.NET Decompiler with support for PDB generation, ReadyToRun, Metadata (&more) - cross-platform!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

300 lines
10 KiB

// Copyright (c) 2018 Daniel Grunwald
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Text;
using ICSharpCode.Decompiler.TypeSystem;
using ICSharpCode.Decompiler.Util;
namespace ICSharpCode.Decompiler.IL.Transforms
{
public class UserDefinedLogicTransform : IStatementTransform
{
void IStatementTransform.Run(Block block, int pos, StatementTransformContext context)
{
if (LegacyPattern(block, pos, context))
return;
if (RoslynOptimized(block, pos, context))
return;
}
bool RoslynOptimized(Block block, int pos, StatementTransformContext context)
{
// Roslyn, optimized pattern in combination with return statement:
// if (logic.not(call op_False(ldloc lhsVar))) leave IL_0000 (call op_BitwiseAnd(ldloc lhsVar, rhsInst))
// leave IL_0000(ldloc lhsVar)
// ->
// user.logic op_BitwiseAnd(ldloc lhsVar, rhsInst)
if (!block.Instructions[pos].MatchIfInstructionPositiveCondition(out var condition, out var trueInst, out var falseInst))
return false;
if (trueInst.OpCode == OpCode.Nop)
{
trueInst = block.Instructions[pos + 1];
}
else if (falseInst.OpCode == OpCode.Nop)
{
falseInst = block.Instructions[pos + 1];
}
else
{
return false;
}
if (trueInst.MatchReturn(out var trueValue) && falseInst.MatchReturn(out var falseValue))
{
var transformed = Transform(condition, trueValue, falseValue);
if (transformed == null)
{
transformed = TransformDynamic(condition, trueValue, falseValue);
}
if (transformed != null)
{
context.Step("User-defined short-circuiting logic operator (optimized return)", condition);
((Leave)block.Instructions[pos + 1]).Value = transformed;
block.Instructions.RemoveAt(pos);
return true;
}
}
return false;
}
bool LegacyPattern(Block block, int pos, StatementTransformContext context)
{
// Legacy csc pattern:
// stloc s(lhsInst)
// if (logic.not(call op_False(ldloc s))) Block {
// stloc s(call op_BitwiseAnd(ldloc s, rhsInst))
// }
// ->
// stloc s(user.logic op_BitwiseAnd(lhsInst, rhsInst))
if (!block.Instructions[pos].MatchStLoc(out var s, out var lhsInst))
return false;
if (!(s.Kind == VariableKind.StackSlot))
return false;
if (!(block.Instructions[pos + 1] is IfInstruction ifInst))
return false;
if (!ifInst.Condition.MatchLogicNot(out var condition))
return false;
if (!(MatchCondition(condition, out var s2, out string conditionMethodName) && s2 == s))
return false;
if (ifInst.FalseInst.OpCode != OpCode.Nop)
return false;
var trueInst = Block.Unwrap(ifInst.TrueInst);
if (!trueInst.MatchStLoc(s, out var storeValue))
return false;
if (storeValue is Call call)
{
if (!MatchBitwiseCall(call, s, conditionMethodName))
return false;
if (s.IsUsedWithin(call.Arguments[1]))
return false;
context.Step("User-defined short-circuiting logic operator (legacy pattern)", condition);
((StLoc)block.Instructions[pos]).Value = new UserDefinedLogicOperator(call.Method, lhsInst, call.Arguments[1])
.WithILRange(call);
block.Instructions.RemoveAt(pos + 1);
context.RequestRerun(); // the 'stloc s' may now be eligible for inlining
return true;
}
return false;
}
static bool MatchCondition(ILInstruction condition, out ILVariable v, out string name)
{
v = null;
name = null;
if (!(condition is Call call && call.Method.IsOperator && call.Arguments.Count == 1 && !call.IsLifted))
return false;
name = call.Method.Name;
if (!(name == "op_True" || name == "op_False"))
return false;
return call.Arguments[0].MatchLdLoc(out v);
}
static bool MatchBitwiseCall(Call call, ILVariable v, string conditionMethodName)
{
if (!(call != null && call.Method.IsOperator && call.Arguments.Count == 2 && !call.IsLifted))
return false;
if (!call.Arguments[0].MatchLdLoc(v))
return false;
return conditionMethodName == "op_False" && call.Method.Name == "op_BitwiseAnd"
|| conditionMethodName == "op_True" && call.Method.Name == "op_BitwiseOr";
}
/// <summary>
/// if (call op_False(ldloc lhsVar)) ldloc lhsVar else call op_BitwiseAnd(ldloc lhsVar, rhsInst)
/// -> user.logic op_BitwiseAnd(ldloc lhsVar, rhsInst)
/// or
/// if (call op_True(ldloc lhsVar)) ldloc lhsVar else call op_BitwiseOr(ldloc lhsVar, rhsInst)
/// -> user.logic op_BitwiseOr(ldloc lhsVar, rhsInst)
