.NET Decompiler with support for PDB generation, ReadyToRun, Metadata (&more) - cross-platform!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1516 lines
57 KiB

// Copyright (c) 2014 Daniel Grunwald
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Threading;
using ICSharpCode.Decompiler.CSharp.Syntax;
using ICSharpCode.Decompiler.CSharp.Syntax.PatternMatching;
using ICSharpCode.Decompiler.CSharp.Transforms;
using ICSharpCode.Decompiler.CSharp.TypeSystem;
using ICSharpCode.Decompiler.IL;
using ICSharpCode.Decompiler.IL.Transforms;
using ICSharpCode.Decompiler.Semantics;
using ICSharpCode.Decompiler.TypeSystem;
using ICSharpCode.Decompiler.Util;
namespace ICSharpCode.Decompiler.CSharp
{
sealed class StatementBuilder : ILVisitor<TranslatedStatement>
{
internal readonly ExpressionBuilder exprBuilder;
readonly ILFunction currentFunction;
readonly IDecompilerTypeSystem typeSystem;
internal readonly DecompileRun decompileRun;
readonly DecompilerSettings settings;
readonly CancellationToken cancellationToken;
internal BlockContainer currentReturnContainer;
internal IType currentResultType;
internal bool currentIsIterator;
public StatementBuilder(IDecompilerTypeSystem typeSystem, ITypeResolveContext decompilationContext,
ILFunction currentFunction, DecompilerSettings settings, DecompileRun decompileRun,
CancellationToken cancellationToken)
{
Debug.Assert(typeSystem != null && decompilationContext != null);
this.exprBuilder = new ExpressionBuilder(
this,
typeSystem,
decompilationContext,
currentFunction,
settings,
cancellationToken
);
this.currentFunction = currentFunction;
this.currentReturnContainer = (BlockContainer)currentFunction.Body;
this.currentIsIterator = currentFunction.IsIterator;
this.currentResultType = currentFunction.IsAsync
? currentFunction.AsyncReturnType
: currentFunction.ReturnType;
this.typeSystem = typeSystem;
this.settings = settings;
this.decompileRun = decompileRun;
this.cancellationToken = cancellationToken;
}
public Statement Convert(ILInstruction inst)
{
cancellationToken.ThrowIfCancellationRequested();
return inst.AcceptVisitor(this);
}
public BlockStatement ConvertAsBlock(ILInstruction inst)
{
Statement stmt = Convert(inst).WithILInstruction(inst);
return stmt as BlockStatement ?? new BlockStatement { stmt };
}
protected override TranslatedStatement Default(ILInstruction inst)
{
return new ExpressionStatement(exprBuilder.Translate(inst))
.WithILInstruction(inst);
}
protected internal override TranslatedStatement VisitIsInst(IsInst inst)
{
// isinst on top-level (unused result) can be translated in general
// (even for value types) by using "is" instead of "as"
// This can happen when the result of "expr is T" is unused
// and the C# compiler optimizes away the null check portion of the "is" operator.
var arg = exprBuilder.Translate(inst.Argument);
arg = ExpressionBuilder.UnwrapBoxingConversion(arg);
return new ExpressionStatement(
new IsExpression(
arg,
exprBuilder.ConvertType(inst.Type)
)
.WithRR(new ResolveResult(exprBuilder.compilation.FindType(KnownTypeCode.Boolean)))
.WithILInstruction(inst)
)
.WithILInstruction(inst);
}
protected internal override TranslatedStatement VisitStLoc(StLoc inst)
{
var expr = exprBuilder.Translate(inst);
// strip top-level ref on ref re-assignment
if (expr.Expression is DirectionExpression dirExpr)
{
expr = expr.UnwrapChild(dirExpr.Expression);
}
return new ExpressionStatement(expr).WithILInstruction(inst);
}
protected internal override TranslatedStatement VisitStObj(StObj inst)
{
var expr = exprBuilder.Translate(inst);
// strip top-level ref on ref re-assignment
if (expr.Expression is DirectionExpression dirExpr)
{
expr = expr.UnwrapChild(dirExpr.Expression);
}
return new ExpressionStatement(expr).WithILInstruction(inst);
}
protected internal override TranslatedStatement VisitNop(Nop inst)
{
var stmt = new EmptyStatement();
if (inst.Comment != null)
{
stmt.AddChild(new Comment(inst.Comment), Roles.Comment);
}
return stmt.WithILInstruction(inst);
}
protected internal override TranslatedStatement VisitIfInstruction(IfInstruction inst)
{
var condition = exprBuilder.TranslateCondition(inst.Condition);
var trueStatement = Convert(inst.TrueInst);
var falseStatement = inst.FalseInst.OpCode == OpCode.Nop ? null : Convert(inst.FalseInst);
return new IfElseStatement(condition, trueStatement, falseStatement).WithILInstruction(inst);
}
internal IEnumerable<ConstantResolveResult> CreateTypedCaseLabel(long i, IType type, List<(string Key, int Value)> map = null)
{
object value;
// unpack nullable type, if necessary:
// we need to do this in all cases, because there are nullable bools and enum types as well.
type = NullableType.GetUnderlyingType(type);
if (type.IsKnownType(KnownTypeCode.Boolean))
{
value = i != 0;
}
else if (map != null)
{
Debug.Assert(type.IsKnownType(KnownTypeCode.String));
var keys = map.Where(entry => entry.Value == i).Select(entry => entry.Key);
foreach (var key in keys)
yield return new ConstantResolveResult(type, key);
yield break;
}
else if (type.Kind == TypeKind.Enum)
{
var enumType = type.GetDefinition().EnumUnderlyingType;
TypeCode typeCode = ReflectionHelper.GetTypeCode(enumType);
if (typeCode != TypeCode.Empty)
{
value = CSharpPrimitiveCast.Cast(typeCode, i, false);
}
else
{
value = i;
}
}
else
{
TypeCode typeCode = ReflectionHelper.GetTypeCode(type);
if (typeCode != TypeCode.Empty)
{
value = CSharpPrimitiveCast.Cast(typeCode, i, false);
}
else
{
value = i;
}
}
yield return new ConstantResolveResult(type, value);
}
protected internal override TranslatedStatement VisitSwitchInstruction(SwitchInstruction inst)
{
return TranslateSwitch(null, inst).WithILInstruction(inst);
}
SwitchStatement TranslateSwitch(BlockContainer switchContainer, SwitchInstruction inst)
{
var oldBreakTarget = breakTarget;
breakTarget = switchContainer; // 'break' within a switch would only leave the switch
var oldCaseLabelMapping = caseLabelMapping;
caseLabelMapping = new Dictionary<Block, ConstantResolveResult>();
TranslatedExpression value;
IType type;
if (inst.Value is StringToInt strToInt)
{
value = exprBuilder.Translate(strToInt.Argument)
.ConvertTo(
typeSystem.FindType(KnownTypeCode.String),
exprBuilder,
// switch statement does support implicit conversions in general, however, the rules are
// not very intuitive and in order to prevent bugs, we emit an explicit cast.
allowImplicitConversion: false
);
type = exprBuilder.compilation.FindType(KnownTypeCode.String);
}
else
{
strToInt = null;
value = exprBuilder.Translate(inst.Value);
if (inst.Type != null)
{
value = value.ConvertTo(inst.Type, exprBuilder, allowImplicitConversion: true);
}
type = value.Type;
}
IL.SwitchSection defaultSection = inst.GetDefaultSection();
var stmt = new SwitchStatement() { Expression = value };
Dictionary<IL.SwitchSection, Syntax.SwitchSection> translationDictionary = new Dictionary<IL.SwitchSection, Syntax.SwitchSection>();
// initialize C# switch sections.
foreach (var section in inst.Sections)
{
// This is used in the block-label mapping.
