mirror of https://github.com/icsharpcode/ILSpy.git
				
				
			
			You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							431 lines
						
					
					
						
							17 KiB
						
					
					
				
			
		
		
	
	
							431 lines
						
					
					
						
							17 KiB
						
					
					
				// Copyright (c) 2016 Daniel Grunwald | 
						|
//  | 
						|
// Permission is hereby granted, free of charge, to any person obtaining a copy of this | 
						|
// software and associated documentation files (the "Software"), to deal in the Software | 
						|
// without restriction, including without limitation the rights to use, copy, modify, merge, | 
						|
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons | 
						|
// to whom the Software is furnished to do so, subject to the following conditions: | 
						|
//  | 
						|
// The above copyright notice and this permission notice shall be included in all copies or | 
						|
// substantial portions of the Software. | 
						|
//  | 
						|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, | 
						|
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR | 
						|
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE | 
						|
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR | 
						|
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER | 
						|
// DEALINGS IN THE SOFTWARE. | 
						|
 | 
						|
using System; | 
						|
using System.Collections.Generic; | 
						|
using System.Diagnostics; | 
						|
using System.Linq; | 
						|
using ICSharpCode.Decompiler.IL; | 
						|
using ICSharpCode.Decompiler.Util; | 
						|
using System.Threading; | 
						|
 | 
						|
namespace ICSharpCode.Decompiler.FlowAnalysis | 
						|
{ | 
						|
	/// <summary> | 
						|
	/// Implements the "reaching definitions" analysis. | 
						|
	///  | 
						|
	/// https://en.wikipedia.org/wiki/Reaching_definition | 
						|
	///  | 
						|
	/// By "definitions", we mean stores to local variables. | 
						|
	/// </summary> | 
						|
	/// <remarks> | 
						|
	/// Possible "definitions" that store to a variable are: | 
						|
	/// * <c>StLoc</c> | 
						|
	/// * <c>TryCatchHandler</c> (for the exception variable) | 
						|
	/// * <c>ReachingDefinitionsVisitor.UninitializedVariable</c> for uninitialized variables. | 
						|
	/// Note that we do not keep track of <c>LdLoca</c>/references/pointers. | 
						|
	/// The analysis will likely be wrong/incomplete for variables with <c>AddressCount != 0</c>. | 
						|
	///  | 
						|
	/// Note: this class does not store the computed information, because doing so | 
						|
	/// would significantly increase the number of states we need to store. | 
						|
	/// The only way to get the computed information out of this class is to | 
						|
	/// derive from the class and override the Visit methods at the points of interest | 
						|
	/// (usually the load instructions). | 
						|
	/// </remarks> | 
						|
	class ReachingDefinitionsVisitor : DataFlowVisitor<ReachingDefinitionsVisitor.State> | 
						|
	{ | 
						|
		#region State representation | 
						|
		/// <summary> | 
						|
		/// The state during the reaching definitions analysis. | 
						|
		/// </summary> | 
						|
		/// <remarks> | 
						|
		/// A state can either be reachable, or unreachable: | 
						|
		///  1) unreachable | 
						|
		///     Note that during the analysis, "unreachable" just means we have not yet found a path | 
						|
		///     from the entry point to the node. States transition from unreachable to reachable as | 
						|
		///     the analysis processes more control flow paths. | 
						|
		///  2) reachable | 
						|
		///     In this case, the state contains, for each variable, the set of stores that might have | 
						|
		///     written to the variable before the control flow reached the state's source code position. | 
						|
		///     This set does not include stores that were definitely overwritten by other stores to the | 
						|
		///     same variable. | 
						|
		///     During the analysis, the set of stores gets extended as the analysis processes more code paths. | 
						|
		///  | 
						|
		/// The reachable state could be represented as a `Dictionary{ILVariable, ISet{ILInstruction}}`. | 
						|
		/// To consume less memory, we instead assign an integer index to all stores in the analyzed function ("store index"), | 
