.NET Decompiler with support for PDB generation, ReadyToRun, Metadata (&more) - cross-platform!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

702 lines
25 KiB

// Copyright (c) AlphaSierraPapa for the SharpDevelop Team (for details please see \doc\copyright.txt)
// This code is distributed under MIT X11 license (for details please see \doc\license.txt)
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using Decompiler;
using Mono.Cecil;
using Mono.Cecil.Cil;
namespace Decompiler
{
/// <summary>
/// Assigns C# types to IL expressions.
/// </summary>
/// <remarks>
/// Types are inferred in a bidirectional manner:
/// The expected type flows from the outside to the inside, the actual inferred type flows from the inside to the outside.
/// </remarks>
public class TypeAnalysis
{
public static void Run(DecompilerContext context, ILBlock method)
{
TypeAnalysis ta = new TypeAnalysis();
ta.context = context;
ta.module = context.CurrentMethod.Module;
ta.typeSystem = ta.module.TypeSystem;
ta.method = method;
ta.InferTypes(method);
ta.InferRemainingStores();
}
DecompilerContext context;
TypeSystem typeSystem;
ILBlock method;
ModuleDefinition module;
List<ILExpression> storedToGeneratedVariables = new List<ILExpression>();
HashSet<ILVariable> inferredVariables = new HashSet<ILVariable>();
void InferTypes(ILNode node)
{
ILExpression expr = node as ILExpression;
if (expr != null) {
ILVariable v = expr.Operand as ILVariable;
if (v != null && v.IsGenerated && v.Type == null && expr.Code == ILCode.Stloc && !inferredVariables.Contains(v) && HasSingleLoad(v)) {
// Don't deal with this node or its children yet,
// wait for the expected type to be inferred first.
// This happens with the arg_... variables introduced by the ILAst - we skip inferring the whole statement,
// and first infer the statement that reads from the arg_... variable.
// The ldloc inference will write the expected type to the variable, and the next InferRemainingStores() pass
// will then infer this statement with the correct expected type.
storedToGeneratedVariables.Add(expr);
return;
}
bool anyArgumentIsMissingType = expr.Arguments.Any(a => a.InferredType == null);
if (expr.InferredType == null || anyArgumentIsMissingType)
expr.InferredType = InferTypeForExpression(expr, expr.ExpectedType, forceInferChildren: anyArgumentIsMissingType);
}
foreach (ILNode child in node.GetChildren()) {
InferTypes(child);
}
}
bool HasSingleLoad(ILVariable v)
{
int loads = 0;
foreach (ILExpression expr in method.GetSelfAndChildrenRecursive<ILExpression>()) {
if (expr.Operand == v) {
if (expr.Code == ILCode.Ldloc)
loads++;
else if (expr.Code != ILCode.Stloc)
return false;
}
}
return loads == 1;
}
void InferRemainingStores()
{
while (storedToGeneratedVariables.Count > 0) {
List<ILExpression> stored = storedToGeneratedVariables;
storedToGeneratedVariables = new List<ILExpression>();
foreach (ILExpression expr in stored)
InferTypes(expr);
if (!(storedToGeneratedVariables.Count < stored.Count))
throw new InvalidOperationException("Infinite loop in type analysis detected.");
}
}
/// <summary>
/// Infers the C# type of <paramref name="expr"/>.
