.NET Decompiler with support for PDB generation, ReadyToRun, Metadata (&more) - cross-platform!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

543 lines
21 KiB

// Copyright (c) 2011 AlphaSierraPapa for the SharpDevelop Team
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using Mono.Cecil;
namespace ICSharpCode.Decompiler.ILAst
{
/// <summary>
/// IL AST transformation that introduces array, object and collection initializers.
/// </summary>
partial class ILAstOptimizer
{
#region Array Initializers
bool TransformArrayInitializers(List<ILNode> body, ILExpression expr, int pos)
{
ILVariable v, v3;
ILExpression newarrExpr;
TypeReference elementType;
ILExpression lengthExpr;
int arrayLength;
if (expr.Match(ILCode.Stloc, out v, out newarrExpr) &&
newarrExpr.Match(ILCode.Newarr, out elementType, out lengthExpr) &&
lengthExpr.Match(ILCode.Ldc_I4, out arrayLength) &&
arrayLength > 0) {
ILExpression[] newArr;
int initArrayPos;
if (ForwardScanInitializeArrayRuntimeHelper(body, pos + 1, v, elementType, arrayLength, out newArr, out initArrayPos)) {
var arrayType = new ArrayType(elementType, 1);
arrayType.Dimensions[0] = new ArrayDimension(0, arrayLength);
body[pos] = new ILExpression(ILCode.Stloc, v, new ILExpression(ILCode.InitArray, arrayType, newArr));
body.RemoveAt(initArrayPos);
}
// Put in a limit so that we don't consume too much memory if the code allocates a huge array
// and populates it extremely sparsly. However, 255 "null" elements in a row actually occur in the Mono C# compiler!
const int maxConsecutiveDefaultValueExpressions = 300;
List<ILExpression> operands = new List<ILExpression>();
int numberOfInstructionsToRemove = 0;
for (int j = pos + 1; j < body.Count; j++) {
ILExpression nextExpr = body[j] as ILExpression;
int arrayPos;
if (nextExpr != null &&
nextExpr.Code.IsStoreToArray() &&
nextExpr.Arguments[0].Match(ILCode.Ldloc, out v3) &&
v == v3 &&
nextExpr.Arguments[1].Match(ILCode.Ldc_I4, out arrayPos) &&
arrayPos >= operands.Count &&
arrayPos <= operands.Count + maxConsecutiveDefaultValueExpressions &&
!nextExpr.Arguments[2].ContainsReferenceTo(v3))
{
while (operands.Count < arrayPos)
operands.Add(new ILExpression(ILCode.DefaultValue, elementType));
operands.Add(nextExpr.Arguments[2]);
numberOfInstructionsToRemove++;
} else {
break;
}
}
if (operands.Count == arrayLength) {
var arrayType = new ArrayType(elementType, 1);
arrayType.Dimensions[0] = new ArrayDimension(0, arrayLength);
expr.Arguments[0] = new ILExpression(ILCode.InitArray, arrayType, operands);
body.RemoveRange(pos + 1, numberOfInstructionsToRemove);
new ILInlining(method).InlineIfPossible(body, ref pos);
return true;
}
}
return false;
}
bool TransformMultidimensionalArrayInitializers(List<ILNode> body, ILExpression expr, int pos)
{
ILVariable v;
ILExpression newarrExpr;
MethodReference ctor;
List<ILExpression> ctorArgs;
ArrayType arrayType;
if (expr.Match(ILCode.Stloc, out v, out newarrExpr) &&
newarrExpr.Match(ILCode.Newobj, out ctor, out ctorArgs) &&
(arrayType = (ctor.DeclaringType as ArrayType)) != null &&
arrayType.Rank == ctorArgs.Count) {
// Clone the type, so we can muck about with the Dimensions
arrayType = new ArrayType(arrayType.ElementType, arrayType.Rank);
var arrayLengths = new int[arrayType.Rank];
for (int i = 0; i < arrayType.Rank; i++) {
if (!ctorArgs[i].Match(ILCode.Ldc_I4, out arrayLengths[i])) return false;
if (arrayLengths[i] <= 0) return false;
arrayType.Dimensions[i] = new ArrayDimension(0, arrayLengths[i]);
}
var totalElements = arrayLengths.Aggregate(1, (t, l) => t * l);
ILExpression[] newArr;
int initArrayPos;
if (ForwardScanInitializeArrayRuntimeHelper(body, pos + 1, v, arrayType, totalElements, out newArr, out initArrayPos)) {
body[pos] = new ILExpression(ILCode.Stloc, v, new ILExpression(ILCode.InitArray, arrayType, newArr));
body.RemoveAt(initArrayPos);
return true;
}
}
return false;
}
