.NET Decompiler with support for PDB generation, ReadyToRun, Metadata (&more) - cross-platform!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

644 lines
27 KiB

// Copyright (c) 2015 Siegfried Pammer
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Diagnostics;
using System.Linq;
using ICSharpCode.Decompiler.TypeSystem;
using ICSharpCode.Decompiler.TypeSystem.Implementation;
using ICSharpCode.Decompiler.Util;
namespace ICSharpCode.Decompiler.IL.Transforms
{
/// <summary>
/// Constructs compound assignments and inline assignments.
/// </summary>
public class TransformAssignment : IStatementTransform
{
StatementTransformContext context;
void IStatementTransform.Run(Block block, int pos, StatementTransformContext context)
{
this.context = context;
if (TransformInlineAssignmentStObjOrCall(block, pos) || TransformInlineAssignmentLocal(block, pos)) {
// both inline assignments create a top-level stloc which might affect inlining
context.RequestRerun();
return;
}
if (TransformPostIncDecOperatorWithInlineStore(block, pos)
|| TransformPostIncDecOperator(block, pos)
|| TransformPostIncDecOperatorLocal(block, pos))
{
// again, new top-level stloc might need inlining:
context.RequestRerun();
return;
}
}
/// <code>
/// stloc s(value)
/// stloc l(ldloc s)
/// stobj(..., ldloc s)
/// where ... is pure and does not use s or l,
/// and where neither the 'stloc s' nor the 'stobj' truncates
/// -->
/// stloc l(stobj (..., value))
/// </code>
/// e.g. used for inline assignment to instance field
///
/// -or-
///
/// <code>
/// stloc s(value)
/// stobj (..., ldloc s)
/// where ... is pure and does not use s, and where the 'stobj' does not truncate
/// -->
/// stloc s(stobj (..., value))
/// </code>
/// e.g. used for inline assignment to static field
///
/// -or-
///
/// <code>
/// stloc s(value)
/// call set_Property(..., ldloc s)
/// where the '...' arguments are pure and not using 's'
/// -->
/// stloc s(Block InlineAssign { call set_Property(..., stloc i(value)); final: ldloc i })
/// new temporary 'i' has type of the property; transform only valid if 'stloc i' doesn't truncate
/// </code>
bool TransformInlineAssignmentStObjOrCall(Block block, int pos)
{
var inst = block.Instructions[pos] as StLoc;
// in some cases it can be a compiler-generated local
if (inst == null || (inst.Variable.Kind != VariableKind.StackSlot && inst.Variable.Kind != VariableKind.Local))
return false;
if (IsImplicitTruncation(inst.Value, inst.Variable.Type, context.TypeSystem)) {
// 'stloc s' is implicitly truncating the value
return false;
}
ILVariable local;
int nextPos;
if (block.Instructions[pos + 1] is StLoc localStore) { // with extra local
if (localStore.Variable.Kind != VariableKind.Local || !localStore.Value.MatchLdLoc(inst.Variable))
return false;
// if we're using an extra local, we'll delete "s", so check that that doesn't have any additional uses
if (!(inst.Variable.IsSingleDefinition && inst.Variable.LoadCount == 2))
return false;
local = localStore.Variable;
nextPos = pos + 2;
} else {
local = inst.Variable;
localStore = null;
nextPos = pos + 1;
}
if (block.Instructions[nextPos] is StObj stobj) {
if (!stobj.Value.MatchLdLoc(inst.Variable))
return false;
if (!SemanticHelper.IsPure(stobj.Target.Flags) || inst.Variable.IsUsedWithin(stobj.Target))
return false;
var pointerType = stobj.Target.InferType(context.TypeSystem);
IType newType = stobj.Type;
if (TypeUtils.IsCompatiblePointerTypeForMemoryAccess(pointerType, stobj.Type)) {
if (pointerType is ByReferenceType byref)
newType = byref.ElementType;
else if (pointerType is PointerType pointer)
newType = pointer.ElementType;
}
if (IsImplicitTruncation(inst.Value, newType, context.TypeSystem)) {
// 'stobj' is implicitly truncating the value
return false;
}
context.Step("Inline assignment stobj", stobj);
stobj.Type = newType;
block.Instructions.Remove(localStore);
block.Instructions.Remove(stobj);
stobj.Value = inst.Value;
inst.ReplaceWith(new StLoc(local, stobj));
// note: our caller will trigger a re-run, which will call HandleStObjCompoundAssign if applicable
return true;
} else if (block.Instructions[nextPos] is CallInstruction call) {
// call must be a setter call:
if (!(call.OpCode == OpCode.Call || call.OpCode == OpCode.CallVirt))
return false;
if (call.ResultType != StackType.Void || call.Arguments.Count == 0)
return false;
IProperty property = call.Method.AccessorOwner as IProperty;
if (property == null)
return false;
if (!call.Method.Equals(property.Setter))
return false;
if (!(property.IsIndexer || property.Setter.Parameters.Count == 1)) {
// this is a parameterized property, which cannot be expressed as C# code.