/// </summary>
/// <param name="expr">The expression</param>
/// <param name="expectedType">The expected type of the expression</param>
/// <param name="forceInferChildren">Whether direct children should be inferred even if its not necessary. (does not apply to nested children!)</param>
/// <returns>The inferred type</returns>
TypeReference InferTypeForExpression(ILExpression expr, TypeReference expectedType, bool forceInferChildren = false)
{
expr.ExpectedType = expectedType;
if (forceInferChildren || expr.InferredType == null)
expr.InferredType = DoInferTypeForExpression(expr, expectedType, forceInferChildren);
return expr.InferredType;
}
TypeReference DoInferTypeForExpression(ILExpression expr, TypeReference expectedType, bool forceInferChildren = false)
{
switch (expr.Code) {
#region Logical operators
case ILCode.LogicNot:
if (forceInferChildren) {
InferTypeForExpression(expr.Arguments.Single(), typeSystem.Boolean);
}
return typeSystem.Boolean;
case ILCode.BrLogicAnd:
case ILCode.BrLogicOr:
if (forceInferChildren) {
InferTypeForExpression(expr.Arguments[0], typeSystem.Boolean);
InferTypeForExpression(expr.Arguments[1], typeSystem.Boolean);
}
return null;
#endregion
#region Variable load/store
case ILCode.Stloc:
{
ILVariable v = (ILVariable)expr.Operand;
if (forceInferChildren || v.Type == null) {
TypeReference t = InferTypeForExpression(expr.Arguments.Single(), ((ILVariable)expr.Operand).Type);
if (v.Type == null)
v.Type = t;
}
return v.Type;
}
case ILCode.Ldloc:
{
ILVariable v = (ILVariable)expr.Operand;
if (v.Type == null) {
v.Type = expectedType;
// Mark the variable as inferred. This is necessary because expectedType might be null
// (e.g. the only use of an arg_*-Variable is a pop statement),
// so we can't tell from v.Type whether it was already inferred.
inferredVariables.Add(v);
}
return v.Type;
}
case ILCode.Starg:
if (forceInferChildren)
InferTypeForExpression(expr.Arguments.Single(), ((ParameterReference)expr.Operand).ParameterType);
return null;
case ILCode.Ldarg:
return ((ParameterReference)expr.Operand).ParameterType;
case ILCode.Ldloca:
return new ByReferenceType(((ILVariable)expr.Operand).Type);
case ILCode.Ldarga:
return new ByReferenceType(((ParameterReference)expr.Operand).ParameterType);
#endregion
#region Call / NewObj
case ILCode.Call:
case ILCode.Callvirt:
{
MethodReference method = (MethodReference)expr.Operand;
if (forceInferChildren) {
for (int i = 0; i < expr.Arguments.Count; i++) {
if (i == 0 && method.HasThis) {
Instruction constraint = expr.GetPrefix(Code.Constrained);
if (constraint != null)
InferTypeForExpression(expr.Arguments[i], new ByReferenceType((TypeReference)constraint.Operand));
else
InferTypeForExpression(expr.Arguments[i], method.DeclaringType);
} else {
InferTypeForExpression(expr.Arguments[i], SubstituteTypeArgs(method.Parameters[method.HasThis ? i - 1: i].ParameterType, method));
}
}
}
return SubstituteTypeArgs(method.ReturnType, method);
}
case ILCode.Newobj:
{
MethodReference ctor = (MethodReference)expr.Operand;
if (forceInferChildren) {
for (int i = 0; i < ctor.Parameters.Count; i++) {
InferTypeForExpression(expr.Arguments[i], SubstituteTypeArgs(ctor.Parameters[i].ParameterType, ctor));
}
}
return ctor.DeclaringType;
}
#endregion
#region Load/Store Fields
case ILCode.Ldfld:
if (forceInferChildren)
InferTypeForExpression(expr.Arguments[0], ((FieldReference)expr.Operand).DeclaringType);
return GetFieldType((FieldReference)expr.Operand);
case ILCode.Ldsfld:
return GetFieldType((FieldReference)expr.Operand);
case ILCode.Ldflda:
case ILCode.Ldsflda:
return new ByReferenceType(GetFieldType((FieldReference)expr.Operand));
case ILCode.Stfld:
if (forceInferChildren) {
InferTypeForExpression(expr.Arguments[0], ((FieldReference)expr.Operand).DeclaringType);
InferTypeForExpression(expr.Arguments[1], GetFieldType((FieldReference)expr.Operand));
}
return null;
case ILCode.Stsfld:
if (forceInferChildren)
InferTypeForExpression(expr.Arguments[0], GetFieldType((FieldReference)expr.Operand));
return null;
#endregion
#region Reference/Pointer instructions
case ILCode.Ldind_I:
case ILCode.Ldind_I1:
case ILCode.Ldind_I2:
case ILCode.Ldind_I4:
case ILCode.Ldind_I8:
case ILCode.Ldind_U1:
case ILCode.Ldind_U2:
case ILCode.Ldind_U4:
case ILCode.Ldind_R4:
case ILCode.Ldind_R8:
case ILCode.Ldind_Ref:
return UnpackPointer(InferTypeForExpression(expr.Arguments[0], null));
case ILCode.Stind_I1:
case ILCode.Stind_I2:
case ILCode.Stind_I4:
case ILCode.Stind_I8:
case ILCode.Stind_R4:
case ILCode.Stind_R8:
case ILCode.Stind_I:
case ILCode.Stind_Ref:
if (forceInferChildren) {
TypeReference elementType = UnpackPointer(InferTypeForExpression(expr.Arguments[0], null));
InferTypeForExpression(expr.Arguments[1], elementType);
}
return null;
case ILCode.Ldobj:
return (TypeReference)expr.Operand;
case ILCode.Stobj:
if (forceInferChildren) {
InferTypeForExpression(expr.Arguments[1], (TypeReference)expr.Operand);
}
return null;
case ILCode.Initobj:
return null;
case ILCode.Localloc:
return typeSystem.IntPtr;
#endregion
#region Arithmetic instructions
case ILCode.Not: // bitwise complement
case ILCode.Neg:
return InferTypeForExpression(expr.Arguments.Single(), expectedType);
case ILCode.Add:
case ILCode.Sub:
case ILCode.Mul:
case ILCode.Or:
case ILCode.And:
case ILCode.Xor:
return InferArgumentsInBinaryOperator(expr, null);
case ILCode.Add_Ovf:
case ILCode.Sub_Ovf:
case ILCode.Mul_Ovf:
case ILCode.Div:
case ILCode.Rem:
return InferArgumentsInBinaryOperator(expr, true);
case ILCode.Add_Ovf_Un:
case ILCode.Sub_Ovf_Un:
case ILCode.Mul_Ovf_Un:
case ILCode.Div_Un:
case ILCode.Rem_Un:
return InferArgumentsInBinaryOperator(expr, false);
case ILCode.Shl:
case ILCode.Shr:
if (forceInferChildren)
InferTypeForExpression(expr.Arguments[1], typeSystem.Int32);
return InferTypeForExpression(expr.Arguments[0], typeSystem.Int32);
case ILCode.Shr_Un:
if (forceInferChildren)
InferTypeForExpression(expr.Arguments[1], typeSystem.Int32);
return InferTypeForExpression(expr.Arguments[0], typeSystem.UInt32);
#endregion
#region Constant loading instructions
case ILCode.Ldnull:
return typeSystem.Object;
case ILCode.Ldstr:
return typeSystem.String;
case ILCode.Ldftn:
case ILCode.Ldvirtftn:
return typeSystem.IntPtr;
case ILCode.Ldc_I4:
if (IsBoolean(expectedType) && ((int)expr.Operand == 0 || (int)expr.Operand == 1))
return typeSystem.Boolean;
return IsIntegerOrEnum(expectedType) ? expectedType : typeSystem.Int32;
case ILCode.Ldc_I8:
return (IsIntegerOrEnum(expectedType)) ? expectedType : typeSystem.Int64;
case ILCode.Ldc_R4:
return typeSystem.Single;
case ILCode.Ldc_R8:
return typeSystem.Double;