ConstantResolveResult firstValueResolveResult;
var astSection = new Syntax.SwitchSection();
// Create case labels:
if (section == defaultSection)
{
astSection.CaseLabels.Add(new CaseLabel());
firstValueResolveResult = null;
}
else
{
var values = section.Labels.Values.SelectMany(i => CreateTypedCaseLabel(i, type, strToInt?.Map)).ToArray();
if (section.HasNullLabel)
{
astSection.CaseLabels.Add(new CaseLabel(new NullReferenceExpression()));
firstValueResolveResult = new ConstantResolveResult(SpecialType.NullType, null);
}
else
{
Debug.Assert(values.Length > 0);
firstValueResolveResult = values[0];
}
astSection.CaseLabels.AddRange(values.Select(label => new CaseLabel(exprBuilder.ConvertConstantValue(label, allowImplicitConversion: true))));
}
switch (section.Body)
{
case Branch br:
// we can only inline the block, if all branches are in the switchContainer.
if (br.TargetContainer == switchContainer && switchContainer.Descendants.OfType<Branch>().Where(b => b.TargetBlock == br.TargetBlock).All(b => BlockContainer.FindClosestSwitchContainer(b) == switchContainer))
caseLabelMapping.Add(br.TargetBlock, firstValueResolveResult);
break;
default:
break;
}
translationDictionary.Add(section, astSection);
stmt.SwitchSections.Add(astSection);
}
foreach (var section in inst.Sections)
{
var astSection = translationDictionary[section];
switch (section.Body)
{
case Branch br:
// we can only inline the block, if all branches are in the switchContainer.
if (br.TargetContainer == switchContainer && switchContainer.Descendants.OfType<Branch>().Where(b => b.TargetBlock == br.TargetBlock).All(b => BlockContainer.FindClosestSwitchContainer(b) == switchContainer))
ConvertSwitchSectionBody(astSection, br.TargetBlock);
else
ConvertSwitchSectionBody(astSection, section.Body);
break;
case Leave leave:
if (astSection.CaseLabels.Count == 1 && astSection.CaseLabels.First().Expression.IsNull && leave.TargetContainer == switchContainer)
{
stmt.SwitchSections.Remove(astSection);
break;
}
goto default;
default:
ConvertSwitchSectionBody(astSection, section.Body);
break;
}
}
if (switchContainer != null && stmt.SwitchSections.Count > 0)
{
// Translate any remaining blocks:
var lastSectionStatements = stmt.SwitchSections.Last().Statements;
foreach (var block in switchContainer.Blocks.Skip(1))
{
if (caseLabelMapping.ContainsKey(block))
continue;
lastSectionStatements.Add(new LabelStatement { Label = EnsureUniqueLabel(block) });
foreach (var nestedInst in block.Instructions)
{
var nestedStmt = Convert(nestedInst);
if (nestedStmt is BlockStatement b)
{
foreach (var nested in b.Statements)
lastSectionStatements.Add(nested.Detach());
}
else
{
lastSectionStatements.Add(nestedStmt);
}
}
Debug.Assert(block.FinalInstruction.OpCode == OpCode.Nop);
}
if (endContainerLabels.TryGetValue(switchContainer, out string label))
{
lastSectionStatements.Add(new LabelStatement { Label = label });
lastSectionStatements.Add(new BreakStatement());
}
}
breakTarget = oldBreakTarget;
caseLabelMapping = oldCaseLabelMapping;
return stmt;
}
private void ConvertSwitchSectionBody(Syntax.SwitchSection astSection, ILInstruction bodyInst)
{
var body = Convert(bodyInst);
astSection.Statements.Add(body);
if (!bodyInst.HasFlag(InstructionFlags.EndPointUnreachable))
{
// we need to insert 'break;'
BlockStatement block = body as BlockStatement;
if (block != null)
{
block.Add(new BreakStatement());
}
else
{
astSection.Statements.Add(new BreakStatement());
}
}
}
/// <summary>Target block that a 'continue;' statement would jump to</summary>
Block continueTarget;
/// <summary>Number of ContinueStatements that were created for the current continueTarget</summary>
int continueCount;
/// <summary>Maps blocks to cases.</summary>
Dictionary<Block, ConstantResolveResult> caseLabelMapping;
protected internal override TranslatedStatement VisitBranch(Branch inst)
{
if (inst.TargetBlock == continueTarget)
{
continueCount++;
return new ContinueStatement().WithILInstruction(inst);
}
if (caseLabelMapping != null && caseLabelMapping.TryGetValue(inst.TargetBlock, out var label))
{
if (label == null)
return new GotoDefaultStatement().WithILInstruction(inst);
return new GotoCaseStatement() { LabelExpression = exprBuilder.ConvertConstantValue(label, allowImplicitConversion: true) }
.WithILInstruction(inst);
}
return new GotoStatement(EnsureUniqueLabel(inst.TargetBlock)).WithILInstruction(inst);
}
/// <summary>Target container that a 'break;' statement would break out of</summary>
BlockContainer breakTarget;
/// <summary>Dictionary from BlockContainer to label name for 'goto of_container';</summary>
readonly Dictionary<BlockContainer, string> endContainerLabels = new Dictionary<BlockContainer, string>();
protected internal override TranslatedStatement VisitLeave(Leave inst)
{
if (inst.TargetContainer == breakTarget)
return new BreakStatement().WithILInstruction(inst);
if (inst.TargetContainer == currentReturnContainer)
{
if (currentIsIterator)
return new YieldBreakStatement().WithILInstruction(inst);
else if (!inst.Value.MatchNop())
{
var expr = exprBuilder.Translate(inst.Value, typeHint: currentResultType)
.ConvertTo(currentResultType, exprBuilder, allowImplicitConversion: true);
return new ReturnStatement(expr).WithILInstruction(inst);
}
else
return new ReturnStatement().WithILInstruction(inst);
}
if (!endContainerLabels.TryGetValue(inst.TargetContainer, out string label))
{
label = "end_" + inst.TargetLabel;
if (!duplicateLabels.TryGetValue(label, out int count))
{
duplicateLabels.Add(label, 1);
}
else
{
duplicateLabels[label]++;
label += "_" + (count + 1);
}
endContainerLabels.Add(inst.TargetContainer, label);
}
return new GotoStatement(label).WithILInstruction(inst);
}
protected internal override TranslatedStatement VisitThrow(Throw inst)
{
return new ThrowStatement(exprBuilder.Translate(inst.Argument)).WithILInstruction(inst);
}
protected internal override TranslatedStatement VisitRethrow(Rethrow inst)
{
return new ThrowStatement().WithILInstruction(inst);
}
protected internal override TranslatedStatement VisitYieldReturn(YieldReturn inst)
{
var elementType = currentFunction.ReturnType.GetElementTypeFromIEnumerable(typeSystem, true, out var isGeneric);
var expr = exprBuilder.Translate(inst.Value, typeHint: elementType)
.ConvertTo(elementType, exprBuilder, allowImplicitConversion: true);
return new YieldReturnStatement {
Expression = expr
}.WithILInstruction(inst);
}
