finally{}</c> properly, states should implement <c>MeetWith()</c> as well,
/// and thus should form a lattice.
///
/// <c>DataFlowVisitor</c> expects the state to behave like a mutable reference type.
/// It might still be a good idea to use a struct to implement it so that .NET uses static dispatch for
/// method calls on the type parameter, but that struct must consist only of a <c>readonly</c> field
/// referencing some mutable object, to ensure the type parameter behaves as it if was a mutable reference type.
/// </remarks>
public interface IDataFlowState<Self> where Self: IDataFlowState<Self>
{
/// <summary>
/// Gets whether this state is "less than" (or equal to) another state.
/// This is the partial order of the semi-lattice.
/// </summary>
/// <remarks>
/// The exact meaning of this relation is up to the concrete implementation,
/// but usually "less than" means "has less information than".
/// A given position in the code starts at the "bottom state" (=no information)
/// and then adds more information as the analysis progresses.
/// After each change to the state, the old state must be less than the new state,
/// so that the analysis does not run into an infinite loop.
/// The partially ordered set must also have finite height (no infinite ascending chains s1 &lt; s2 &lt; ...),
/// to ensure the analysis terminates.
/// </remarks>
/// <example>
/// The simplest possible non-trivial state, <c>bool isReachable</c>, would implement <c>LessThanOrEqual</c> as:
/// <code>return (this.isReachable ? 1 : 0) &lt;= (otherState.isReachable ? 1 : 0);</code>
/// <para>Which can be simpified to:</para>
/// <code>return !this.isReachable || otherState.isReachable;</code>
/// </example>
bool LessThanOrEqual(Self otherState);
/// <summary>
/// Creates a new object with a copy of the state.
/// </summary>
/// <remarks>
/// Mutating methods such as <c>ReplaceWith</c> or <c>JoinWith</c> modify the contents of a state object.
/// Cloning the object allows the analysis to track multiple independent states,
/// such as the
/// </remarks>
/// <example>
/// The simple state "<c>bool isReachable</c>", would implement <c>Clone</c> as:
/// <code>return new MyState(this.isReachable);</code>
/// </example>
Self Clone();
/// <summary>
/// Replace the contents of this state object with a copy of those in <paramref name="newContent"/>.
/// </summary>
/// <remarks>
/// <c>x = x.Clone(); x.ReplaceWith(newContent);</c>
/// is equivalent to
/// <c>x = newContent.Clone();</c>
///
/// ReplaceWith() is used to avoid allocating new state objects where possible.
/// </remarks>
/// <example>
/// The simple state "<c>bool isReachable</c>", would implement <c>ReplaceWith</c> as:
/// <code>this.isReachable = newContent.isReachable;</code>
/// </example>
void ReplaceWith(Self newContent);
/// <summary>
/// Join the incomingState into this state.
/// </summary>
/// <remarks>
/// Postcondition: <c>old(this).LessThanOrEqual(this) &amp;&amp; incomingState.LessThanOrEqual(this)</c>
/// This method should set <c>this</c> to the smallest state that is greater than (or equal to)
/// both input states.
///
/// <c>JoinWith()</c> is used when multiple control flow paths are joined together.
/// For example, it is used to combine the <c>thenState</c> with the <c>elseState</c>
/// at the end of a if-else construct.
/// </remarks>
/// <example>
/// The simple state "<c>bool isReachable</c>", would implement <c>JoinWith</c> as:
/// <code>this.isReachable |= incomingState.isReachable;</code>
/// </example>
void JoinWith(Self incomingState);
/// <summary>
/// A special operation to merge the end-state of the finally-block with the end state of
/// a branch leaving the try-block.
///
/// If either input state is unreachable, this call must result in an unreachable state.
/// </summary>
/// <example>
/// The simple state "<c>bool isReachable</c>", would implement <c>TriggerFinally</c> as:
/// <code>this.isReachable &amp;= finallyState.isReachable;</code>
/// </example>
void TriggerFinally(Self finallyState);
/// <summary>
/// Gets whether this is the bottom state.
///
/// The bottom state represents that the data flow analysis has not yet
/// found a code path from the entry point to this state's position.
/// It thus contains no information, and is "less than" all other states.
/// </summary>
/// <remarks>
/// The bottom state is the bottom element in the semi-lattice.
///
/// Initially, all code blocks not yet visited by the analysis will be in the bottom state.
/// Unreachable code will always remain in the bottom state.