// setter calls are not valid in expression context, if property syntax cannot be used.
return false;
}
if (!call.Arguments.Last().MatchLdLoc(inst.Variable))
return false;
foreach (var arg in call.Arguments.SkipLast(1)) {
if (!SemanticHelper.IsPure(arg.Flags) || inst.Variable.IsUsedWithin(arg))
return false;
}
if (IsImplicitTruncation(inst.Value, call.Method.Parameters.Last().Type, context.TypeSystem)) {
// setter call is implicitly truncating the value
return false;
}
// stloc s(Block InlineAssign { call set_Property(..., stloc i(value)); final: ldloc i })
context.Step("Inline assignment call", call);
block.Instructions.Remove(localStore);
block.Instructions.Remove(call);
var newVar = context.Function.RegisterVariable(VariableKind.StackSlot, call.Method.Parameters.Last().Type);
call.Arguments[call.Arguments.Count - 1] = new StLoc(newVar, inst.Value);
var inlineBlock = new Block(BlockKind.CallInlineAssign) {
Instructions = { call },
FinalInstruction = new LdLoc(newVar)
};
inst.ReplaceWith(new StLoc(local, inlineBlock));
// because the ExpressionTransforms don't look into inline blocks, manually trigger HandleCallCompoundAssign
if (HandleCompoundAssign(call, context)) {
// if we did construct a compound assignment, it should have made our inline block redundant:
if (inlineBlock.Instructions.Single().MatchStLoc(newVar, out var compoundAssign)) {
Debug.Assert(newVar.IsSingleDefinition && newVar.LoadCount == 1);
inlineBlock.ReplaceWith(compoundAssign);
}
}
return true;
} else {
return false;
}
}
static ILInstruction UnwrapSmallIntegerConv(ILInstruction inst, out Conv conv)
{
conv = inst as Conv;
if (conv != null && conv.Kind == ConversionKind.Truncate && conv.TargetType.IsSmallIntegerType()) {
// for compound assignments to small integers, the compiler emits a "conv" instruction
return conv.Argument;
} else {
return inst;
}
}
static bool ValidateCompoundAssign(BinaryNumericInstruction binary, Conv conv, IType targetType)
{
if (!NumericCompoundAssign.IsBinaryCompatibleWithType(binary, targetType))
return false;
if (conv != null && !(conv.TargetType == targetType.ToPrimitiveType() && conv.CheckForOverflow == binary.CheckForOverflow))
return false; // conv does not match binary operation
return true;
}
static bool MatchingGetterAndSetterCalls(CallInstruction getterCall, CallInstruction setterCall)
{
if (getterCall == null || setterCall == null || !IsSameMember(getterCall.Method.AccessorOwner, setterCall.Method.AccessorOwner))
return false;
if (setterCall.OpCode != getterCall.OpCode)
return false;
var owner = getterCall.Method.AccessorOwner as IProperty;
if (owner == null || !IsSameMember(getterCall.Method, owner.Getter) || !IsSameMember(setterCall.Method, owner.Setter))
return false;
if (setterCall.Arguments.Count != getterCall.Arguments.Count + 1)
return false;
// Ensure that same arguments are passed to getterCall and setterCall:
for (int j = 0; j < getterCall.Arguments.Count; j++) {
if (!SemanticHelper.IsPure(getterCall.Arguments[j].Flags))
return false;
if (!getterCall.Arguments[j].Match(setterCall.Arguments[j]).Success)
return false;
}
return true;
}
/// <summary>
/// Transform compound assignments where the return value is not being used,
/// or where there's an inlined assignment within the setter call.