case ILCode.Ldtoken:
if (expr.Operand is TypeReference)
return new TypeReference("System", "RuntimeTypeHandle", module, module, true);
else if (expr.Operand is FieldReference)
return new TypeReference("System", "RuntimeFieldHandle", module, module, true);
else
return new TypeReference("System", "RuntimeMethodHandle", module, module, true);
case ILCode.Arglist:
return new TypeReference("System", "RuntimeArgumentHandle", module, module, true);
#endregion
#region Array instructions
case ILCode.Newarr:
if (forceInferChildren)
InferTypeForExpression(expr.Arguments.Single(), typeSystem.Int32);
return new ArrayType((TypeReference)expr.Operand);
case ILCode.Ldlen:
return typeSystem.Int32;
case ILCode.Ldelem_U1:
case ILCode.Ldelem_U2:
case ILCode.Ldelem_U4:
case ILCode.Ldelem_I1:
case ILCode.Ldelem_I2:
case ILCode.Ldelem_I4:
case ILCode.Ldelem_I8:
case ILCode.Ldelem_I:
case ILCode.Ldelem_Ref:
{
ArrayType arrayType = InferTypeForExpression(expr.Arguments[0], null) as ArrayType;
if (forceInferChildren) {
InferTypeForExpression(expr.Arguments[0], new ArrayType(typeSystem.Byte));
InferTypeForExpression(expr.Arguments[1], typeSystem.Int32);
}
return arrayType != null ? arrayType.ElementType : null;
}
case ILCode.Ldelem_Any:
if (forceInferChildren) {
InferTypeForExpression(expr.Arguments[1], typeSystem.Int32);
}
return (TypeReference)expr.Operand;
case ILCode.Ldelema:
{
ArrayType arrayType = InferTypeForExpression(expr.Arguments[0], null) as ArrayType;
if (forceInferChildren)
InferTypeForExpression(expr.Arguments[1], typeSystem.Int32);
return arrayType != null ? new ByReferenceType(arrayType.ElementType) : null;
}
case ILCode.Stelem_I:
case ILCode.Stelem_I1:
case ILCode.Stelem_I2:
case ILCode.Stelem_I4:
case ILCode.Stelem_I8:
case ILCode.Stelem_R4:
case ILCode.Stelem_R8:
case ILCode.Stelem_Ref:
case ILCode.Stelem_Any:
if (forceInferChildren) {
ArrayType arrayType = InferTypeForExpression(expr.Arguments[0], null) as ArrayType;
InferTypeForExpression(expr.Arguments[1], typeSystem.Int32);
if (arrayType != null) {
InferTypeForExpression(expr.Arguments[2], arrayType.ElementType);
}
}
return null;
#endregion
#region Conversion instructions
case ILCode.Conv_I1:
case ILCode.Conv_Ovf_I1:
return (GetInformationAmount(expectedType) == 8 && IsSigned(expectedType) == true) ? expectedType : typeSystem.SByte;
case ILCode.Conv_I2:
case ILCode.Conv_Ovf_I2:
return (GetInformationAmount(expectedType) == 16 && IsSigned(expectedType) == true) ? expectedType : typeSystem.Int16;
case ILCode.Conv_I4:
case ILCode.Conv_Ovf_I4:
return (GetInformationAmount(expectedType) == 32 && IsSigned(expectedType) == true) ? expectedType : typeSystem.Int32;
case ILCode.Conv_I8:
case ILCode.Conv_Ovf_I8:
return (GetInformationAmount(expectedType) == 64 && IsSigned(expectedType) == true) ? expectedType : typeSystem.Int64;
case ILCode.Conv_U1:
case ILCode.Conv_Ovf_U1:
return (GetInformationAmount(expectedType) == 8 && IsSigned(expectedType) == false) ? expectedType : typeSystem.Byte;
case ILCode.Conv_U2:
case ILCode.Conv_Ovf_U2:
return (GetInformationAmount(expectedType) == 16 && IsSigned(expectedType) == false) ? expectedType : typeSystem.UInt16;
case ILCode.Conv_U4:
case ILCode.Conv_Ovf_U4:
return (GetInformationAmount(expectedType) == 32 && IsSigned(expectedType) == false) ? expectedType : typeSystem.UInt32;