/// Some analyses may also use the bottom state for reachable code after it was processed by the analysis.
/// For example, in <c>DefiniteAssignmentVisitor</c> the bottom states means
/// "either this code is unreachable, or all variables are definitely initialized".
/// </remarks>
/// <example>
/// The simple state "<c>bool isReachable</c>", would implement <c>IsBottom</c> as:
/// <code>return !this.isReachable;</code>
/// </example>
bool IsBottom { get; }
/// <summary>
/// Equivalent to <c>this.ReplaceWith(bottomState)</c>, but may be implemented more efficiently.
/// </summary>
/// <remarks>
/// Since the <c>DataFlowVisitor</c> can only create states by cloning from the initial state,
/// this method is necessary for the <c>DataFlowVisitor</c> to gain access to the bottom element in
/// the first place.
/// </remarks>
/// <example>
/// The simple state "<c>bool isReachable</c>", would implement <c>ReplaceWithBottom</c> as:
/// <code>this.isReachable = false;</code>
/// </example>
void ReplaceWithBottom();
}
/// <summary>
/// Generic base class for forward data flow analyses.
/// </summary>
/// <typeparam name="State">
/// The state type used for the data flow analysis. See <see cref="IDataFlowState{Self}"/> for details.
/// </typeparam>
public abstract class DataFlowVisitor<State> : ILVisitor
where State : IDataFlowState<State>
{
// The data flow analysis tracks a 'state'.
// There are many states (one per source code position, i.e. ILInstruction), but we don't store all of them.
// We only keep track of:
// a) the current state in the RDVisitor
// This state corresponds to the instruction currently being visited,
// and gets mutated as we traverse the ILAst.
// b) the input state for each control flow node
// These also gets mutated as the analysis learns about new control flow edges.
/// <summary>
/// The bottom state.
/// Must not be mutated.
/// </summary>
State bottomState;
/// <summary>
/// Current state.
///
/// Caution: any state object assigned to this member gets mutated as the visitor traverses the ILAst!
/// </summary>
protected State state;
/// <summary>
/// Combined state of all possible exceptional control flow paths in the current try block.
/// Serves as input state for catch blocks.
///
/// Caution: any state object assigned to this member gets mutated as the visitor encounters instructions that may throw exceptions!
///
/// Within a try block, <c>currentStateOnException == stateOnException[tryBlock.Parent]</c>.
/// </summary>
/// <seealso cref="PropagateStateOnException"/>
protected State currentStateOnException;
bool initialized;
/// <summary>
/// Initializes the DataFlowVisitor.
/// This method must be called once before any Visit()-methods can be called.
/// It must not be called more than once.
/// </summary>
/// <param name="initialState">The initial state at the entry point of the analysis.</param>
/// <remarks>
/// This is a method instead of a constructor because derived classes might need complex initialization
/// before they can construct the initial state.
/// </remarks>
protected void Initialize(State initialState)
{
Debug.Assert(!initialized);
initialized = true;
this.state = initialState.Clone();
this.bottomState = initialState.Clone();
this.bottomState.ReplaceWithBottom();
Debug.Assert(bottomState.IsBottom);
this.currentStateOnException = state.Clone();
}
#if DEBUG
// For debugging, capture the input + output state at every instruction.
readonly Dictionary<ILInstruction, State> debugInputState = new Dictionary<ILInstruction, State>();
readonly Dictionary<ILInstruction, State> debugOutputState = new Dictionary<ILInstruction, State>();
void DebugPoint(Dictionary<ILInstruction, State> debugDict, ILInstruction inst)
{
#if DEBUG
Debug.Assert(initialized, "Initialize() was not called");
State previousOutputState;
if (debugDict.TryGetValue(inst, out previousOutputState)) {
Debug.Assert(previousOutputState.LessThanOrEqual(state));
} else {
// limit the number of tracked instructions to make memory usage in debug builds less horrible
if (debugDict.Count < 1000) {
debugDict.Add(inst, state.Clone());
}
}
// currentStateOnException should be all states within the try block joined together
// -> state should already have been joined into currentStateOnException.
Debug.Assert(state.LessThanOrEqual(currentStateOnException));
#endif
}
#endif
[Conditional("DEBUG")]
void DebugStartPoint(ILInstruction inst)
{
#if DEBUG
DebugPoint(debugInputState, inst);
#endif
}
[Conditional("DEBUG")]
void DebugEndPoint(ILInstruction inst)
{
#if DEBUG
DebugPoint(debugOutputState, inst);
#endif
}
/// <summary>
/// Derived classes may add to this set of flags to ensure they don't forget to override an interesting method.