						|
		/// and store the state as a `BitSet` instead. | 
						|
		/// Each bit in the set corresponds to one store instruction, and is `true` iff the store is a reaching definition | 
						|
		/// for the variable it is storing to. | 
						|
		/// The `allStores` array has the same length as the bit sets and holds the corresponding `ILInstruction` objects (store instructions). | 
						|
		/// All stores for a single variable occupy a contiguous segment of the `allStores` array (and thus also of the `state`), | 
						|
		/// which allows us to efficient clear out all stores that get overwritten by a new store. | 
						|
		/// </remarks> | 
						|
		[DebuggerDisplay("{bits}")] | 
						|
		public struct State : IDataFlowState<State> | 
						|
		{ | 
						|
			/// <summary> | 
						|
			/// This bitset contains three different kinds of bits: | 
						|
			/// Reachable bit: (bit 0) | 
						|
			///     This state's position is reachable from the entry point. | 
						|
			///  | 
						|
			/// Reaching uninitialized variable bit: (bit si, where si > 0 and <c>allStores[si] == null</c>) | 
						|
			///     There is a code path from the scope's entry point to this state's position | 
						|
			///     that does not pass through any store to the variable. | 
						|
			///  | 
						|
			/// <c>firstStoreIndexForVariable[v.IndexInScope]</c> gives the index of that variable's uninitialized bit. | 
						|
			///  | 
						|
			/// Reaching store bit (bit si, where <c>allStores[si] != null</c>): | 
						|
			///     There is a code path from the entry point to this state's position | 
						|
			///     that passes through through <c>allStores[si]</c> and does not pass through another | 
						|
			///     store to <c>allStores[si].Variable</c>. | 
						|
			///  | 
						|
			/// The indices for a variable's reaching store bits are between <c>firstStoreIndexForVariable[v.IndexInScope]</c> | 
						|
			/// to <c>firstStoreIndexForVariable[v.IndexInScope + 1]</c> (both endpoints exclusive!). | 
						|
			/// </summary> | 
						|
			/// <remarks> | 
						|
			/// The initial state has the "reachable bit" and the "reaching uninitialized variable bits" set, | 
						|
			/// and the "reaching store bits" unset. | 
						|
			///  | 
						|
			/// The bottom state has all bits unset. | 
						|
			/// </remarks> | 
						|
			readonly BitSet bits; | 
						|
			 | 
						|
			public State(BitSet bits) | 
						|
			{ | 
						|
				this.bits = bits; | 
						|
			} | 
						|
			 | 
						|
			public bool LessThanOrEqual(State otherState) | 
						|
			{ | 
						|
				return bits.IsSubsetOf(otherState.bits); | 
						|
			} | 
						|
			 | 
						|
			public State Clone() | 
						|
			{ | 
						|
				return new State(bits.Clone()); | 
						|
			} | 
						|
			 | 
						|
			public void ReplaceWith(State newContent) | 
						|
			{ | 
						|
				bits.ReplaceWith(newContent.bits); | 
						|
			} | 
						|
			 | 
						|
			public void JoinWith(State incomingState) | 
						|
			{ | 
						|
				// When control flow is joined together, we can simply union our bitsets. | 
						|
				// (a store is reachable iff it is reachable through either incoming path) | 
						|
				bits.UnionWith(incomingState.bits); | 
						|
			} | 
						|
			 | 
						|
			public void TriggerFinally(State finallyState) | 
						|
			{ | 
						|
				// Some cases to consider: | 
						|
				//   try { v = 1; } finally { v = 2; } | 
						|
				//     => only the store 2 is visible after the try-finally | 
						|
				//   v = 1; try { v = 2; } finally { } | 
						|
				//     => both stores are visible after the try-finally | 
						|
				// In general, we're looking for the post-state of the finally-block | 
						|
				// assume the finally-block was entered without throwing an exception. | 
						|
				// But we don't have that information (it would require analyzing the finally block twice), | 
						|
				// so the next best thing is to approximate it by just keeping the state after the finally | 
						|
				// (i.e. doing nothing at all). | 
						|
				// However, the DataFlowVisitor requires us to return bottom if the end-state of the | 
						|
				// try-block was unreachable, so let's so at least that. | 
						|
				// (note that in principle we could just AND the reachable and uninitialized bits, | 
						|