TryCatchStatement MakeTryCatch(ILInstruction tryBlock)
{
var tryBlockConverted = Convert(tryBlock);
var tryCatch = tryBlockConverted as TryCatchStatement;
if (tryCatch != null && tryCatch.FinallyBlock.IsNull)
return tryCatch; // extend existing try-catch
tryCatch = new TryCatchStatement();
tryCatch.TryBlock = tryBlockConverted as BlockStatement ?? new BlockStatement { tryBlockConverted };
return tryCatch;
}
protected internal override TranslatedStatement VisitTryCatch(TryCatch inst)
{
var tryCatch = new TryCatchStatement();
tryCatch.TryBlock = ConvertAsBlock(inst.TryBlock);
foreach (var handler in inst.Handlers)
{
var catchClause = new CatchClause();
catchClause.AddAnnotation(handler);
var v = handler.Variable;
if (v != null)
{
catchClause.AddAnnotation(new ILVariableResolveResult(v, v.Type));
if (v.StoreCount > 1 || v.LoadCount > 0 || v.AddressCount > 0)
{
catchClause.VariableName = v.Name;
catchClause.Type = exprBuilder.ConvertType(v.Type);
}
else if (!v.Type.IsKnownType(KnownTypeCode.Object))
{
catchClause.Type = exprBuilder.ConvertType(v.Type);
}
}
if (!handler.Filter.MatchLdcI4(1))
catchClause.Condition = exprBuilder.TranslateCondition(handler.Filter);
catchClause.Body = ConvertAsBlock(handler.Body);
tryCatch.CatchClauses.Add(catchClause);
}
return tryCatch.WithILInstruction(inst);
}
protected internal override TranslatedStatement VisitTryFinally(TryFinally inst)
{
var tryCatch = MakeTryCatch(inst.TryBlock);
tryCatch.FinallyBlock = ConvertAsBlock(inst.FinallyBlock);
return tryCatch.WithILInstruction(inst);
}
protected internal override TranslatedStatement VisitTryFault(TryFault inst)
{
var tryCatch = new TryCatchStatement();
tryCatch.TryBlock = ConvertAsBlock(inst.TryBlock);
var faultBlock = ConvertAsBlock(inst.FaultBlock);
faultBlock.InsertChildAfter(null, new Comment("try-fault"), Roles.Comment);
faultBlock.Add(new ThrowStatement());
tryCatch.CatchClauses.Add(new CatchClause { Body = faultBlock });
return tryCatch.WithILInstruction(inst);
}
protected internal override TranslatedStatement VisitLockInstruction(LockInstruction inst)
{
return new LockStatement {
Expression = exprBuilder.Translate(inst.OnExpression),
EmbeddedStatement = ConvertAsBlock(inst.Body)
}.WithILInstruction(inst);
}
#region foreach construction
static readonly InvocationExpression getEnumeratorPattern = new InvocationExpression(
new Choice {
new MemberReferenceExpression(new AnyNode("collection").ToExpression(), "GetEnumerator"),
new MemberReferenceExpression(new AnyNode("collection").ToExpression(), "GetAsyncEnumerator")
}
);
static readonly InvocationExpression extensionGetEnumeratorPattern = new InvocationExpression(
new Choice {
new MemberReferenceExpression(new AnyNode("type").ToExpression(), "GetEnumerator"),
new MemberReferenceExpression(new AnyNode("type").ToExpression(), "GetAsyncEnumerator")
},
new AnyNode("collection")
);
static readonly Expression moveNextConditionPattern = new Choice {
new InvocationExpression(new MemberReferenceExpression(new NamedNode("enumerator", new IdentifierExpression(Pattern.AnyString)), "MoveNext")),
new UnaryOperatorExpression(UnaryOperatorType.Await, new InvocationExpression(new MemberReferenceExpression(new NamedNode("enumerator", new IdentifierExpression(Pattern.AnyString)), "MoveNextAsync")))
};
protected internal override TranslatedStatement VisitUsingInstruction(UsingInstruction inst)
{
var resource = exprBuilder.Translate(inst.ResourceExpression).Expression;
var transformed = TransformToForeach(inst, resource);
if (transformed != null)
return transformed.WithILInstruction(inst);
AstNode usingInit = resource;
var var = inst.Variable;
KnownTypeCode knownTypeCode;
IType disposeType;
string disposeTypeMethodName;
if (inst.IsAsync)
{
knownTypeCode = KnownTypeCode.IAsyncDisposable;
disposeType = exprBuilder.compilation.FindType(KnownTypeCode.IAsyncDisposable);
disposeTypeMethodName = "DisposeAsync";
}
else
{
knownTypeCode = KnownTypeCode.IDisposable;
disposeType = exprBuilder.compilation.FindType(KnownTypeCode.IDisposable);
disposeTypeMethodName = "Dispose";
}
if (!IsValidInCSharp(inst, knownTypeCode))
{
Debug.Assert(var.Kind == VariableKind.UsingLocal);
var.Kind = VariableKind.Local;
var disposeVariable = currentFunction.RegisterVariable(
VariableKind.Local, disposeType,
AssignVariableNames.GenerateVariableName(currentFunction, disposeType)
);
Expression disposeInvocation = new InvocationExpression(new MemberReferenceExpression(exprBuilder.ConvertVariable(disposeVariable).Expression, disposeTypeMethodName));
if (inst.IsAsync)
{
disposeInvocation = new UnaryOperatorExpression { Expression = disposeInvocation, Operator = UnaryOperatorType.Await };
}
return new BlockStatement {
new ExpressionStatement(new AssignmentExpression(exprBuilder.ConvertVariable(var).Expression, resource.Detach())),
new TryCatchStatement {
TryBlock = ConvertAsBlock(inst.Body),
FinallyBlock = new BlockStatement() {
new ExpressionStatement(new AssignmentExpression(exprBuilder.ConvertVariable(disposeVariable).Expression, new AsExpression(exprBuilder.ConvertVariable(var).Expression, exprBuilder.ConvertType(disposeType)))),
new IfElseStatement {
Condition = new BinaryOperatorExpression(exprBuilder.ConvertVariable(disposeVariable), BinaryOperatorType.InEquality, new NullReferenceExpression()),
TrueStatement = new ExpressionStatement(disposeInvocation)
}
}
},
}.WithILInstruction(inst);
}
else
{
if (var.LoadCount > 0 || var.AddressCount > 0)
{
var type = settings.AnonymousTypes && var.Type.ContainsAnonymousType() ? new SimpleType("var") : exprBuilder.ConvertType(var.Type);
var vds = new VariableDeclarationStatement(type, var.Name, resource);
vds.Variables.Single().AddAnnotation(new ILVariableResolveResult(var, var.Type));
usingInit = vds;
}
return new UsingStatement {
ResourceAcquisition = usingInit,
IsAsync = inst.IsAsync,
EmbeddedStatement = ConvertAsBlock(inst.Body)
}.WithILInstruction(inst);
}
bool IsValidInCSharp(UsingInstruction inst, KnownTypeCode code)
{
if (inst.ResourceExpression.MatchLdNull())
return true;
if (inst.IsRefStruct)
return true;
return NullableType.GetUnderlyingType(var.Type).GetAllBaseTypes().Any(b => b.IsKnownType(code));
}
}
Statement TransformToForeach(UsingInstruction inst, Expression resource)
{
if (!settings.ForEachStatement)
{
return null;
}
Match m;
if (settings.ExtensionMethods && settings.ForEachWithGetEnumeratorExtension)
{
// Check if the using resource matches the GetEnumerator pattern ...