/// </summary>
public static ILInstruction Transform(ILInstruction condition, ILInstruction trueInst, ILInstruction falseInst)
{
if (!MatchCondition(condition, out var lhsVar, out var conditionMethodName))
return null;
if (!trueInst.MatchLdLoc(lhsVar))
return null;
var call = falseInst as Call;
if (!MatchBitwiseCall(call, lhsVar, conditionMethodName))
return null;
var result = new UserDefinedLogicOperator(call.Method, call.Arguments[0], call.Arguments[1]);
result.AddILRange(condition);
result.AddILRange(trueInst);
result.AddILRange(call);
return result;
}
public static ILInstruction TransformDynamic(ILInstruction condition, ILInstruction trueInst, ILInstruction falseInst)
{
// Check condition:
System.Linq.Expressions.ExpressionType unaryOp;
if (condition.MatchLdLoc(out var lhsVar))
{
// if (ldloc lhsVar) box bool(ldloc lhsVar) else dynamic.binary.operator.logic Or(ldloc lhsVar, rhsInst)
// -> dynamic.logic.operator OrElse(ldloc lhsVar, rhsInst)
if (trueInst is Box box && box.Type.IsKnownType(KnownTypeCode.Boolean))
{
unaryOp = System.Linq.Expressions.ExpressionType.IsTrue;
trueInst = box.Argument;
}
else if (falseInst is Box box2 && box2.Type.IsKnownType(KnownTypeCode.Boolean))
{
// negate condition and swap true/false
unaryOp = System.Linq.Expressions.ExpressionType.IsFalse;
falseInst = trueInst;
trueInst = box2.Argument;
}
else
{
return null;
}
}
else if (condition is DynamicUnaryOperatorInstruction unary)
{
// if (dynamic.unary.operator IsFalse(ldloc lhsVar)) ldloc lhsVar else dynamic.binary.operator.logic And(ldloc lhsVar, rhsInst)
// -> dynamic.logic.operator AndAlso(ldloc lhsVar, rhsInst)
unaryOp = unary.Operation;
if (!unary.Operand.MatchLdLoc(out lhsVar))
return null;
}
else if (MatchCondition(condition, out lhsVar, out string operatorMethodName))
{
// if (call op_False(ldloc s)) box S(ldloc s) else dynamic.binary.operator.logic And(ldloc s, rhsInst))
if (operatorMethodName == "op_True")
{
unaryOp = System.Linq.Expressions.ExpressionType.IsTrue;
}
else
{
Debug.Assert(operatorMethodName == "op_False");
unaryOp = System.Linq.Expressions.ExpressionType.IsFalse;
}
var callParamType = ((Call)condition).Method.Parameters.Single().Type.SkipModifiers();
if (callParamType.IsReferenceType == false)
{
// If lhs is a value type, eliminate the boxing instruction.
if (trueInst is Box box && NormalizeTypeVisitor.TypeErasure.EquivalentTypes(box.Type, callParamType))
{
trueInst = box.Argument;
}
else if (trueInst.OpCode == OpCode.LdcI4)
{
// special case, handled below in 'check trueInst'
}
else
{
return null;
}
}
}
else
{
return null;
}
// Check trueInst:
DynamicUnaryOperatorInstruction rhsUnary;
if (trueInst.MatchLdLoc(lhsVar))
{
// OK, typical pattern where the expression evaluates to 'dynamic'
rhsUnary = null;
}
else if (trueInst.MatchLdcI4(1) && unaryOp == System.Linq.Expressions.ExpressionType.IsTrue)
{
// logic.or(IsTrue(lhsVar), IsTrue(lhsVar | rhsInst))
// => IsTrue(lhsVar || rhsInst)
rhsUnary = falseInst as DynamicUnaryOperatorInstruction;
if (rhsUnary != null)
{
if (rhsUnary.Operation != System.Linq.Expressions.ExpressionType.IsTrue)
return null;
falseInst = rhsUnary.Operand;
}
else
{
return null;
}
}
else
{
return null;
}
System.Linq.Expressions.ExpressionType expectedBitop;
System.Linq.Expressions.ExpressionType logicOp;
if (unaryOp == System.Linq.Expressions.ExpressionType.IsFalse)
{
expectedBitop = System.Linq.Expressions.ExpressionType.And;
logicOp = System.Linq.Expressions.ExpressionType.AndAlso;
}
else if (unaryOp == System.Linq.Expressions.ExpressionType.IsTrue)
{
expectedBitop = System.Linq.Expressions.ExpressionType.Or;
logicOp = System.Linq.Expressions.ExpressionType.OrElse;
}
else
{
return null;
}
// Check falseInst:
if (!(falseInst is DynamicBinaryOperatorInstruction binary))
return null;
if (binary.Operation != expectedBitop)
return null;
if (!binary.Left.MatchLdLoc(lhsVar))
return null;
var logicInst = new DynamicLogicOperatorInstruction(binary.BinderFlags, logicOp, binary.CallingContext,
binary.LeftArgumentInfo, binary.Left, binary.RightArgumentInfo, binary.Right)
.WithILRange(binary);
if (rhsUnary != null)
{
rhsUnary.Operand = logicInst;
return rhsUnary;
}
else
{
return logicInst;
}
}
}
}