.NET Decompiler with support for PDB generation, ReadyToRun, Metadata (&more) - cross-platform!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

450 lines
15 KiB

// Copyright (c) 2014 Daniel Grunwald
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Collections.Immutable;
using ICSharpCode.Decompiler.IL.Transforms;
using ICSharpCode.Decompiler.TypeSystem;
using ICSharpCode.Decompiler.Util;
namespace ICSharpCode.Decompiler.IL
{
partial class ILFunction
{
/// <summary>
/// Gets the method definition from metadata.
/// May be null for functions that were not constructed from metadata,
/// e.g., expression trees.
/// </summary>
public readonly IMethod Method;
/// <summary>
/// Gets the generic context of this function.
/// </summary>
public readonly GenericContext GenericContext;
/// <summary>
/// Gets the name of this function, usually this returns the name from metadata.
/// <para>
/// For local functions:
/// This is the name that is used to declare and use the function.
/// It may not conflict with the names of local variables of ancestor functions
/// and may be overwritten by the AssignVariableNames step.
///
/// For top-level functions, delegates and expressions trees modifying this usually
/// has no effect, as the name should not be used in the final AST construction.
/// </para>
/// </summary>
public string Name;
/// <summary>
/// Size of the IL code in this function.
/// Note: after async/await transform, this is the code size of the MoveNext function.
/// </summary>
public int CodeSize;
/// <summary>
/// List of ILVariables used in this function.
/// </summary>
public readonly ILVariableCollection Variables;
/// <summary>
/// Gets the scope in which the local function is declared.
/// Returns null, if this is not a local function.
/// </summary>
public BlockContainer DeclarationScope { get; internal set; }
/// <summary>
/// List of warnings of ILReader.
/// </summary>
public List<string> Warnings { get; } = new List<string>();
/// <summary>
/// Gets whether this function is a decompiled iterator (is using yield).
/// This flag gets set by the YieldReturnDecompiler.
///
/// If set, the 'return' instruction has the semantics of 'yield break;'
/// instead of a normal return.
/// </summary>
public bool IsIterator;
/// <summary>
/// Gets whether the YieldReturnDecompiler determined that the Mono C# compiler was used to compile this function.
/// </summary>
public bool StateMachineCompiledWithMono;
/// <summary>
/// Gets whether this function is async.
/// This flag gets set by the AsyncAwaitDecompiler.
/// </summary>
public bool IsAsync => AsyncReturnType != null;
/// <summary>
/// Return element type -- if the async method returns Task{T}, this field stores T.
/// If the async method returns Task or void, this field stores void.
/// </summary>
public IType AsyncReturnType;
/// <summary>
/// If this function is an iterator/async, this field stores the compiler-generated MoveNext() method.
/// </summary>
public IMethod MoveNextMethod;
/// <summary>
/// If this function is a local function, this field stores the reduced version of the function.
/// </summary>
internal TypeSystem.Implementation.LocalFunctionMethod ReducedMethod;
public DebugInfo.AsyncDebugInfo AsyncDebugInfo;
int ctorCallStart = int.MinValue;
/// <summary>
/// Returns the IL offset of the constructor call, -1 if this is not a constructor or no chained constructor call was found.
/// </summary>
internal int ChainedConstructorCallILOffset {
get {
if (ctorCallStart == int.MinValue) {
if (!this.Method.IsConstructor || this.Method.IsStatic)
ctorCallStart = -1;
else {
ctorCallStart = this.Descendants.FirstOrDefault(d => d is CallInstruction call && !(call is NewObj)
&& call.Method.IsConstructor
&& call.Method.DeclaringType.IsReferenceType == true
&& call.Parent is Block)?.StartILOffset ?? -1;
}
}
return ctorCallStart;
}
}
/// <summary>
/// If this is an expression tree or delegate, returns the expression tree type Expression{T} or T.
/// T is the delegate type that matches the signature of this method.
/// Otherwise this must be null.
/// </summary>
public IType DelegateType;
ILFunctionKind kind;
/// <summary>
/// Gets which kind of function this is.
/// </summary>
public ILFunctionKind Kind {
get => kind;
internal set {
if (kind == ILFunctionKind.TopLevelFunction || kind == ILFunctionKind.LocalFunction)
throw new InvalidOperationException("ILFunction.Kind of a top-level or local function may not be changed.");
kind = value;
}
}
/// <summary>
/// Return type of this function.
/// Might be null, if this function was not created from metadata.
/// </summary>
public readonly IType ReturnType;
/// <summary>
/// List of parameters of this function.
/// Might be null, if this function was not created from metadata.