m = getEnumeratorPattern.Match(resource);
if (!m.Success)
{
// ... or the extension GetEnumeratorPattern.
m = extensionGetEnumeratorPattern.Match(resource);
if (!m.Success)
return null;
// Validate that the invocation is an extension method invocation.
var context = new CSharpTypeResolveContext(
typeSystem.MainModule,
decompileRun.UsingScope.Resolve(typeSystem)
);
if (!IntroduceExtensionMethods.CanTransformToExtensionMethodCall(context,
(InvocationExpression)resource))
{
return null;
}
}
}
else
{
// Check if the using resource matches the GetEnumerator pattern.
m = getEnumeratorPattern.Match(resource);
if (!m.Success)
return null;
}
// The using body must be a BlockContainer.
if (!(inst.Body is BlockContainer container))
return null;
bool isAsync = ((MemberReferenceExpression)((InvocationExpression)resource).Target).MemberName == "GetAsyncEnumerator";
if (isAsync != inst.IsAsync)
return null;
// The using-variable is the enumerator.
var enumeratorVar = inst.Variable;
// If there's another BlockContainer nested in this container and it only has one child block, unwrap it.
// If there's an extra leave inside the block, extract it into optionalReturnAfterLoop.
var loopContainer = UnwrapNestedContainerIfPossible(container, out var optionalLeaveAfterLoop);
// Detect whether we're dealing with a while loop with multiple embedded statements.
if (loopContainer.Kind != ContainerKind.While)
return null;
if (!loopContainer.MatchConditionBlock(loopContainer.EntryPoint, out var conditionInst, out var body))
return null;
// The loop condition must be a call to enumerator.MoveNext()
var condition = exprBuilder.TranslateCondition(conditionInst);
var m2 = moveNextConditionPattern.Match(condition.Expression);
if (!m2.Success)
return null;
if (condition.Expression is UnaryOperatorExpression { Operator: UnaryOperatorType.Await } != isAsync)
return null;
// Check enumerator variable references.
var enumeratorVar2 = m2.Get<IdentifierExpression>("enumerator").Single().GetILVariable();
if (enumeratorVar2 != enumeratorVar)
return null;
// Detect which foreach-variable transformation is necessary/possible.
var transformation = DetectGetCurrentTransformation(container, body, loopContainer, enumeratorVar, conditionInst, out var singleGetter, out var foreachVariable);
if (transformation == RequiredGetCurrentTransformation.NoForeach)
return null;
// Extract in-expression
var collectionExpr = m.Get<Expression>("collection").Single();
// Special case: foreach (var item in this) is decompiled as foreach (var item in base)
// but a base reference is not valid in this context.
if (collectionExpr is BaseReferenceExpression)
{
collectionExpr = new ThisReferenceExpression().CopyAnnotationsFrom(collectionExpr);
}
else if (IsDynamicCastToIEnumerable(collectionExpr, out var dynamicExpr))
{
collectionExpr = dynamicExpr.Detach();
}
// Handle explicit casts:
// This is the case if an explicit type different from the collection-item-type was used.
// For example: foreach (ClassA item in nonGenericEnumerable)
var type = singleGetter.Method.ReturnType;
ILInstruction instToReplace = singleGetter;
bool useVar = false;
switch (instToReplace.Parent)
{
case CastClass cc:
type = cc.Type;
instToReplace = cc;
break;
case UnboxAny ua:
type = ua.Type;
instToReplace = ua;
break;
default:
if (TupleType.IsTupleCompatible(type, out _))
{
// foreach with get_Current returning a tuple type, let's check which type "var" would infer:
var foreachRR = exprBuilder.resolver.ResolveForeach(collectionExpr.GetResolveResult());
if (EqualErasedType(type, foreachRR.ElementType))
{
type = foreachRR.ElementType;
useVar = true;
}
}
break;
}
VariableDesignation designation = null;
// Handle the required foreach-variable transformation:
switch (transformation)
{
case RequiredGetCurrentTransformation.UseExistingVariable:
if (foreachVariable.Type.Kind != TypeKind.Dynamic)
foreachVariable.Type = type;
foreachVariable.Kind = VariableKind.ForeachLocal;
foreachVariable.Name = AssignVariableNames.GenerateForeachVariableName(currentFunction, collectionExpr.Annotation<ILInstruction>(), foreachVariable);
break;
case RequiredGetCurrentTransformation.IntroduceNewVariable:
foreachVariable = currentFunction.RegisterVariable(
VariableKind.ForeachLocal, type,
AssignVariableNames.GenerateForeachVariableName(currentFunction, collectionExpr.Annotation<ILInstruction>())
);
instToReplace.ReplaceWith(new LdLoc(foreachVariable));
body.Instructions.Insert(0, new StLoc(foreachVariable, instToReplace));
break;
case RequiredGetCurrentTransformation.IntroduceNewVariableAndLocalCopy:
foreachVariable = currentFunction.RegisterVariable(
VariableKind.ForeachLocal, type,
AssignVariableNames.GenerateForeachVariableName(currentFunction, collectionExpr.Annotation<ILInstruction>())
);
var localCopyVariable = currentFunction.RegisterVariable(
VariableKind.Local, type,
AssignVariableNames.GenerateVariableName(currentFunction, type)
);
instToReplace.Parent.ReplaceWith(new LdLoca(localCopyVariable));
body.Instructions.Insert(0, new StLoc(localCopyVariable, new LdLoc(foreachVariable)));
body.Instructions.Insert(0, new StLoc(foreachVariable, instToReplace));
break;
case RequiredGetCurrentTransformation.Deconstruction:
useVar = true;
designation = TranslateDeconstructionDesignation((DeconstructInstruction)body.Instructions[0], isForeach: true);
break;
}
if (designation == null)
{
designation = new SingleVariableDesignation { Identifier = foreachVariable.Name };
// Add the variable annotation for highlighting
designation.AddAnnotation(new ILVariableResolveResult(foreachVariable, foreachVariable.Type));
}
// Convert the modified body to C# AST:
var whileLoopBlock = ConvertAsBlock(container);
var whileLoop = (WhileStatement)whileLoopBlock.First();
var foreachBody = (BlockStatement)whileLoop.EmbeddedStatement.Detach();
// Remove the first statement, as it is the foreachVariable = enumerator.Current; statement.