bool ForwardScanInitializeArrayRuntimeHelper(List<ILNode> body, int pos, ILVariable array, TypeReference arrayType, int arrayLength, out ILExpression[] values, out int foundPos)
{
ILVariable v2;
MethodReference methodRef;
ILExpression methodArg1;
ILExpression methodArg2;
FieldReference fieldRef;
if (body.ElementAtOrDefault(pos).Match(ILCode.Call, out methodRef, out methodArg1, out methodArg2) &&
methodRef.DeclaringType.FullName == "System.Runtime.CompilerServices.RuntimeHelpers" &&
methodRef.Name == "InitializeArray" &&
methodArg1.Match(ILCode.Ldloc, out v2) &&
array == v2 &&
methodArg2.Match(ILCode.Ldtoken, out fieldRef))
{
FieldDefinition fieldDef = fieldRef.ResolveWithinSameModule();
if (fieldDef != null && fieldDef.InitialValue != null) {
ILExpression[] newArr = new ILExpression[arrayLength];
if (DecodeArrayInitializer(arrayType.GetElementType(), fieldDef.InitialValue, newArr))
{
values = newArr;
foundPos = pos;
return true;
}
}
}
values = null;
foundPos = -1;
return false;
}
static bool DecodeArrayInitializer(TypeReference elementTypeRef, byte[] initialValue, ILExpression[] output)
{
TypeCode elementType = TypeAnalysis.GetTypeCode(elementTypeRef);
switch (elementType) {
case TypeCode.Boolean:
case TypeCode.Byte:
return DecodeArrayInitializer(initialValue, output, elementType, (d, i) => (int)d[i]);
case TypeCode.SByte:
return DecodeArrayInitializer(initialValue, output, elementType, (d, i) => (int)unchecked((sbyte)d[i]));
case TypeCode.Int16:
return DecodeArrayInitializer(initialValue, output, elementType, (d, i) => (int)BitConverter.ToInt16(d, i));
case TypeCode.Char:
case TypeCode.UInt16:
return DecodeArrayInitializer(initialValue, output, elementType, (d, i) => (int)BitConverter.ToUInt16(d, i));
case TypeCode.Int32:
case TypeCode.UInt32:
return DecodeArrayInitializer(initialValue, output, elementType, BitConverter.ToInt32);
case TypeCode.Int64:
case TypeCode.UInt64:
return DecodeArrayInitializer(initialValue, output, elementType, BitConverter.ToInt64);
case TypeCode.Single:
return DecodeArrayInitializer(initialValue, output, elementType, BitConverter.ToSingle);
case TypeCode.Double:
return DecodeArrayInitializer(initialValue, output, elementType, BitConverter.ToDouble);
case TypeCode.Object:
var typeDef = elementTypeRef.ResolveWithinSameModule();
if (typeDef != null && typeDef.IsEnum)
return DecodeArrayInitializer(typeDef.GetEnumUnderlyingType(), initialValue, output);
return false;
default:
return false;
}
}
static bool DecodeArrayInitializer<T>(byte[] initialValue, ILExpression[] output, TypeCode elementType, Func<byte[], int, T> decoder)
{
int elementSize = ElementSizeOf(elementType);
if (initialValue.Length < (output.Length * elementSize))
return false;
ILCode code = LoadCodeFor(elementType);
for (int i = 0; i < output.Length; i++)
output[i] = new ILExpression(code, decoder(initialValue, i * elementSize));
return true;
}
private static ILCode LoadCodeFor(TypeCode elementType)
{
switch (elementType) {
case TypeCode.Boolean:
case TypeCode.Byte:
case TypeCode.SByte:
case TypeCode.Char:
case TypeCode.Int16:
case TypeCode.UInt16:
case TypeCode.Int32:
case TypeCode.UInt32:
return ILCode.Ldc_I4;
case TypeCode.Int64:
case TypeCode.UInt64:
return ILCode.Ldc_I8;
case TypeCode.Single:
return ILCode.Ldc_R4;
case TypeCode.Double:
return ILCode.Ldc_R8;
default:
throw new ArgumentOutOfRangeException("elementType");
}
}
private static int ElementSizeOf(TypeCode elementType)
{
switch (elementType) {
case TypeCode.Boolean:
case TypeCode.Byte:
case TypeCode.SByte:
return 1;
case TypeCode.Char:
case TypeCode.Int16:
case TypeCode.UInt16:
return 2;
case TypeCode.Int32:
case TypeCode.UInt32:
case TypeCode.Single:
return 4;
case TypeCode.Int64:
case TypeCode.UInt64:
case TypeCode.Double:
return 8;
default:
throw new ArgumentOutOfRangeException("elementType");
}
}
#endregion
/// <summary>
/// Handles both object and collection initializers.