///
/// Patterns handled:
/// 1.
/// callvirt set_Property(ldloc S_1, binary.op(callvirt get_Property(ldloc S_1), value))
/// ==> compound.op.new(callvirt get_Property(ldloc S_1), value)
/// 2.
/// callvirt set_Property(ldloc S_1, stloc v(binary.op(callvirt get_Property(ldloc S_1), value)))
/// ==> stloc v(compound.op.new(callvirt get_Property(ldloc S_1), value))
/// 3.
/// stobj(target, binary.op(ldobj(target), ...))
/// where target is pure
/// => compound.op(target, ...)
/// </summary>
/// <remarks>
/// Called by ExpressionTransforms, or after the inline-assignment transform for setters.
/// </remarks>
internal static bool HandleCompoundAssign(ILInstruction compoundStore, StatementTransformContext context)
{
if (compoundStore is CallInstruction && compoundStore.SlotInfo != Block.InstructionSlot) {
// replacing 'call set_Property' with a compound assignment instruction
// changes the return value of the expression, so this is only valid on block-level.
return false;
}
if (!IsCompoundStore(compoundStore, out var targetType, out var setterValue, context.TypeSystem))
return false;
// targetType = The type of the property/field/etc. being stored to.
// setterValue = The value being stored.
var storeInSetter = setterValue as StLoc;
if (storeInSetter != null) {
// We'll move the stloc to top-level:
// callvirt set_Property(ldloc S_1, stloc v(binary.op(callvirt get_Property(ldloc S_1), value)))
// ==> stloc v(compound.op.new(callvirt get_Property(ldloc S_1), value))
setterValue = storeInSetter.Value;
if (storeInSetter.Variable.Type.IsSmallIntegerType()) {
// 'stloc v' implicitly truncates the value.
// Ensure that type of 'v' matches the type of the property:
if (storeInSetter.Variable.Type.GetSize() != targetType.GetSize())
return false;
if (storeInSetter.Variable.Type.GetSign() != targetType.GetSign())
return false;
}
}
ILInstruction newInst;
if (UnwrapSmallIntegerConv(setterValue, out var smallIntConv) is BinaryNumericInstruction binary) {
if (!IsMatchingCompoundLoad(binary.Left, compoundStore, forbiddenVariable: storeInSetter?.Variable))
return false;
if (!ValidateCompoundAssign(binary, smallIntConv, targetType))
return false;
context.Step($"Compound assignment (binary.numeric)", compoundStore);
newInst = new NumericCompoundAssign(
binary, binary.Left, binary.Right,
targetType, CompoundAssignmentType.EvaluatesToNewValue);
} else if (setterValue is Call operatorCall && operatorCall.Method.IsOperator) {
if (operatorCall.Arguments.Count == 0)
return false;
if (!IsMatchingCompoundLoad(operatorCall.Arguments[0], compoundStore, forbiddenVariable: storeInSetter?.Variable))
return false;
ILInstruction rhs;
if (operatorCall.Arguments.Count == 2) {
if (CSharp.ExpressionBuilder.GetAssignmentOperatorTypeFromMetadataName(operatorCall.Method.Name) == null)
return false;
rhs = operatorCall.Arguments[1];
} else if (operatorCall.Arguments.Count == 1) {
if (!(operatorCall.Method.Name == "op_Increment" || operatorCall.Method.Name == "op_Decrement"))
return false;
// use a dummy node so that we don't need a dedicated instruction for user-defined unary operator calls
rhs = new LdcI4(1);
} else {
return false;
}
if (operatorCall.IsLifted)
return false; // TODO: add tests and think about whether nullables need special considerations