Statement firstStatement = foreachBody.Statements.First();
if (firstStatement is LabelStatement)
{
// skip the entry-point label, if any
firstStatement = firstStatement.GetNextStatement();
}
Debug.Assert(firstStatement is ExpressionStatement);
firstStatement.Remove();
if (settings.AnonymousTypes && type.ContainsAnonymousType())
useVar = true;
// Construct the foreach loop.
var foreachStmt = new ForeachStatement {
IsAsync = isAsync,
VariableType = useVar ? new SimpleType("var") : exprBuilder.ConvertType(foreachVariable.Type),
VariableDesignation = designation,
InExpression = collectionExpr.Detach(),
EmbeddedStatement = foreachBody
};
foreachStmt.AddAnnotation(new ForeachAnnotation(inst.ResourceExpression, conditionInst, singleGetter));
foreachStmt.CopyAnnotationsFrom(whileLoop);
// If there was an optional return statement, return it as well.
// If there were labels or any other statements in the whileLoopBlock, move them after the foreach
// loop.
if (optionalLeaveAfterLoop != null || whileLoopBlock.Statements.Count > 1)
{
var block = new BlockStatement {
Statements = {
foreachStmt
}
};
if (optionalLeaveAfterLoop != null)
{
block.Statements.Add(optionalLeaveAfterLoop.AcceptVisitor(this));
}
if (whileLoopBlock.Statements.Count > 1)
{
block.Statements.AddRange(whileLoopBlock.Statements
.Skip(1)
.SkipWhile(s => s.Annotations.Any(a => a == optionalLeaveAfterLoop))
.Select(SyntaxExtensions.Detach));
}
return block;
}
return foreachStmt;
}
internal static VariableDesignation TranslateDeconstructionDesignation(DeconstructInstruction inst, bool isForeach)
{
var assignments = inst.Assignments.Instructions;
int assignmentPos = 0;
return ConstructDesignation(inst.Pattern);
VariableDesignation ConstructDesignation(MatchInstruction matchInstruction)
{
var designations = new ParenthesizedVariableDesignation();
foreach (var subPattern in matchInstruction.SubPatterns.Cast<MatchInstruction>())
{
if (subPattern.IsVar)
{
var designation = new SingleVariableDesignation();
if (subPattern.HasDesignator)
{
ILVariable v = ((StLoc)assignments[assignmentPos]).Variable;
if (isForeach)
v.Kind = VariableKind.ForeachLocal;
designation.Identifier = v.Name;
designation.AddAnnotation(new ILVariableResolveResult(v));
assignmentPos++;
}
else
{
designation.Identifier = "_";
}
designations.VariableDesignations.Add(designation);
}
else
{
designations.VariableDesignations.Add(ConstructDesignation(subPattern));
}
}
return designations;
}
}
static bool EqualErasedType(IType a, IType b)
{
return NormalizeTypeVisitor.TypeErasure.EquivalentTypes(a, b);
}
private bool IsDynamicCastToIEnumerable(Expression expr, out Expression dynamicExpr)
{
if (!(expr is CastExpression cast))
{
dynamicExpr = null;
return false;
}
dynamicExpr = cast.Expression;
if (!(expr.GetResolveResult() is ConversionResolveResult crr))
return false;
if (!crr.Type.IsKnownType(KnownTypeCode.IEnumerable))
return false;
return crr.Input.Type.Kind == TypeKind.Dynamic;
}
/// <summary>
/// Unwraps a nested BlockContainer, if container contains only a single block,
/// and that single block contains only a BlockContainer followed by a Leave instruction.
/// If the leave instruction is a return that carries a value, the container is unwrapped only
/// if the value has no side-effects.
/// Otherwise returns the unmodified container.
/// </summary>
/// <param name="optionalLeaveInst">If the leave is a return/break and has no side-effects, we can move the return out of the using-block and put it after the loop, otherwise returns null.</param>
BlockContainer UnwrapNestedContainerIfPossible(BlockContainer container, out Leave optionalLeaveInst)
{
optionalLeaveInst = null;
// Check block structure:
if (container.Blocks.Count != 1)
return container;
var nestedBlock = container.Blocks[0];
if (nestedBlock.Instructions.Count != 2 ||
!(nestedBlock.Instructions[0] is BlockContainer nestedContainer) ||
!(nestedBlock.Instructions[1] is Leave leave))
return container;
// If the leave has no value, just unwrap the BlockContainer.
if (leave.MatchLeave(container))
return nestedContainer;
// If the leave is a return/break, we can move it out of the using-block and put it after the loop
// (but only if the value doesn't have side-effects)
if (SemanticHelper.IsPure(leave.Value.Flags))
{
optionalLeaveInst = leave;
return nestedContainer;
}
return container;
}
enum RequiredGetCurrentTransformation
{
/// <summary>
/// Foreach transformation not possible.
/// </summary>
NoForeach,
/// <summary>
/// Uninline the stloc foreachVar(call get_Current()) and insert it as first statement in the loop body.
/// <code>
/// ... (stloc foreachVar(call get_Current()) ...
/// =>
/// stloc foreachVar(call get_Current())
/// ... (ldloc foreachVar) ...
/// </code>
/// </summary>
UseExistingVariable,
/// <summary>
/// No store was found, thus create a new variable and use it as foreach variable.
/// <code>
/// ... (call get_Current()) ...
/// =>
/// stloc foreachVar(call get_Current())
/// ... (ldloc foreachVar) ...
/// </code>
/// </summary>
IntroduceNewVariable,
/// <summary>
/// No store was found, thus create a new variable and use it as foreach variable.
/// Additionally it is necessary to copy the value of the foreach variable to another local
/// to allow safe modification of its value.
/// <code>
/// ... addressof(call get_Current()) ...
/// =>
/// stloc foreachVar(call get_Current())
/// stloc copy(ldloc foreachVar)
/// ... (ldloca copy) ...
/// </code>
/// </summary>
IntroduceNewVariableAndLocalCopy,
/// <summary>
/// call get_Current() is the tested operand of a deconstruct instruction.
/// and the deconstruct instruction is the first statement in the loop body.
/// </summary>
Deconstruction,
}
/// <summary>
/// Determines whether <paramref name="enumerator"/> is only used once inside <paramref name="loopBody"/> for accessing the Current property.