case ILCode.Conv_U8:
case ILCode.Conv_Ovf_U8:
return (GetInformationAmount(expectedType) == 64 && IsSigned(expectedType) == false) ? expectedType : typeSystem.UInt64;
case ILCode.Conv_I:
case ILCode.Conv_Ovf_I:
return (GetInformationAmount(expectedType) == nativeInt && IsSigned(expectedType) == true) ? expectedType : typeSystem.IntPtr;
case ILCode.Conv_U:
case ILCode.Conv_Ovf_U:
return (GetInformationAmount(expectedType) == nativeInt && IsSigned(expectedType) == false) ? expectedType : typeSystem.UIntPtr;
case ILCode.Conv_R4:
return typeSystem.Single;
case ILCode.Conv_R8:
return typeSystem.Double;
case ILCode.Conv_R_Un:
return (expectedType != null && expectedType.MetadataType == MetadataType.Single) ? typeSystem.Single : typeSystem.Double;
case ILCode.Castclass:
case ILCode.Isinst:
case ILCode.Unbox_Any:
return (TypeReference)expr.Operand;
case ILCode.Box:
if (forceInferChildren)
InferTypeForExpression(expr.Arguments.Single(), (TypeReference)expr.Operand);
return (TypeReference)expr.Operand;
#endregion
#region Comparison instructions
case ILCode.Ceq:
if (forceInferChildren)
InferArgumentsInBinaryOperator(expr, null);
return typeSystem.Boolean;
case ILCode.Clt:
case ILCode.Cgt:
if (forceInferChildren)
InferArgumentsInBinaryOperator(expr, true);
return typeSystem.Boolean;
case ILCode.Clt_Un:
case ILCode.Cgt_Un:
if (forceInferChildren)
InferArgumentsInBinaryOperator(expr, false);
return typeSystem.Boolean;
#endregion
#region Branch instructions
case ILCode.Beq:
case ILCode.Bne_Un:
if (forceInferChildren)
InferArgumentsInBinaryOperator(expr, null);
return null;
case ILCode.Brtrue:
case ILCode.Brfalse:
if (forceInferChildren)
InferTypeForExpression(expr.Arguments.Single(), typeSystem.Boolean);
return null;
case ILCode.Blt:
case ILCode.Ble:
case ILCode.Bgt:
case ILCode.Bge:
if (forceInferChildren)
InferArgumentsInBinaryOperator(expr, true);
return null;
case ILCode.Blt_Un:
case ILCode.Ble_Un:
case ILCode.Bgt_Un:
case ILCode.Bge_Un:
if (forceInferChildren)
InferArgumentsInBinaryOperator(expr, false);
return null;
case ILCode.Br:
case ILCode.Leave:
case ILCode.Endfinally:
case ILCode.Switch:
case ILCode.Throw:
case ILCode.Rethrow:
return null;
case ILCode.Ret:
if (forceInferChildren && expr.Arguments.Count == 1)
InferTypeForExpression(expr.Arguments[0], context.CurrentMethod.ReturnType);
return null;
#endregion
case ILCode.Pop:
return null;
case ILCode.Dup:
return InferTypeForExpression(expr.Arguments.Single(), expectedType);
default:
Debug.WriteLine("Type Inference: Can't handle " + expr.Code.GetName());
return null;
}
}
static TypeReference GetFieldType(FieldReference fieldReference)
{
return SubstituteTypeArgs(UnpackModifiers(fieldReference.FieldType), fieldReference);
}
static TypeReference SubstituteTypeArgs(TypeReference type, MemberReference member)
{
if (type is TypeSpecification) {
ArrayType arrayType = type as ArrayType;
if (arrayType != null) {
TypeReference elementType = SubstituteTypeArgs(arrayType.ElementType, member);
if (elementType != arrayType.ElementType) {
ArrayType newArrayType = new ArrayType(elementType);
foreach (ArrayDimension d in arrayType.Dimensions)
newArrayType.Dimensions.Add(d);
return newArrayType;
} else {
return type;
}
}
ByReferenceType refType = type as ByReferenceType;
if (refType != null) {