context.Step($"Compound assignment (user-defined binary)", compoundStore);
newInst = new UserDefinedCompoundAssign(operatorCall.Method, CompoundAssignmentType.EvaluatesToNewValue,
operatorCall.Arguments[0], rhs);
} else if (setterValue is DynamicBinaryOperatorInstruction dynamicBinaryOp) {
if (!IsMatchingCompoundLoad(dynamicBinaryOp.Left, compoundStore, forbiddenVariable: storeInSetter?.Variable))
return false;
context.Step($"Compound assignment (dynamic binary)", compoundStore);
newInst = new DynamicCompoundAssign(dynamicBinaryOp.Operation, dynamicBinaryOp.BinderFlags, dynamicBinaryOp.Left, dynamicBinaryOp.LeftArgumentInfo, dynamicBinaryOp.Right, dynamicBinaryOp.RightArgumentInfo);
} else if (setterValue is Call concatCall && UserDefinedCompoundAssign.IsStringConcat(concatCall.Method)) {
// setterValue is a string.Concat() invocation
if (concatCall.Arguments.Count != 2)
return false; // for now we only support binary compound assignments
if (!targetType.IsKnownType(KnownTypeCode.String))
return false;
if (!IsMatchingCompoundLoad(concatCall.Arguments[0], compoundStore, forbiddenVariable: storeInSetter?.Variable))
return false;
context.Step($"Compound assignment (string concatenation)", compoundStore);
newInst = new UserDefinedCompoundAssign(concatCall.Method, CompoundAssignmentType.EvaluatesToNewValue,
concatCall.Arguments[0], concatCall.Arguments[1]);
} else {
return false;
}
newInst.AddILRange(setterValue.ILRange);
if (storeInSetter != null) {
storeInSetter.Value = newInst;
newInst = storeInSetter;
context.RequestRerun(); // moving stloc to top-level might trigger inlining
}
compoundStore.ReplaceWith(newInst);
return true;
}
/// <code>
/// stloc s(value)
/// stloc l(ldloc s)
/// where neither 'stloc s' nor 'stloc l' truncates the value
/// -->
/// stloc s(stloc l(value))
/// </code>
bool TransformInlineAssignmentLocal(Block block, int pos)
{
var inst = block.Instructions[pos] as StLoc;
var nextInst = block.Instructions.ElementAtOrDefault(pos + 1) as StLoc;
if (inst == null || nextInst == null)
return false;
if (inst.Variable.Kind != VariableKind.StackSlot)
return false;
if (!(nextInst.Variable.Kind == VariableKind.Local || nextInst.Variable.Kind == VariableKind.Parameter))
return false;
if (!nextInst.Value.MatchLdLoc(inst.Variable))
return false;
if (IsImplicitTruncation(inst.Value, inst.Variable.Type, context.TypeSystem)) {
// 'stloc s' is implicitly truncating the stack value
return false;
}
if (IsImplicitTruncation(inst.Value, nextInst.Variable.Type, context.TypeSystem)) {
// 'stloc l' is implicitly truncating the stack value
return false;
}
if (nextInst.Variable.StackType == StackType.Ref) {
// ref locals need to be initialized when they are declared, so
// we can only use inline assignments when we know that the
// ref local is definitely assigned.
// We don't have an easy way to check for that in this transform,
// so avoid inline assignments to ref locals for now.
return false;
}
context.Step("Inline assignment to local variable", inst);
var value = inst.Value;
var var = nextInst.Variable;
var stackVar = inst.Variable;
block.Instructions.RemoveAt(pos);
nextInst.ReplaceWith(new StLoc(stackVar, new StLoc(var, value)));
return true;
}
/// <summary>
/// Gets whether 'stobj type(..., value)' would evaluate to a different value than 'value'
/// due to implicit truncation.