/// </summary>
/// <param name="usingContainer">The using body container. This is only used for variable usage checks.</param>
/// <param name="loopBody">The loop body. The first statement of this block is analyzed.</param>
/// <param name="enumerator">The current enumerator.</param>
/// <param name="moveNextUsage">The call MoveNext(ldloc enumerator) pattern.</param>
/// <param name="singleGetter">Returns the call instruction invoking Current's getter.</param>
/// <param name="foreachVariable">Returns the the foreach variable, if a suitable was found. This variable is only assigned once and its assignment is the first statement in <paramref name="loopBody"/>.</param>
/// <returns><see cref="RequiredGetCurrentTransformation"/> for details.</returns>
RequiredGetCurrentTransformation DetectGetCurrentTransformation(BlockContainer usingContainer, Block loopBody, BlockContainer loopContainer, ILVariable enumerator, ILInstruction moveNextUsage, out CallInstruction singleGetter, out ILVariable foreachVariable)
{
singleGetter = null;
foreachVariable = null;
var loads = enumerator.LoadInstructions.OfType<ILInstruction>()
.Concat(enumerator.AddressInstructions.OfType<ILInstruction>())
.Where(ld => !ld.IsDescendantOf(moveNextUsage))
.ToArray();
// enumerator is used in multiple locations or not in conjunction with get_Current
// => no foreach
if (loads.Length != 1 || !ParentIsCurrentGetter(loads[0]))
return RequiredGetCurrentTransformation.NoForeach;
singleGetter = (CallInstruction)loads[0].Parent;
// singleGetter is not part of the first instruction in body or cannot be uninlined
// => no foreach
if (!(singleGetter.IsDescendantOf(loopBody.Instructions[0])
&& ILInlining.CanUninline(singleGetter, loopBody.Instructions[0])))
{
return RequiredGetCurrentTransformation.NoForeach;
}
if (loopBody.Instructions[0] is DeconstructInstruction deconstruction
&& CanBeDeconstructedInForeach(deconstruction, singleGetter, usingContainer, loopContainer))
{
return RequiredGetCurrentTransformation.Deconstruction;
}
ILInstruction inst = singleGetter;
// in some cases, i.e. foreach variable with explicit type different from the collection-item-type,
// the result of call get_Current is casted.
while (inst.Parent is UnboxAny || inst.Parent is CastClass)
inst = inst.Parent;
// One variable was found.
if (inst.Parent is StLoc stloc && (stloc.Variable.Kind == VariableKind.Local || stloc.Variable.Kind == VariableKind.StackSlot))
{
// Must be a plain assignment expression and variable must only be used in 'body' + only assigned once.
if (stloc.Parent == loopBody && VariableIsOnlyUsedInBlock(stloc, usingContainer, loopContainer))
{
foreachVariable = stloc.Variable;
return RequiredGetCurrentTransformation.UseExistingVariable;
}
}
// In optimized Roslyn code it can happen that the foreach variable is referenced via addressof
// We only do this unwrapping if where dealing with a custom struct type.
if (CurrentIsStructSetterTarget(inst, singleGetter))
{
return RequiredGetCurrentTransformation.IntroduceNewVariableAndLocalCopy;
}
// No suitable variable was found: we need a new one.
return RequiredGetCurrentTransformation.IntroduceNewVariable;
}
bool CanBeDeconstructedInForeach(DeconstructInstruction deconstruction, ILInstruction singleGetter, BlockContainer usingContainer, BlockContainer loopContainer)
{
ILInstruction testedOperand = deconstruction.Pattern.TestedOperand;
if (testedOperand != singleGetter)
{
if (!(testedOperand is AddressOf addressOf && addressOf.Value == singleGetter))
return false;
}
if (deconstruction.Init.Count > 0)
return false;
if (deconstruction.Conversions.Instructions.Count > 0)
return false;
var operandType = singleGetter.InferType(this.typeSystem);
var expectedType = deconstruction.Pattern.Variable.Type;
if (!NormalizeTypeVisitor.TypeErasure.EquivalentTypes(operandType, expectedType))
return false;
var usedVariables = new HashSet<ILVariable>(ILVariableEqualityComparer.Instance);
foreach (var item in deconstruction.Assignments.Instructions)
{
if (!item.MatchStLoc(out var v, out var value))
return false;
expectedType = ((LdLoc)value).Variable.Type;
if (!NormalizeTypeVisitor.TypeErasure.EquivalentTypes(v.Type, expectedType))
return false;
if (!(v.Kind == VariableKind.StackSlot || v.Kind == VariableKind.Local))
return false;
if (!VariableIsOnlyUsedInBlock((StLoc)item, usingContainer, loopContainer))
return false;
if (!(v.CaptureScope == null || v.CaptureScope == usingContainer))
return false;
if (!usedVariables.Add(v))
return false;
}
return true;
}
/// <summary>
/// Determines whether storeInst.Variable is only assigned once and used only inside <paramref name="usingContainer"/>.
/// Loads by reference (ldloca) are only allowed in the context of this pointer in call instructions,
/// or as target of ldobj.
/// (This only applies to value types.)
/// </summary>
bool VariableIsOnlyUsedInBlock(StLoc storeInst, BlockContainer usingContainer, BlockContainer loopContainer)
{
if (storeInst.Variable.LoadInstructions.Any(ld => !ld.IsDescendantOf(usingContainer)))
return false;
if (storeInst.Variable.AddressInstructions.Any(inst => !AddressUseAllowed(inst)))
return false;
if (storeInst.Variable.StoreInstructions.OfType<ILInstruction>().Any(st => st != storeInst))
return false;
if (!(storeInst.Variable.CaptureScope == null || storeInst.Variable.CaptureScope == loopContainer))
return false;
return true;
bool AddressUseAllowed(LdLoca la)
{
if (!la.IsDescendantOf(usingContainer))
return false;
if (ILInlining.IsUsedAsThisPointerInCall(la) && !IsTargetOfSetterCall(la, la.Variable.Type))
return true;
var current = la.Parent;
while (current is LdFlda next)
{
current = next.Parent;
}
return current is LdObj;
}
}
/// <summary>
/// Returns true if singleGetter is a value type and its address is used as setter target.