/// </summary>
protected InstructionFlags flagsRequiringManualImpl = InstructionFlags.ControlFlow | InstructionFlags.MayBranch | InstructionFlags.MayUnwrapNull | InstructionFlags.EndPointUnreachable;
protected sealed override void Default(ILInstruction inst)
{
DebugStartPoint(inst);
// This method assumes normal control flow and no branches.
if ((inst.DirectFlags & flagsRequiringManualImpl) != 0) {
throw new NotImplementedException(GetType().Name + " is missing implementation for " + inst.GetType().Name);
}
// Since this instruction has normal control flow, we can evaluate our children left-to-right.
foreach (var child in inst.Children) {
child.AcceptVisitor(this);
Debug.Assert(state.IsBottom || !child.HasFlag(InstructionFlags.EndPointUnreachable),
"Unreachable code must be in the bottom state.");
}
DebugEndPoint(inst);
}
/// <summary>
/// Handle control flow when the current instruction throws an exception:
/// joins the current state into the "exception state" of the current try block.
/// </summary>
/// <remarks>
/// This should not only be called for instructions that may throw an exception,
/// but for all instructions (due to async exceptions like ThreadAbortException)!
///
/// To avoid redundant calls, every Visit() call may assume that the current state
/// is already propagated, and has to guarantee the same at the end.
/// This means this method should be called after every state change.
/// Alternatively, derived classes may directly modify both <c>state</c>
/// and <c>currentStateOnException</c>, so that a full <c>JoinWith()</c> call
/// is not necessary.
/// </remarks>
protected void PropagateStateOnException()
{
currentStateOnException.JoinWith(state);
}
/// <summary>
/// Replace the current state with the bottom state.
/// </summary>
protected void MarkUnreachable()
{
state.ReplaceWithBottom();
}
/// <summary>
/// Holds the state for incoming branches.
/// </summary>
/// <remarks>
/// Only used for blocks in block containers; not for inline blocks.
/// </remarks>
readonly Dictionary<Block, State> stateOnBranch = new Dictionary<Block, State>();
/// <summary>
/// Holds the state at the block container end-point. (=state for incoming 'leave' instructions)
/// </summary>
readonly Dictionary<BlockContainer, State> stateOnLeave = new Dictionary<BlockContainer, State>();
/// <summary>
/// Gets the state object that holds the state for incoming branches to the block.
/// </summary>
/// <remarks>
/// Returns the a clone of the bottom state on the first call for a given block,
/// then returns the same object instance on further calls.
/// The caller is expected to mutate the returned state by calling <c>JoinWith()</c>.
/// </remarks>
State GetBlockInputState(Block block)
{
State s;
if (stateOnBranch.TryGetValue(block, out s)) {
return s;
} else {
s = bottomState.Clone();
stateOnBranch.Add(block, s);
return s;
}
}
/// <summary>
/// For each block container, stores the set of blocks (via Block.ChildIndex)
/// that had their incoming state changed and were not processed yet.
/// </summary>
readonly Dictionary<BlockContainer, SortedSet<int>> workLists = new Dictionary<BlockContainer, SortedSet<int>>();
protected internal override void VisitBlockContainer(BlockContainer container)
{
DebugStartPoint(container);
SortedSet<int> worklist = new SortedSet<int>();
// register work list so that branches within this container can add to it
workLists.Add(container, worklist);
var stateOnEntry = GetBlockInputState(container.EntryPoint);
if (!state.LessThanOrEqual(stateOnEntry)) {
// If we have new information for the container's entry point,
// add the container entry point to the work list.
stateOnEntry.JoinWith(state);
worklist.Add(0);
}
// To handle loops, we need to analyze the loop body before we can know the state for the loop backedge,
// but we need to know the input state for the loop body (to which the backedge state contributes)
// before we can analyze the loop body.
// Solution: we repeat the analysis of the loop body multiple times, until the state no longer changes.