				//  but we don't have a good solution for the normal store bits) | 
						|
				if (IsReachable) { | 
						|
					ReplaceWith(finallyState); | 
						|
				} | 
						|
			} | 
						|
			 | 
						|
			public bool IsBottom { | 
						|
				get { return !bits[ReachableBit]; } | 
						|
			} | 
						|
			 | 
						|
			public void ReplaceWithBottom() | 
						|
			{ | 
						|
				// We need to clear all bits, not just ReachableBit, so that | 
						|
				// the bottom state behaves as expected in joins. | 
						|
				bits.ClearAll(); | 
						|
			} | 
						|
			 | 
						|
			public bool IsReachable { | 
						|
				get { return bits[ReachableBit]; } | 
						|
			} | 
						|
			 | 
						|
			/// <summary> | 
						|
			/// Clears all store bits between startStoreIndex (incl.) and endStoreIndex (excl.) | 
						|
			/// </summary> | 
						|
			public void KillStores(int startStoreIndex, int endStoreIndex) | 
						|
			{ | 
						|
				Debug.Assert(startStoreIndex >= FirstStoreIndex); | 
						|
				Debug.Assert(endStoreIndex >= startStoreIndex); | 
						|
				bits.Clear(startStoreIndex, endStoreIndex); | 
						|
			} | 
						|
			 | 
						|
			public bool IsReachingStore(int storeIndex) | 
						|
			{ | 
						|
				return bits[storeIndex]; | 
						|
			} | 
						|
			 | 
						|
			public void SetStore(int storeIndex) | 
						|
			{ | 
						|
				Debug.Assert(storeIndex >= FirstStoreIndex); | 
						|
				bits.Set(storeIndex); | 
						|
			} | 
						|
		} | 
						|
		 | 
						|
		/// <summary> | 
						|
		/// To distinguish unreachable from reachable states, we use the first bit in the bitset to store the 'reachable bit'. | 
						|
		/// If this bit is set, the state is reachable, and the remaining bits | 
						|
		/// </summary> | 
						|
		const int ReachableBit = 0; | 
						|
		 | 
						|
		/// <summary> | 
						|
		/// Because bit number 0 is the ReachableBit, we start counting store indices at 1. | 
						|
		/// </summary> | 
						|
		const int FirstStoreIndex = 1; | 
						|
		#endregion | 
						|
 | 
						|
		#region Documentation + member fields | 
						|
		protected readonly CancellationToken cancellationToken; | 
						|
 | 
						|
		/// <summary> | 
						|
		/// The function being analyzed. | 
						|
		/// </summary> | 
						|
		protected readonly ILFunction scope; | 
						|
		 | 
						|
		/// <summary> | 
						|
		/// All stores for all variables in the scope. | 
						|
		///  | 
						|
		/// <c>state[storeIndex]</c> is true iff <c>allStores[storeIndex]</c> is a reaching definition. | 
						|
		/// Invariant: <c>state.bits.Length == allStores.Length</c>. | 
						|
		/// </summary> | 
						|
		readonly ILInstruction[] allStores; | 
						|
		 | 
						|
		/// <summary> | 
						|
		/// Maps instructions appearing in <c>allStores</c> to their index. | 
						|
		///  | 
						|
		/// Invariant: <c>allStores[storeIndexMap[inst]] == inst</c> | 
						|
		///  | 
						|
		/// Does not contain <c>UninitializedVariable</c> (as that special instruction has multiple store indices, one per variable) | 
						|
		/// </summary> | 
						|
		readonly Dictionary<ILInstruction, int> storeIndexMap = new Dictionary<ILInstruction, int>(); | 
						|
		 | 
						|
		/// <summary> | 
						|
		/// For all variables <c>v</c>: <c>allStores[firstStoreIndexForVariable[v.IndexInScope]]</c> is the <c>UninitializedVariable</c> entry for <c>v</c>. | 
						|
		/// The next few stores (up to <c>firstStoreIndexForVariable[v.IndexInScope + 1]</c>, exclusive) are the full list of stores for <c>v</c>. | 
						|
		/// </summary> | 
						|
		/// <remarks> | 
						|
		/// Invariant: <c>firstStoreIndexForVariable[scope.Variables.Count] == allStores.Length</c> | 
						|
		/// </remarks> | 
						|
		readonly int[] firstStoreIndexForVariable; | 
						|
		 | 
						|
		/// <summary> | 
						|
		/// <c>analyzedVariables[v.IndexInScope]</c> is true iff RD analysis is enabled for the variable. | 
						|
		/// </summary> | 
						|
		readonly BitSet analyzedVariables; | 
						|
		#endregion | 
						|
		 | 
						|
		#region Constructor | 
						|
		/// <summary> | 
						|
		/// Prepare reaching definitions analysis for the specified variable scope. | 
						|
		///  | 
						|
		/// The analysis will track all variables in the scope for which the predicate returns true | 
						|
		/// ("analyzed variables"). | 