/// </summary>
static internal bool IsImplicitTruncation(ILInstruction value, IType type, ICompilation compilation, bool allowNullableValue = false)
{
if (!type.IsSmallIntegerType()) {
// Implicit truncation in ILAst only happens for small integer types;
// other types of implicit truncation in IL cause the ILReader to insert
// conv instructions.
return false;
}
// With small integer types, test whether the value might be changed by
// truncation (based on type.GetSize()) followed by sign/zero extension (based on type.GetSign()).
// (it's OK to have false-positives here if we're unsure)
if (value.MatchLdcI4(out int val)) {
switch (type.GetEnumUnderlyingType().GetDefinition()?.KnownTypeCode) {
case KnownTypeCode.Boolean:
return !(val == 0 || val == 1);
case KnownTypeCode.Byte:
return !(val >= byte.MinValue && val <= byte.MaxValue);
case KnownTypeCode.SByte:
return !(val >= sbyte.MinValue && val <= sbyte.MaxValue);
case KnownTypeCode.Int16:
return !(val >= short.MinValue && val <= short.MaxValue);
case KnownTypeCode.UInt16:
case KnownTypeCode.Char:
return !(val >= ushort.MinValue && val <= ushort.MaxValue);
}
} else if (value is Conv conv) {
return conv.TargetType != type.ToPrimitiveType();
} else if (value is Comp) {
return false; // comp returns 0 or 1, which always fits
} else if (value is IfInstruction ifInst) {
return IsImplicitTruncation(ifInst.TrueInst, type, compilation, allowNullableValue)
|| IsImplicitTruncation(ifInst.FalseInst, type, compilation, allowNullableValue);
} else {
IType inferredType = value.InferType(compilation);
if (allowNullableValue) {
inferredType = NullableType.GetUnderlyingType(inferredType);
}
if (inferredType.Kind != TypeKind.Unknown) {
return !(inferredType.GetSize() <= type.GetSize() && inferredType.GetSign() == type.GetSign());
}
}
return true;
}
/// <code>
/// stloc s(ldloc l)
/// stloc l(binary.op(ldloc s, ldc.i4 1))
/// -->
/// stloc s(block {
/// stloc s2(ldloc l)
/// stloc l(binary.op(ldloc s2, ldc.i4 1))
/// final: ldloc s2
/// })
/// </code>
bool TransformPostIncDecOperatorLocal(Block block, int pos)
{
var inst = block.Instructions[pos] as StLoc;
var nextInst = block.Instructions.ElementAtOrDefault(pos + 1) as StLoc;
if (inst == null || nextInst == null || !inst.Value.MatchLdLoc(out var loadVar) || !ILVariableEqualityComparer.Instance.Equals(loadVar, nextInst.Variable))
return false;
var binary = nextInst.Value as BinaryNumericInstruction;
if (inst.Variable.Kind != VariableKind.StackSlot || nextInst.Variable.Kind == VariableKind.StackSlot || binary == null)
return false;
if (binary.IsLifted)
return false;
if ((binary.Operator != BinaryNumericOperator.Add && binary.Operator != BinaryNumericOperator.Sub) || !binary.Left.MatchLdLoc(inst.Variable) || !binary.Right.MatchLdcI4(1))
return false;
context.Step($"TransformPostIncDecOperatorLocal", inst);
if (loadVar != nextInst.Variable) {
// load and store are two different variables, that were split from the same variable
context.Function.RecombineVariables(loadVar, nextInst.Variable);
}
var tempStore = context.Function.RegisterVariable(VariableKind.StackSlot, inst.Variable.Type);
var assignment = new Block(BlockKind.PostfixOperator);
assignment.Instructions.Add(new StLoc(tempStore, new LdLoc(loadVar)));
assignment.Instructions.Add(new StLoc(loadVar, new BinaryNumericInstruction(binary.Operator, new LdLoc(tempStore), new LdcI4(1), binary.CheckForOverflow, binary.Sign)));
assignment.FinalInstruction = new LdLoc(tempStore);
inst.Value = assignment;
block.Instructions.RemoveAt(pos + 1); // remove nextInst
return true;
}
/// <summary>
/// Gets whether 'inst' is a possible store for use as a compound store.