/// </summary>
bool CurrentIsStructSetterTarget(ILInstruction inst, CallInstruction singleGetter)
{
if (!(inst.Parent is AddressOf addr))
return false;
return IsTargetOfSetterCall(addr, singleGetter.Method.ReturnType);
}
bool IsTargetOfSetterCall(ILInstruction inst, IType targetType)
{
if (inst.ChildIndex != 0)
return false;
if (targetType.IsReferenceType ?? false)
return false;
switch (inst.Parent.OpCode)
{
case OpCode.Call:
case OpCode.CallVirt:
var targetMethod = ((CallInstruction)inst.Parent).Method;
if (!targetMethod.IsAccessor || targetMethod.IsStatic)
return false;
switch (targetMethod.AccessorOwner)
{
case IProperty p:
return targetMethod.AccessorKind == System.Reflection.MethodSemanticsAttributes.Setter;
default:
return true;
}
default:
return false;
}
}
bool ParentIsCurrentGetter(ILInstruction inst)
{
return inst.Parent is CallInstruction cv && cv.Method.IsAccessor &&
cv.Method.AccessorKind == System.Reflection.MethodSemanticsAttributes.Getter;
}
#endregion
protected internal override TranslatedStatement VisitPinnedRegion(PinnedRegion inst)
{
var fixedStmt = new FixedStatement();
fixedStmt.Type = exprBuilder.ConvertType(inst.Variable.Type);
Expression initExpr;
if (inst.Init is GetPinnableReference gpr)
{
if (gpr.Method != null)
{
IType expectedType = gpr.Method.IsStatic ? gpr.Method.Parameters[0].Type : gpr.Method.DeclaringType;
initExpr = exprBuilder.Translate(gpr.Argument, typeHint: expectedType).ConvertTo(expectedType, exprBuilder);
}
else
{
initExpr = exprBuilder.Translate(gpr.Argument);
}
}
else
{
IType refType = inst.Variable.Type;
if (refType is PointerType pointerType)
{
refType = new ByReferenceType(pointerType.ElementType);
}
initExpr = exprBuilder.Translate(inst.Init, typeHint: refType).ConvertTo(refType, exprBuilder);
if (initExpr is DirectionExpression dirExpr)
{
if (dirExpr.Expression is UnaryOperatorExpression uoe && uoe.Operator == UnaryOperatorType.Dereference)
{
initExpr = uoe.Expression.Detach();
}
else
{
initExpr = new UnaryOperatorExpression(UnaryOperatorType.AddressOf, dirExpr.Expression.Detach())
.WithRR(new ResolveResult(inst.Variable.Type));
}
}
if (initExpr.GetResolveResult()?.Type.Kind == TypeKind.Pointer
&& !IsAddressOfMoveableVar(initExpr)
&& !IsFixedSizeBuffer(initExpr)
&& refType is ByReferenceType brt)
{
// C# doesn't allow pinning an already-unmanaged pointer
// fixed (int* ptr = existing_ptr) {} -> invalid
// fixed (int* ptr = &existing_ptr->field) {} -> invalid
// fixed (int* ptr = &local_var) {} -> invalid
// We work around this by instead doing:
// fixed (int* ptr = &Unsafe.AsRef<int>(existing_ptr))
var asRefCall = exprBuilder.CallUnsafeIntrinsic(
name: "AsRef",
arguments: new Expression[] { initExpr },
returnType: brt.ElementType,
typeArguments: new IType[] { brt.ElementType }
);
initExpr = new UnaryOperatorExpression(UnaryOperatorType.AddressOf, asRefCall)
.WithRR(new ResolveResult(inst.Variable.Type));
}
}
fixedStmt.Variables.Add(new VariableInitializer(inst.Variable.Name, initExpr).WithILVariable(inst.Variable));
fixedStmt.EmbeddedStatement = Convert(inst.Body);
return fixedStmt.WithILInstruction(inst);
}
private static bool IsAddressOfMoveableVar(Expression initExpr)
{
if (initExpr is UnaryOperatorExpression { Operator: UnaryOperatorType.AddressOf } uoe)
{
var inst = uoe.Expression.Annotation<ILInstruction>();
return !(inst != null && PointerArithmeticOffset.IsFixedVariable(inst));
}
return false;
}
private static bool IsFixedSizeBuffer(Expression initExpr)
{
var mrr = initExpr.GetResolveResult() as MemberResolveResult;
return mrr?.Member is IField f && CSharpDecompiler.IsFixedField(f, out _, out _);
}
protected internal override TranslatedStatement VisitBlock(Block block)
{
if (block.Kind != BlockKind.ControlFlow)
return Default(block);
// Block without container
BlockStatement blockStatement = new BlockStatement();
foreach (var inst in block.Instructions)
{
blockStatement.Add(Convert(inst));
}
if (block.FinalInstruction.OpCode != OpCode.Nop)
blockStatement.Add(Convert(block.FinalInstruction));
return blockStatement.WithILInstruction(block);
}
protected internal override TranslatedStatement VisitBlockContainer(BlockContainer container)
{
if (container.Kind != ContainerKind.Normal && container.EntryPoint.IncomingEdgeCount > 1)
{
var oldContinueTarget = continueTarget;
var oldContinueCount = continueCount;
var oldBreakTarget = breakTarget;
var loop = ConvertLoop(container);
loop.AddAnnotation(container);
continueTarget = oldContinueTarget;
continueCount = oldContinueCount;
breakTarget = oldBreakTarget;
return loop.WithILInstruction(container);
}
else if (container.EntryPoint.Instructions.Count == 1 && container.EntryPoint.Instructions[0] is SwitchInstruction switchInst)
{
return TranslateSwitch(container, switchInst).WithILInstruction(container);
}
else
{
var blockStmt = ConvertBlockContainer(container, false);
return blockStmt.WithILInstruction(container);
}
}
Statement ConvertLoop(BlockContainer container)
{
ILInstruction condition;
Block loopBody;
BlockStatement blockStatement;
continueCount = 0;
breakTarget = container;
switch (container.Kind)
{
case ContainerKind.Loop:
continueTarget = container.EntryPoint;
blockStatement = ConvertBlockContainer(container, true);
Debug.Assert(continueCount < container.EntryPoint.IncomingEdgeCount);
Debug.Assert(blockStatement.Statements.First() is LabelStatement);
if (container.EntryPoint.IncomingEdgeCount == continueCount + 1)
{
// Remove the entrypoint label if all jumps to the label were replaced with 'continue;' statements
blockStatement.Statements.First().Remove();
}
if (blockStatement.LastOrDefault() is ContinueStatement continueStmt)
continueStmt.Remove();
DeclareLocalFunctions(currentFunction, container, blockStatement);
return new WhileStatement(new PrimitiveExpression(true), blockStatement);
case ContainerKind.While:
continueTarget = container.EntryPoint;
if (!container.MatchConditionBlock(continueTarget, out condition, out loopBody))
throw new NotSupportedException("Invalid condition block in while loop.");
blockStatement = ConvertAsBlock(loopBody);
if (!loopBody.HasFlag(InstructionFlags.EndPointUnreachable))
blockStatement.Add(new BreakStatement());
blockStatement = ConvertBlockContainer(blockStatement, container, container.Blocks.Skip(1).Except(new[] { loopBody }), true);
Debug.Assert(continueCount < container.EntryPoint.IncomingEdgeCount);
if (continueCount + 1 < container.EntryPoint.IncomingEdgeCount)
{
// There's an incoming edge to the entry point (=while condition) that wasn't represented as "continue;"
// -> emit a real label
// We'll also remove any "continue;" in front of the label, as it's redundant.
if (blockStatement.LastOrDefault() is ContinueStatement)
blockStatement.Last().Remove();
blockStatement.Add(new LabelStatement { Label = EnsureUniqueLabel(container.EntryPoint) });
}
if (blockStatement.LastOrDefault() is ContinueStatement continueStmt2)
continueStmt2.Remove();
DeclareLocalFunctions(currentFunction, container, blockStatement);
return new WhileStatement(exprBuilder.TranslateCondition(condition), blockStatement);
case ContainerKind.DoWhile:
continueTarget = container.Blocks.Last();
if (!container.MatchConditionBlock(continueTarget, out condition, out _))
throw new NotSupportedException("Invalid condition block in do-while loop.");
blockStatement = ConvertBlockContainer(new BlockStatement(), container, container.Blocks.SkipLast(1), true);
if (container.EntryPoint.IncomingEdgeCount == 2)
{
// Remove the entry-point label, if there are only two jumps to the entry-point:
// from outside the loop and from the condition-block.
blockStatement.Statements.First().Remove();
}
if (blockStatement.LastOrDefault() is ContinueStatement continueStmt3)
continueStmt3.Remove();
if (continueTarget.IncomingEdgeCount > continueCount)
{
// if there are branches to the condition block, that were not converted
// to continue statements, we have to introduce an extra label.