TypeReference elementType = SubstituteTypeArgs(refType.ElementType, member);
return elementType != refType.ElementType ? new ByReferenceType(elementType) : type;
}
GenericInstanceType giType = type as GenericInstanceType;
if (giType != null) {
GenericInstanceType newType = new GenericInstanceType(giType.ElementType);
bool isChanged = false;
for (int i = 0; i < giType.GenericArguments.Count; i++) {
newType.GenericArguments.Add(SubstituteTypeArgs(giType.GenericArguments[i], member));
isChanged |= newType.GenericArguments[i] != giType.GenericArguments[i];
}
return isChanged ? newType : type;
}
OptionalModifierType optmodType = type as OptionalModifierType;
if (optmodType != null) {
TypeReference elementType = SubstituteTypeArgs(optmodType.ElementType, member);
return elementType != optmodType.ElementType ? new OptionalModifierType(optmodType.ModifierType, elementType) : type;
}
RequiredModifierType reqmodType = type as RequiredModifierType;
if (reqmodType != null) {
TypeReference elementType = SubstituteTypeArgs(reqmodType.ElementType, member);
return elementType != reqmodType.ElementType ? new RequiredModifierType(reqmodType.ModifierType, elementType) : type;
}
PointerType ptrType = type as PointerType;
if (ptrType != null) {
TypeReference elementType = SubstituteTypeArgs(ptrType.ElementType, member);
return elementType != ptrType.ElementType ? new PointerType(elementType) : type;
}
}
GenericParameter gp = type as GenericParameter;
if (gp != null) {
if (gp.Owner.GenericParameterType == GenericParameterType.Method) {
return ((GenericInstanceMethod)member).GenericArguments[gp.Position];
} else {
if (member.DeclaringType is ArrayType) {
return ((ArrayType)member.DeclaringType).ElementType;
} else {
return ((GenericInstanceType)member.DeclaringType).GenericArguments[gp.Position];
}
}
}
return type;
}
static TypeReference UnpackPointer(TypeReference pointerOrManagedReference)
{
ByReferenceType refType = pointerOrManagedReference as ByReferenceType;
if (refType != null)
return refType.ElementType;
PointerType ptrType = pointerOrManagedReference as PointerType;
if (ptrType != null)
return ptrType.ElementType;
return null;
}
static TypeReference UnpackModifiers(TypeReference type)
{
while (type is OptionalModifierType || type is RequiredModifierType)
type = ((TypeSpecification)type).ElementType;
return type;
}
TypeReference InferArgumentsInBinaryOperator(ILExpression expr, bool? isSigned)
{
ILExpression left = expr.Arguments[0];
ILExpression right = expr.Arguments[1];
TypeReference leftPreferred = DoInferTypeForExpression(left, null);
TypeReference rightPreferred = DoInferTypeForExpression(right, null);
if (leftPreferred == rightPreferred) {
return left.InferredType = right.InferredType = left.ExpectedType = right.ExpectedType = leftPreferred;
} else if (rightPreferred == DoInferTypeForExpression(left, rightPreferred)) {
return left.InferredType = right.InferredType = left.ExpectedType = right.ExpectedType = rightPreferred;
} else if (leftPreferred == DoInferTypeForExpression(right, leftPreferred)) {
return left.InferredType = right.InferredType = left.ExpectedType = right.ExpectedType = leftPreferred;
} else {
left.ExpectedType = right.ExpectedType = TypeWithMoreInformation(leftPreferred, rightPreferred);
left.InferredType = DoInferTypeForExpression(left, left.ExpectedType);