/// </summary>
static bool IsCompoundStore(ILInstruction inst, out IType storeType, out ILInstruction value, ICompilation compilation)
{
value = null;
storeType = null;
if (inst is StObj stobj) {
// stobj.Type may just be 'int' (due to stind.i4) when we're actually operating on a 'ref MyEnum'.
// Try to determine the real type of the object we're modifying:
storeType = stobj.Target.InferType(compilation);
if (storeType is ByReferenceType refType) {
storeType = refType.ElementType;
} else if (storeType is PointerType pointerType) {
storeType = pointerType.ElementType;
} else {
storeType = stobj.Type;
}
value = stobj.Value;
return SemanticHelper.IsPure(stobj.Target.Flags);
} else if (inst is CallInstruction call && (call.OpCode == OpCode.Call || call.OpCode == OpCode.CallVirt)) {
if (call.Method.Parameters.Count == 0) {
return false;
}
foreach (var arg in call.Arguments.SkipLast(1)) {
if (!SemanticHelper.IsPure(arg.Flags)) {
return false;
}
}
storeType = call.Method.Parameters.Last().Type;
value = call.Arguments.Last();
return IsSameMember(call.Method, (call.Method.AccessorOwner as IProperty)?.Setter);
} else {
return false;
}
}
static bool IsMatchingCompoundLoad(ILInstruction load, ILInstruction store, ILVariable forbiddenVariable)
{
if (load is LdObj ldobj && store is StObj stobj) {
Debug.Assert(SemanticHelper.IsPure(stobj.Target.Flags));
if (!SemanticHelper.IsPure(ldobj.Target.Flags))
return false;
if (forbiddenVariable != null && forbiddenVariable.IsUsedWithin(ldobj.Target))
return false;
return ldobj.Target.Match(stobj.Target).Success;
} else if (MatchingGetterAndSetterCalls(load as CallInstruction, store as CallInstruction)) {
if (forbiddenVariable != null && forbiddenVariable.IsUsedWithin(load))
return false;
return true;
} else {
return false;
}
}
/// <code>
/// stobj(target, binary.add(stloc l(ldobj(target)), ldc.i4 1))
/// where target is pure and does not use 'l', and the 'stloc l' does not truncate
/// -->
/// stloc l(compound.op.old(ldobj(target), ldc.i4 1))
///
/// -or-
///
/// call set_Prop(args..., binary.add(stloc l(call get_Prop(args...)), ldc.i4 1))
/// where args.. are pure and do not use 'l', and the 'stloc l' does not truncate
/// -->
/// stloc l(compound.op.old(call get_Prop(target), ldc.i4 1))
/// </code>
/// <remarks>
/// This pattern is used for post-increment by legacy csc.
///
/// Even though this transform operates only on a single expression, it's not an expression transform
/// as the result value of the expression changes (this is OK only for statements in a block).