						|
		/// </summary> | 
						|
		public ReachingDefinitionsVisitor(ILFunction scope, Predicate<ILVariable> pred, CancellationToken cancellationToken) | 
						|
			: this(scope, GetActiveVariableBitSet(scope, pred), cancellationToken) | 
						|
		{ | 
						|
			this.cancellationToken = cancellationToken; | 
						|
		} | 
						|
 | 
						|
		static BitSet GetActiveVariableBitSet(ILFunction scope, Predicate<ILVariable> pred) | 
						|
		{ | 
						|
			if (scope == null) | 
						|
				throw new ArgumentNullException(nameof(scope)); | 
						|
			BitSet activeVariables = new BitSet(scope.Variables.Count); | 
						|
			for (int vi = 0; vi < scope.Variables.Count; vi++) { | 
						|
				activeVariables[vi] = pred(scope.Variables[vi]); | 
						|
			} | 
						|
			return activeVariables; | 
						|
		} | 
						|
 | 
						|
		/// <summary> | 
						|
		/// Prepare reaching definitions analysis for the specified variable scope. | 
						|
		///  | 
						|
		/// The analysis will track all variables in the scope for which <c>analyzedVariables[v.IndexInScope]</c> is true. | 
						|
		/// </summary> | 
						|
		public ReachingDefinitionsVisitor(ILFunction scope, BitSet analyzedVariables, CancellationToken cancellationToken) | 
						|
		{ | 
						|
			if (scope == null) | 
						|
				throw new ArgumentNullException(nameof(scope)); | 
						|
			if (analyzedVariables == null) | 
						|
				throw new ArgumentNullException(nameof(analyzedVariables)); | 
						|
			this.scope = scope; | 
						|
			this.analyzedVariables = analyzedVariables; | 
						|
			base.flagsRequiringManualImpl |= InstructionFlags.MayWriteLocals; | 
						|
			 | 
						|
			// Fill `allStores` and `storeIndexMap` and `firstStoreIndexForVariable`. | 
						|
			var storesByVar = FindAllStoresByVariable(scope, analyzedVariables, cancellationToken); | 
						|
			allStores = new ILInstruction[FirstStoreIndex + storesByVar.Sum(l => l != null ? l.Count : 0)]; | 
						|
			firstStoreIndexForVariable = new int[scope.Variables.Count + 1]; | 
						|
			int si = FirstStoreIndex; | 
						|
			for (int vi = 0; vi < storesByVar.Length; vi++) { | 
						|
				cancellationToken.ThrowIfCancellationRequested(); | 
						|
				firstStoreIndexForVariable[vi] = si; | 
						|
				var stores = storesByVar[vi]; | 
						|
				if (stores != null) { | 
						|
					int expectedStoreCount = scope.Variables[vi].StoreCount; | 
						|
					if (!scope.Variables[vi].HasInitialValue) { | 
						|
						// Extra store for the uninitialized state. | 
						|
						expectedStoreCount += 1; | 
						|
						// Note that for variables with HasInitialValue=true, | 
						|
						// this extra store is already accounted for in ILVariable.StoreCount. | 
						|
					} | 
						|
					Debug.Assert(stores.Count == expectedStoreCount); | 
						|
					stores.CopyTo(allStores, si); | 
						|
					// Add all stores except for the first (representing the uninitialized state) | 
						|
					// to storeIndexMap. | 
						|
					for (int i = 1; i < stores.Count; i++) { | 
						|
						storeIndexMap.Add(stores[i], si + i); | 
						|
					} | 
						|
					si += stores.Count; | 
						|
				} | 
						|
			} | 
						|
			firstStoreIndexForVariable[scope.Variables.Count] = si; | 
						|
			Debug.Assert(si == allStores.Length); | 
						|
			 | 
						|
			Initialize(CreateInitialState()); | 
						|
		} | 
						|
 | 
						|
		/// <summary> | 
						|
		/// Fill <c>allStores</c> and <c>storeIndexMap</c>. | 
						|
		/// </summary> | 
						|
		static List<ILInstruction>[] FindAllStoresByVariable(ILFunction scope, BitSet activeVariables, CancellationToken cancellationToken) | 
						|
		{ | 
						|
			// For each variable, find the list of ILInstructions storing to that variable | 
						|
			List<ILInstruction>[] storesByVar = new List<ILInstruction>[scope.Variables.Count]; | 
						|
			for (int vi = 0; vi < storesByVar.Length; vi++) { | 
						|
				if (activeVariables[vi]) | 
						|
					storesByVar[vi] = new List<ILInstruction> { null }; | 
						|
			} | 
						|
			foreach (var inst in scope.Descendants) { | 
						|
				if (inst.HasDirectFlag(InstructionFlags.MayWriteLocals)) { | 
						|
					cancellationToken.ThrowIfCancellationRequested(); | 
						|
					ILVariable v = ((IInstructionWithVariableOperand)inst).Variable; | 
						|
					if (v.Function == scope && activeVariables[v.IndexInFunction]) { | 