/// </summary>
public readonly IReadOnlyList<IParameter> Parameters;
/// <summary>
/// List of candidate locations for sequence points. Includes any offset
/// where the stack is empty, nop instructions, and the instruction following
/// a call instruction
/// </summary>
public List<int> SequencePointCandidates { get; set; }
/// <summary>
/// Constructs a new ILFunction from the given metadata and with the given ILAst body.
/// </summary>
/// <remarks>
/// Use <see cref="ILReader"/> to create ILAst.
/// <paramref name="method"/> may be null.
/// </remarks>
public ILFunction(IMethod method, int codeSize, GenericContext genericContext, ILInstruction body, ILFunctionKind kind = ILFunctionKind.TopLevelFunction) : base(OpCode.ILFunction)
{
this.Method = method;
this.Name = Method?.Name;
this.CodeSize = codeSize;
this.GenericContext = genericContext;
this.Body = body;
this.ReturnType = Method?.ReturnType;
this.Parameters = Method?.Parameters;
this.Variables = new ILVariableCollection(this);
this.LocalFunctions = new InstructionCollection<ILFunction>(this, 1);
this.kind = kind;
}
/// <summary>
/// This constructor is only to be used by the TransformExpressionTrees step.
/// </summary>
internal ILFunction(IType returnType, IReadOnlyList<IParameter> parameters, GenericContext genericContext, ILInstruction body) : base(OpCode.ILFunction)
{
this.GenericContext = genericContext;
this.Body = body;
this.ReturnType = returnType;
this.Parameters = parameters;
this.Variables = new ILVariableCollection(this);
this.LocalFunctions = new InstructionCollection<ILFunction>(this, 1);
this.kind = ILFunctionKind.ExpressionTree;
}
internal override void CheckInvariant(ILPhase phase)
{
switch (kind) {
case ILFunctionKind.TopLevelFunction:
Debug.Assert(Parent == null);
Debug.Assert(DelegateType == null);
Debug.Assert(DeclarationScope == null);
Debug.Assert(Method != null);
break;
case ILFunctionKind.Delegate:
Debug.Assert(DelegateType != null);
Debug.Assert(DeclarationScope == null);
Debug.Assert(!(DelegateType?.FullName == "System.Linq.Expressions.Expression" && DelegateType.TypeParameterCount == 1));
break;
case ILFunctionKind.ExpressionTree:
Debug.Assert(DelegateType != null);
Debug.Assert(DeclarationScope == null);
Debug.Assert(DelegateType?.FullName == "System.Linq.Expressions.Expression" && DelegateType.TypeParameterCount == 1);
break;
case ILFunctionKind.LocalFunction:
Debug.Assert(Parent is ILFunction && SlotInfo == ILFunction.LocalFunctionsSlot);
Debug.Assert(DeclarationScope != null);
Debug.Assert(DelegateType == null);
Debug.Assert(Method != null);
break;
}
for (int i = 0; i < Variables.Count; i++) {
Debug.Assert(Variables[i].Function == this);
Debug.Assert(Variables[i].IndexInFunction == i);
Variables[i].CheckInvariant();
}
base.CheckInvariant(phase);
}
void CloneVariables()
{
throw new NotSupportedException("ILFunction.CloneVariables is currently not supported!");
}
public override void WriteTo(ITextOutput output, ILAstWritingOptions options)
{
WriteILRange(output, options);
output.Write(OpCode);
if (Method != null) {
output.Write(' ');
Method.WriteTo(output);
}
switch (kind) {
case ILFunctionKind.ExpressionTree:
output.Write(".ET");
break;
case ILFunctionKind.LocalFunction:
output.Write(".local");
break;
}
if (DelegateType != null) {
output.Write("[");
DelegateType.WriteTo(output);
output.Write("]");
}
output.WriteLine(" {");
output.Indent();
if (IsAsync) {
output.WriteLine(".async");
}
if (IsIterator) {
output.WriteLine(".iterator");
}
if (DeclarationScope != null) {
output.Write("declared as " + Name + " in ");
output.WriteLocalReference(DeclarationScope.EntryPoint.Label, DeclarationScope);
output.WriteLine();
}
output.MarkFoldStart(Variables.Count + " variable(s)", true);
foreach (var variable in Variables) {
variable.WriteDefinitionTo(output);
output.WriteLine();
}
output.MarkFoldEnd();
output.WriteLine();
foreach (string warning in Warnings) {
output.WriteLine("//" + warning);
}
body.WriteTo(output, options);
output.WriteLine();
foreach (var localFunction in LocalFunctions) {
output.WriteLine();
localFunction.WriteTo(output, options);
}
if (options.ShowILRanges) {
var unusedILRanges = FindUnusedILRanges();
if (!unusedILRanges.IsEmpty) {
output.Write("// Unused IL Ranges: ");
output.Write(string.Join(", ", unusedILRanges.Intervals.Select(
range => $"[{range.Start:x4}..{range.InclusiveEnd:x4}]")));
output.WriteLine();
}
}
output.Unindent();
output.WriteLine("}");
}
LongSet FindUnusedILRanges()
{
var usedILRanges = new List<LongInterval>();
MarkUsedILRanges(body);
return new LongSet(new LongInterval(0, CodeSize)).ExceptWith(new LongSet(usedILRanges));
void MarkUsedILRanges(ILInstruction inst)
{
if (CSharp.SequencePointBuilder.HasUsableILRange(inst)) {
usedILRanges.Add(new LongInterval(inst.StartILOffset, inst.EndILOffset));
}
if (!(inst is ILFunction)) {
foreach (var child in inst.Children) {
MarkUsedILRanges(child);
}
}
}
}
protected override InstructionFlags ComputeFlags()
{
// Creating a lambda may throw OutOfMemoryException
// We intentionally don't propagate any flags from the lambda body!