// To make it terminate reasonably quickly, we need to process the control flow nodes in the correct order:
// reverse post-order. We use a SortedSet<int> for this, and assume that the block indices used in the SortedSet
// are ordered appropriately. The caller can use BlockContainer.SortBlocks() for this.
while (worklist.Count > 0) {
int blockIndex = worklist.Min;
worklist.Remove(blockIndex);
Block block = container.Blocks[blockIndex];
state.ReplaceWith(stateOnBranch[block]);
block.AcceptVisitor(this);
}
State stateOnExit;
if (stateOnLeave.TryGetValue(container, out stateOnExit)) {
state.ReplaceWith(stateOnExit);
} else {
MarkUnreachable();
}
DebugEndPoint(container);
workLists.Remove(container);
}
readonly List<(IBranchOrLeaveInstruction, State)> branchesTriggeringFinally = new List<(IBranchOrLeaveInstruction, State)>();
protected internal override void VisitBranch(Branch inst)
{
if (inst.TriggersFinallyBlock) {
Debug.Assert(state.LessThanOrEqual(currentStateOnException));
branchesTriggeringFinally.Add((inst, state.Clone()));
} else {
MergeBranchStateIntoTargetBlock(inst, state);
}
MarkUnreachable();
}
void MergeBranchStateIntoTargetBlock(Branch inst, State branchState)
{
var targetBlock = inst.TargetBlock;
var targetState = GetBlockInputState(targetBlock);
if (!branchState.LessThanOrEqual(targetState)) {
targetState.JoinWith(branchState);
BlockContainer container = (BlockContainer)targetBlock.Parent;
workLists[container].Add(targetBlock.ChildIndex);
}
}
protected internal override void VisitLeave(Leave inst)
{
inst.Value.AcceptVisitor(this);
if (inst.TriggersFinallyBlock) {
Debug.Assert(state.LessThanOrEqual(currentStateOnException));
branchesTriggeringFinally.Add((inst, state.Clone()));
} else {
MergeBranchStateIntoStateOnLeave(inst, state);
}
MarkUnreachable();
}
void MergeBranchStateIntoStateOnLeave(Leave inst, State branchState)
{
if (stateOnLeave.TryGetValue(inst.TargetContainer, out State targetState)) {
targetState.JoinWith(branchState);
} else {
stateOnLeave.Add(inst.TargetContainer, branchState.Clone());
}
// Note: We don't have to put the block container onto the work queue,
// because it's an ancestor of the Leave instruction, and hence
// we are currently somewhere within the VisitBlockContainer() call.
}
protected internal override void VisitThrow(Throw inst)
{
inst.Argument.AcceptVisitor(this);
MarkUnreachable();
}
protected internal override void VisitRethrow(Rethrow inst)
{
MarkUnreachable();
}
protected internal override void VisitInvalidBranch(InvalidBranch inst)
{
MarkUnreachable();
}
/// <summary>
/// Stores the stateOnException per try instruction.
/// </summary>
readonly Dictionary<TryInstruction, State> stateOnException = new Dictionary<TryInstruction, State>();
/// <summary>
/// Visits the TryBlock.
///
/// Returns a new State object representing the exceptional control flow transfer out of the try block.
/// </summary>
protected State HandleTryBlock(TryInstruction inst)
{
State oldStateOnException = currentStateOnException;
State newStateOnException;
if (stateOnException.TryGetValue(inst, out newStateOnException)) {
newStateOnException.JoinWith(state);
} else {
newStateOnException = state.Clone();
stateOnException.Add(inst, newStateOnException);
}
currentStateOnException = newStateOnException;
inst.TryBlock.AcceptVisitor(this);
// swap back to the old object instance
currentStateOnException = oldStateOnException;
// No matter what kind of try-instruction this is, it's possible
// that an async exception is thrown immediately in the handler block,
// so propagate the state:
oldStateOnException.JoinWith(newStateOnException);
return newStateOnException;
}
protected internal override void VisitTryCatch(TryCatch inst)
{
DebugStartPoint(inst);
State onException = HandleTryBlock(inst);
State endpoint = state.Clone();
foreach (var handler in inst.Handlers) {
state.ReplaceWith(onException);
BeginTryCatchHandler(handler);
handler.Filter.AcceptVisitor(this);
// if the filter return false, any mutations done by the filter
// will be visible by the remaining handlers
// (but it's also possible that the filter didn't get executed at all
// because the exception type doesn't match)
onException.JoinWith(state);
handler.Body.AcceptVisitor(this);
endpoint.JoinWith(state);
}
state = endpoint;
DebugEndPoint(inst);
}
protected virtual void BeginTryCatchHandler(TryCatchHandler inst)
{
}
/// <summary>
/// TryCatchHandler is handled directly in VisitTryCatch
/// </summary>
protected internal override sealed void VisitTryCatchHandler(TryCatchHandler inst)
{
throw new NotSupportedException();
}
protected internal override void VisitTryFinally(TryFinally inst)
{
DebugStartPoint(inst);
int branchesTriggeringFinallyOldCount = branchesTriggeringFinally.Count;
// At first, handle 'try { .. } finally { .. }' like 'try { .. } catch {} .. if (?) rethrow; }'
State onException = HandleTryBlock(inst);
State onSuccess = state.Clone();
state.JoinWith(onException);
inst.FinallyBlock.AcceptVisitor(this);
//PropagateStateOnException(); // rethrow the exception after the finally block -- should be redundant
Debug.Assert(state.LessThanOrEqual(currentStateOnException));
ProcessBranchesLeavingTryFinally(inst, branchesTriggeringFinallyOldCount);
// Use TriggerFinally() to ensure points after the try-finally are reachable only if both the
// try and the finally endpoints are reachable.