right.InferredType = DoInferTypeForExpression(right, right.ExpectedType);
return left.ExpectedType;
}
}
TypeReference TypeWithMoreInformation(TypeReference leftPreferred, TypeReference rightPreferred)
{
int left = GetInformationAmount(leftPreferred);
int right = GetInformationAmount(rightPreferred);
if (left < right)
return rightPreferred;
else
return leftPreferred;
}
const int nativeInt = 33; // treat native int as between int32 and int64
static int GetInformationAmount(TypeReference type)
{
if (type == null)
return 0;
if (type.IsValueType) {
// value type might be an enum
TypeDefinition typeDef = type.Resolve() as TypeDefinition;
if (typeDef != null && typeDef.IsEnum) {
TypeReference underlyingType = typeDef.Fields.Single(f => f.IsRuntimeSpecialName && !f.IsStatic).FieldType;
return GetInformationAmount(underlyingType);
}
}
switch (type.MetadataType) {
case MetadataType.Void:
return 0;
case MetadataType.Boolean:
return 1;
case MetadataType.SByte:
case MetadataType.Byte:
return 8;
case MetadataType.Char:
case MetadataType.Int16:
case MetadataType.UInt16:
return 16;
case MetadataType.Int32:
case MetadataType.UInt32:
case MetadataType.Single:
return 32;
case MetadataType.Int64:
case MetadataType.UInt64:
case MetadataType.Double:
return 64;
case MetadataType.IntPtr:
case MetadataType.UIntPtr:
return nativeInt;
default:
return 100; // we consider structs/objects to have more information than any primitives
}
}
public static bool IsBoolean(TypeReference type)
{
return type != null && type.MetadataType == MetadataType.Boolean;
}
public static bool IsIntegerOrEnum(TypeReference type)
{
return IsSigned(type) != null;
}
static bool? IsSigned(TypeReference type)
{
if (type == null)
return null;
// unfortunately we cannot rely on type.IsValueType here - it's not set when the instruction operand is a typeref (as opposed to a typespec)
TypeDefinition typeDef = type.Resolve() as TypeDefinition;
if (typeDef != null && typeDef.IsEnum) {
TypeReference underlyingType = typeDef.Fields.Single(f => f.IsRuntimeSpecialName && !f.IsStatic).FieldType;
return IsSigned(underlyingType);
}
switch (type.MetadataType) {
case MetadataType.SByte:
case MetadataType.Int16:
case MetadataType.Int32:
case MetadataType.Int64:
case MetadataType.IntPtr:
return true;
case MetadataType.Byte:
case MetadataType.Char:
case MetadataType.UInt16:
case MetadataType.UInt32:
case MetadataType.UInt64:
case MetadataType.UIntPtr:
return false;
default:
return null;
}
}
public static TypeCode GetTypeCode(TypeReference type)
{
if (type == null)
return TypeCode.Empty;
switch (type.MetadataType) {
case MetadataType.Boolean:
return TypeCode.Boolean;
case MetadataType.Char:
return TypeCode.Char;
case MetadataType.SByte:
return TypeCode.SByte;
case MetadataType.Byte:
return TypeCode.Byte;
case MetadataType.Int16:
return TypeCode.Int16;
case MetadataType.UInt16:
return TypeCode.UInt16;
case MetadataType.Int32:
return TypeCode.Int32;
case MetadataType.UInt32:
return TypeCode.UInt32;
case MetadataType.Int64:
return TypeCode.Int64;
case MetadataType.UInt64:
return TypeCode.UInt64;
case MetadataType.Single:
return TypeCode.Single;
case MetadataType.Double:
return TypeCode.Double;
case MetadataType.String:
return TypeCode.String;
default:
return TypeCode.Object;
}
}
}
}