blockStatement.Add(new LabelStatement { Label = EnsureUniqueLabel(continueTarget) });
}
DeclareLocalFunctions(currentFunction, container, blockStatement);
if (blockStatement.Statements.Count == 0)
{
return new WhileStatement {
Condition = exprBuilder.TranslateCondition(condition),
EmbeddedStatement = blockStatement
};
}
return new DoWhileStatement {
EmbeddedStatement = blockStatement,
Condition = exprBuilder.TranslateCondition(condition)
};
case ContainerKind.For:
continueTarget = container.Blocks.Last();
if (!container.MatchConditionBlock(container.EntryPoint, out condition, out loopBody))
throw new NotSupportedException("Invalid condition block in for loop.");
blockStatement = ConvertAsBlock(loopBody);
if (!loopBody.HasFlag(InstructionFlags.EndPointUnreachable))
blockStatement.Add(new BreakStatement());
if (!container.MatchIncrementBlock(continueTarget))
throw new NotSupportedException("Invalid increment block in for loop.");
blockStatement = ConvertBlockContainer(blockStatement, container, container.Blocks.SkipLast(1).Skip(1).Except(new[] { loopBody }), true);
var forStmt = new ForStatement() {
Condition = exprBuilder.TranslateCondition(condition),
EmbeddedStatement = blockStatement
};
if (blockStatement.LastOrDefault() is ContinueStatement continueStmt4)
continueStmt4.Remove();
for (int i = 0; i < continueTarget.Instructions.Count - 1; i++)
{
forStmt.Iterators.Add(Convert(continueTarget.Instructions[i]));
}
if (continueTarget.IncomingEdgeCount > continueCount)
blockStatement.Add(new LabelStatement { Label = EnsureUniqueLabel(continueTarget) });
DeclareLocalFunctions(currentFunction, container, blockStatement);
return forStmt;
default:
throw new ArgumentOutOfRangeException();
}
}
BlockStatement ConvertBlockContainer(BlockContainer container, bool isLoop)
{
var blockStatement = ConvertBlockContainer(new BlockStatement(), container, container.Blocks, isLoop);
DeclareLocalFunctions(currentFunction, container, blockStatement);
return blockStatement;
}
void DeclareLocalFunctions(ILFunction currentFunction, BlockContainer container, BlockStatement blockStatement)
{
foreach (var localFunction in currentFunction.LocalFunctions.OrderBy(f => f.Name))
{
if (localFunction.DeclarationScope != container)
continue;
blockStatement.Add(TranslateFunction(localFunction));
}
LocalFunctionDeclarationStatement TranslateFunction(ILFunction function)
{
var astBuilder = exprBuilder.astBuilder;
var method = (MethodDeclaration)astBuilder.ConvertEntity(function.ReducedMethod);
if (function.Method.HasBody)
{
var nestedBuilder = new StatementBuilder(
typeSystem,
exprBuilder.decompilationContext,
function,
settings,
decompileRun,
cancellationToken
);
method.Body = nestedBuilder.ConvertAsBlock(function.Body);
Comment prev = null;
foreach (string warning in function.Warnings)
{
method.Body.InsertChildAfter(prev, prev = new Comment(warning), Roles.Comment);
}
}
else
{
method.Modifiers |= Modifiers.Extern;
}
CSharpDecompiler.AddAnnotationsToDeclaration(function.ReducedMethod, method, function);
CSharpDecompiler.CleanUpMethodDeclaration(method, method.Body, function, function.Method.HasBody);
CSharpDecompiler.RemoveAttribute(method, KnownAttribute.CompilerGenerated);
var stmt = new LocalFunctionDeclarationStatement(method);
stmt.AddAnnotation(new MemberResolveResult(null, function.ReducedMethod));
stmt.WithILInstruction(function);
return stmt;
}
}
BlockStatement ConvertBlockContainer(BlockStatement blockStatement, BlockContainer container, IEnumerable<Block> blocks, bool isLoop)
{
foreach (var block in blocks)
{
if (block.IncomingEdgeCount > 1 || block != container.EntryPoint)
{
// If there are any incoming branches to this block, add a label:
blockStatement.Add(new LabelStatement { Label = EnsureUniqueLabel(block) });
}
foreach (var inst in block.Instructions)
{
if (!isLoop && inst is Leave leave && IsFinalLeave(leave))
{
// skip the final 'leave' instruction and just fall out of the BlockStatement
blockStatement.AddAnnotation(new ImplicitReturnAnnotation(leave));
continue;
}
var stmt = Convert(inst);
if (stmt is BlockStatement b)
{
foreach (var nested in b.Statements)
blockStatement.Add(nested.Detach());
}
else
{
blockStatement.Add(stmt.Detach());
}
}
if (block.FinalInstruction.OpCode != OpCode.Nop)
{
blockStatement.Add(Convert(block.FinalInstruction));
}
}
if (endContainerLabels.TryGetValue(container, out string label))
{
if (isLoop && !(blockStatement.LastOrDefault() is ContinueStatement))
{
blockStatement.Add(new ContinueStatement());
}
blockStatement.Add(new LabelStatement { Label = label });
if (isLoop)
{
blockStatement.Add(new BreakStatement());
}
}
return blockStatement;
}
readonly Dictionary<Block, string> labels = new Dictionary<Block, string>();
readonly Dictionary<string, int> duplicateLabels = new Dictionary<string, int>();
string EnsureUniqueLabel(Block block)
{
if (labels.TryGetValue(block, out string label))
return label;
if (!duplicateLabels.TryGetValue(block.Label, out int count))
{
labels.Add(block, block.Label);
duplicateLabels.Add(block.Label, 1);
return block.Label;
}
label = $"{block.Label}_{count + 1}";
duplicateLabels[block.Label]++;
labels.Add(block, label);
return label;
}
static bool IsFinalLeave(Leave leave)
{
if (!leave.Value.MatchNop())
return false;
Block block = (Block)leave.Parent;
if (leave.ChildIndex != block.Instructions.Count - 1 || block.FinalInstruction.OpCode != OpCode.Nop)
return false;
BlockContainer container = (BlockContainer)block.Parent;
return block.ChildIndex == container.Blocks.Count - 1
&& container == leave.TargetContainer;
}
protected internal override TranslatedStatement VisitInitblk(Initblk inst)
{
var stmt = new ExpressionStatement(
exprBuilder.CallUnsafeIntrinsic(
inst.UnalignedPrefix != 0 ? "InitBlockUnaligned" : "InitBlock",
new Expression[] {
exprBuilder.Translate(inst.Address),
exprBuilder.Translate(inst.Value),
exprBuilder.Translate(inst.Size)
},
exprBuilder.compilation.FindType(KnownTypeCode.Void),
inst
)
);
stmt.InsertChildAfter(null, new Comment(" IL initblk instruction"), Roles.Comment);
return stmt.WithILInstruction(inst);
}
protected internal override TranslatedStatement VisitCpblk(Cpblk inst)
{
var stmt = new ExpressionStatement(
exprBuilder.CallUnsafeIntrinsic(
inst.UnalignedPrefix != 0 ? "CopyBlockUnaligned" : "CopyBlock",
new Expression[] {
exprBuilder.Translate(inst.DestAddress),
exprBuilder.Translate(inst.SourceAddress),
exprBuilder.Translate(inst.Size)
},
exprBuilder.compilation.FindType(KnownTypeCode.Void),
inst
)
);
stmt.InsertChildAfter(null, new Comment(" IL cpblk instruction"), Roles.Comment);
return stmt.WithILInstruction(inst);
}
}
}