onSuccess.TriggerFinally(state);
state = onSuccess;
DebugEndPoint(inst);
}
/// <summary>
/// Process branches leaving the try-finally,
/// * Calls TriggerFinally() on each branchesTriggeringFinally
/// * Removes entries from branchesTriggeringFinally if they won't trigger additional finally blocks.
/// * After all finallies are applied, the branch state is merged into the target block.
/// </summary>
void ProcessBranchesLeavingTryFinally(TryFinally tryFinally, int branchesTriggeringFinallyOldCount)
{
int outPos = branchesTriggeringFinallyOldCount;
for (int i = branchesTriggeringFinallyOldCount; i < branchesTriggeringFinally.Count; ++i) {
var (branch, stateOnBranch) = branchesTriggeringFinally[i];
Debug.Assert(((ILInstruction)branch).IsDescendantOf(tryFinally));
Debug.Assert(tryFinally.IsDescendantOf(branch.TargetContainer));
stateOnBranch.TriggerFinally(state);
bool triggersAnotherFinally = Branch.GetExecutesFinallyBlock(tryFinally, branch.TargetContainer);
if (triggersAnotherFinally) {
branchesTriggeringFinally[outPos++] = (branch, stateOnBranch);
} else {
// Merge state into target block.
if (branch is Leave leave) {
MergeBranchStateIntoStateOnLeave((Leave)branch, stateOnBranch);
} else {
MergeBranchStateIntoTargetBlock((Branch)branch, stateOnBranch);
}
}
}
branchesTriggeringFinally.RemoveRange(outPos, branchesTriggeringFinally.Count - outPos);
}
protected internal override void VisitTryFault(TryFault inst)
{
DebugStartPoint(inst);
// try-fault executes fault block if an exception occurs in try,
// and always rethrows the exception at the end.
State onException = HandleTryBlock(inst);
State onSuccess = state;
state = onException;
inst.FaultBlock.AcceptVisitor(this);
//PropagateStateOnException(); // rethrow the exception after the fault block
Debug.Assert(state.LessThanOrEqual(currentStateOnException));
// try-fault exits normally only if no exception occurred
state = onSuccess;
DebugEndPoint(inst);
}
protected internal override void VisitIfInstruction(IfInstruction inst)
{
DebugStartPoint(inst);
inst.Condition.AcceptVisitor(this);
State branchState = state.Clone();
inst.TrueInst.AcceptVisitor(this);
State afterTrueState = state;
state = branchState;
inst.FalseInst.AcceptVisitor(this);
state.JoinWith(afterTrueState);
DebugEndPoint(inst);
}
protected internal override void VisitSwitchInstruction(SwitchInstruction inst)
{
DebugStartPoint(inst);
inst.Value.AcceptVisitor(this);
State beforeSections = state.Clone();
inst.Sections[0].AcceptVisitor(this);
State afterSections = state.Clone();
for (int i = 1; i < inst.Sections.Count; ++i) {
state.ReplaceWith(beforeSections);
inst.Sections[i].AcceptVisitor(this);
afterSections.JoinWith(state);
}
state = afterSections;
DebugEndPoint(inst);
}
protected internal override void VisitYieldReturn(YieldReturn inst)
{
DebugStartPoint(inst);
inst.Value.AcceptVisitor(this);
DebugEndPoint(inst);
}
protected internal override void VisitILFunction(ILFunction function)
{
throw new NotImplementedException();
}
}
}