						|
						storesByVar[v.IndexInFunction].Add(inst); | 
						|
					} | 
						|
				} | 
						|
			} | 
						|
			return storesByVar; | 
						|
		} | 
						|
		 | 
						|
		/// <summary> | 
						|
		/// Create the initial state (reachable bit + uninit variable bits set, store bits unset). | 
						|
		/// </summary> | 
						|
		State CreateInitialState() | 
						|
		{ | 
						|
			BitSet initialState = new BitSet(allStores.Length); | 
						|
			initialState.Set(ReachableBit); | 
						|
			for (int vi = 0; vi < scope.Variables.Count; vi++) { | 
						|
				if (analyzedVariables[vi]) { | 
						|
					Debug.Assert(allStores[firstStoreIndexForVariable[vi]] == null); | 
						|
					initialState.Set(firstStoreIndexForVariable[vi]); | 
						|
				} | 
						|
			} | 
						|
			return new State(initialState); | 
						|
		} | 
						|
		#endregion | 
						|
		 | 
						|
		#region Analysis | 
						|
		void HandleStore(ILInstruction inst, ILVariable v) | 
						|
		{ | 
						|
			cancellationToken.ThrowIfCancellationRequested(); | 
						|
			if (v.Function == scope && analyzedVariables[v.IndexInFunction] && state.IsReachable) { | 
						|
				// Clear the set of stores for this variable: | 
						|
				state.KillStores(firstStoreIndexForVariable[v.IndexInFunction], firstStoreIndexForVariable[v.IndexInFunction + 1]); | 
						|
				// And replace it with this store: | 
						|
				int si = storeIndexMap[inst]; | 
						|
				state.SetStore(si); | 
						|
				 | 
						|
				// We should call PropagateStateOnException() here because we changed the state. | 
						|
				// But that's equal to: currentStateOnException.UnionWith(state); | 
						|
				 | 
						|
				// Because we're already guaranteed that state.LessThanOrEqual(currentStateOnException) | 
						|
				// when entering HandleStore(), all we really need to do to achieve what PropagateStateOnException() does | 
						|
				// is to add the single additional store to the exceptional state as well: | 
						|
				currentStateOnException.SetStore(si); | 
						|
			} | 
						|
		} | 
						|
		 | 
						|
		protected internal override void VisitStLoc(StLoc inst) | 
						|
		{ | 
						|
			inst.Value.AcceptVisitor(this); | 
						|
			HandleStore(inst, inst.Variable); | 
						|
		} | 
						|
		 | 
						|
		protected override void BeginTryCatchHandler(TryCatchHandler inst) | 
						|
		{ | 
						|
			base.BeginTryCatchHandler(inst); | 
						|
			HandleStore(inst, inst.Variable); | 
						|
		} | 
						|
		 | 
						|
		protected internal override void VisitPinnedRegion(PinnedRegion inst) | 
						|
		{ | 
						|
			inst.Init.AcceptVisitor(this); | 
						|
			HandleStore(inst, inst.Variable); | 
						|
			inst.Body.AcceptVisitor(this); | 
						|
		} | 
						|
		 | 
						|
		public bool IsAnalyzedVariable(ILVariable v) | 
						|
		{ | 
						|
			return v.Function == scope && analyzedVariables[v.IndexInFunction]; | 
						|
		} | 
						|
		 | 
						|
		/// <summary> | 
						|
		/// Gets all stores to <c>v</c> that reach the specified state. | 
						|
		///  | 
						|
		/// Precondition: v is an analyzed variable. | 
						|
		/// </summary> | 
						|
		protected IEnumerable<ILInstruction> GetStores(State state, ILVariable v) | 
						|
		{ | 
						|
			Debug.Assert(v.Function == scope && analyzedVariables[v.IndexInFunction]); | 
						|
			int endIndex = firstStoreIndexForVariable[v.IndexInFunction + 1]; | 
						|
			for (int si = firstStoreIndexForVariable[v.IndexInFunction] + 1; si < endIndex; si++) { | 
						|
				if (state.IsReachingStore(si)) { | 
						|
					Debug.Assert(((IInstructionWithVariableOperand)allStores[si]).Variable == v); | 
						|
					yield return allStores[si]; | 
						|
				} | 
						|
			} | 
						|
		} | 
						|
		 | 
						|
		/// <summary> | 
						|
		/// Gets whether <c>v</c> is potentially uninitialized in the specified state. | 
						|
		///  | 
						|
		/// Precondition: v is an analyzed variable. | 
						|
		/// </summary> | 
						|
		protected bool IsPotentiallyUninitialized(State state, ILVariable v) | 
						|
		{ | 
						|
			Debug.Assert(v.Function == scope && analyzedVariables[v.IndexInFunction]); | 
						|
			return state.IsReachingStore(firstStoreIndexForVariable[v.IndexInFunction]); | 
						|
		} | 
						|
		#endregion | 
						|
	} | 
						|
}
 | 
						|
 |