return InstructionFlags.MayThrow | InstructionFlags.ControlFlow;
}
public override InstructionFlags DirectFlags {
get {
return InstructionFlags.MayThrow | InstructionFlags.ControlFlow;
}
}
/// <summary>
/// Apply a list of transforms to this function.
/// </summary>
public void RunTransforms(IEnumerable<IILTransform> transforms, ILTransformContext context)
{
this.CheckInvariant(ILPhase.Normal);
foreach (var transform in transforms) {
context.CancellationToken.ThrowIfCancellationRequested();
if (transform is BlockILTransform blockTransform) {
context.StepStartGroup(blockTransform.ToString());
} else {
context.StepStartGroup(transform.GetType().Name);
}
transform.Run(this, context);
this.CheckInvariant(ILPhase.Normal);
context.StepEndGroup(keepIfEmpty: true);
}
}
int helperVariableCount;
public ILVariable RegisterVariable(VariableKind kind, IType type, string name = null)
{
return RegisterVariable(kind, type, type.GetStackType(), name);
}
public ILVariable RegisterVariable(VariableKind kind, StackType stackType, string name = null)
{
var type = Method.Compilation.FindType(stackType.ToKnownTypeCode());
return RegisterVariable(kind, type, stackType, name);
}
ILVariable RegisterVariable(VariableKind kind, IType type, StackType stackType, string name = null)
{
var variable = new ILVariable(kind, type, stackType);
if (string.IsNullOrWhiteSpace(name)) {
name = "I_" + (helperVariableCount++);
variable.HasGeneratedName = true;
}
variable.Name = name;
Variables.Add(variable);
return variable;
}
/// <summary>
/// Recombine split variables by replacing all occurrences of variable2 with variable1.
/// </summary>
internal void RecombineVariables(ILVariable variable1, ILVariable variable2)
{
if (variable1 == variable2)
return;
Debug.Assert(ILVariableEqualityComparer.Instance.Equals(variable1, variable2));
foreach (var ldloc in variable2.LoadInstructions.ToArray()) {
ldloc.Variable = variable1;
}
foreach (var store in variable2.StoreInstructions.ToArray()) {
store.Variable = variable1;
}
foreach (var ldloca in variable2.AddressInstructions.ToArray()) {
ldloca.Variable = variable1;
}
bool ok = Variables.Remove(variable2);
Debug.Assert(ok);
}
}
public enum ILFunctionKind
{
/// <summary>
/// ILFunction is a "top-level" function, i.e., method, accessor, constructor, destructor or operator.
/// </summary>
TopLevelFunction,
/// <summary>
/// ILFunction is a delegate or lambda expression.
/// </summary>
/// <remarks>
/// This kind is introduced by the DelegateConstruction and TransformExpressionTrees steps in the decompiler pipeline.
/// </remarks>
Delegate,
/// <summary>
/// ILFunction is an expression tree lambda.
/// </summary>
/// <remarks>
/// This kind is introduced by the TransformExpressionTrees step in the decompiler pipeline.
/// </remarks>
ExpressionTree,
/// <summary>
/// ILFunction is a C# 7.0 local function.
/// </summary>
/// <remarks>
/// This kind is introduced by the LocalFunctionDecompiler step in the decompiler pipeline.
/// </remarks>
LocalFunction
}
}