/// </remarks>
bool TransformPostIncDecOperatorWithInlineStore(Block block, int pos)
{
var store = block.Instructions[pos];
if (!IsCompoundStore(store, out var targetType, out var value, context.TypeSystem))
return false;
StLoc stloc;
var binary = UnwrapSmallIntegerConv(value, out var conv) as BinaryNumericInstruction;
if (binary != null && binary.Right.MatchLdcI(1)) {
if (!(binary.Operator == BinaryNumericOperator.Add || binary.Operator == BinaryNumericOperator.Sub))
return false;
if (!ValidateCompoundAssign(binary, conv, targetType))
return false;
stloc = binary.Left as StLoc;
} else if (value is Call operatorCall && operatorCall.Method.IsOperator && operatorCall.Arguments.Count == 1) {
if (!(operatorCall.Method.Name == "op_Increment" || operatorCall.Method.Name == "op_Decrement"))
return false;
if (operatorCall.IsLifted)
return false; // TODO: add tests and think about whether nullables need special considerations
stloc = operatorCall.Arguments[0] as StLoc;
} else {
return false;
}
if (stloc == null)
return false;
if (!(stloc.Variable.Kind == VariableKind.Local || stloc.Variable.Kind == VariableKind.StackSlot))
return false;
if (!IsMatchingCompoundLoad(stloc.Value, store, stloc.Variable))
return false;
if (IsImplicitTruncation(stloc.Value, stloc.Variable.Type, context.TypeSystem))
return false;
context.Step("TransformPostIncDecOperatorWithInlineStore", store);
if (binary != null) {
block.Instructions[pos] = new StLoc(stloc.Variable, new NumericCompoundAssign(
binary, stloc.Value, binary.Right, targetType, CompoundAssignmentType.EvaluatesToOldValue));
} else {
Call operatorCall = (Call)value;
block.Instructions[pos] = new StLoc(stloc.Variable, new UserDefinedCompoundAssign(
operatorCall.Method, CompoundAssignmentType.EvaluatesToOldValue, stloc.Value, new LdcI4(1)));
}
return true;
}
/// <code>
/// stloc l(ldobj(target))
/// stobj(target, binary.op(ldloc l, ldc.i4 1))
/// target is pure and does not use 'l', 'stloc does not truncate'
/// -->
/// stloc l(compound.op.old(ldobj(target), ldc.i4 1))
/// </code>
/// <remarks>
/// This pattern occurs with legacy csc for static fields, and with Roslyn for most post-increments.
/// </remarks>
bool TransformPostIncDecOperator(Block block, int i)
{
var inst = block.Instructions[i] as StLoc;
var store = block.Instructions.ElementAtOrDefault(i + 1);
if (inst == null || store == null)
return false;
if (!IsCompoundStore(store, out var targetType, out var value, context.TypeSystem))
return false;
if (IsImplicitTruncation(inst.Value, targetType, context.TypeSystem)) {
// 'stloc l' is implicitly truncating the value
return false;
}
if (!IsMatchingCompoundLoad(inst.Value, store, inst.Variable))
return false;
if (UnwrapSmallIntegerConv(value, out var conv) is BinaryNumericInstruction binary) {
if (!binary.Left.MatchLdLoc(inst.Variable) || !binary.Right.MatchLdcI(1))
return false;
if (!(binary.Operator == BinaryNumericOperator.Add || binary.Operator == BinaryNumericOperator.Sub))
return false;
if (!ValidateCompoundAssign(binary, conv, targetType))
return false;
context.Step("TransformPostIncDecOperator (builtin)", inst);
inst.Value = new NumericCompoundAssign(binary, inst.Value, binary.Right,
targetType, CompoundAssignmentType.EvaluatesToOldValue);
} else if (value is Call operatorCall && operatorCall.Method.IsOperator && operatorCall.Arguments.Count == 1) {
if (!operatorCall.Arguments[0].MatchLdLoc(inst.Variable))
return false;
if (!(operatorCall.Method.Name == "op_Increment" || operatorCall.Method.Name == "op_Decrement"))
return false;
if (operatorCall.IsLifted)
return false; // TODO: add tests and think about whether nullables need special considerations
context.Step("TransformPostIncDecOperator (user-defined)", inst);
inst.Value = new UserDefinedCompoundAssign(operatorCall.Method,
CompoundAssignmentType.EvaluatesToOldValue, inst.Value, new LdcI4(1));
} else {
return false;
}
block.Instructions.RemoveAt(i + 1);
if (inst.Variable.IsSingleDefinition && inst.Variable.LoadCount == 0) {
// dead store -> it was a statement-level post-increment
inst.ReplaceWith(inst.Value);
}
return true;
}
static bool IsSameMember(IMember a, IMember b)
{
if (a == null || b == null)
return false;
a = a.MemberDefinition;
b = b.MemberDefinition;
return a.Equals(b);
}
}
}