/// </summary>
bool TransformObjectInitializers(List<ILNode> body, ILExpression expr, int pos)
{
if (!context.Settings.ObjectOrCollectionInitializers)
return false;
Debug.Assert(body[pos] == expr); // should be called for top-level expressions only
ILVariable v;
ILExpression newObjExpr;
TypeReference newObjType;
bool isValueType;
MethodReference ctor;
List<ILExpression> ctorArgs;
if (expr.Match(ILCode.Stloc, out v, out newObjExpr)) {
if (newObjExpr.Match(ILCode.Newobj, out ctor, out ctorArgs)) {
// v = newObj(ctor, ctorArgs)
newObjType = ctor.DeclaringType;
isValueType = false;
} else if (newObjExpr.Match(ILCode.DefaultValue, out newObjType)) {
// v = defaultvalue(type)
isValueType = true;
} else {
return false;
}
} else if (expr.Match(ILCode.Call, out ctor, out ctorArgs)) {
// call(SomeStruct::.ctor, ldloca(v), remainingArgs)
if (ctorArgs.Count > 0 && ctorArgs[0].Match(ILCode.Ldloca, out v)) {
isValueType = true;
newObjType = ctor.DeclaringType;
ctorArgs = new List<ILExpression>(ctorArgs);
ctorArgs.RemoveAt(0);
newObjExpr = new ILExpression(ILCode.Newobj, ctor, ctorArgs);
} else {
return false;
}
} else {
return false;
}
if (newObjType.IsValueType != isValueType)
return false;
int originalPos = pos;
// don't use object initializer syntax for closures
if (Ast.Transforms.DelegateConstruction.IsPotentialClosure(context, newObjType.ResolveWithinSameModule()))
return false;
ILExpression initializer = ParseObjectInitializer(body, ref pos, v, newObjExpr, IsCollectionType(newObjType), isValueType);
if (initializer.Arguments.Count == 1) // only newobj argument, no initializer elements
return false;
int totalElementCount = pos - originalPos - 1; // totalElementCount: includes elements from nested collections
Debug.Assert(totalElementCount >= initializer.Arguments.Count - 1);
// Verify that we can inline 'v' into the next instruction:
if (pos >= body.Count)
return false; // reached end of block, but there should be another instruction which consumes the initialized object
ILInlining inlining = new ILInlining(method);
if (isValueType) {
// one ldloc for the use of the initialized object
if (inlining.numLdloc.GetOrDefault(v) != 1)
return false;
// one ldloca for each initializer argument, and also for the ctor call (if it exists)
if (inlining.numLdloca.GetOrDefault(v) != totalElementCount + (expr.Code == ILCode.Call ? 1 : 0))
return false;
// one stloc for the initial store (if no ctor call was used)
if (inlining.numStloc.GetOrDefault(v) != (expr.Code == ILCode.Call ? 0 : 1))
return false;
} else {
// one ldloc for each initializer argument, and another ldloc for the use of the initialized object
if (inlining.numLdloc.GetOrDefault(v) != totalElementCount + 1)
return false;
if (!(inlining.numStloc.GetOrDefault(v) == 1 && inlining.numLdloca.GetOrDefault(v) == 0))
return false;
}
ILExpression nextExpr = body[pos] as ILExpression;
if (!inlining.CanInlineInto(nextExpr, v, initializer))
return false;
if (expr.Code == ILCode.Stloc) {
expr.Arguments[0] = initializer;
} else {
Debug.Assert(expr.Code == ILCode.Call);
expr.Code = ILCode.Stloc;
expr.Operand = v;
expr.Arguments.Clear();
expr.Arguments.Add(initializer);
}
// remove all the instructions that were pulled into the initializer
body.RemoveRange(originalPos + 1, pos - originalPos - 1);
// now that we know that it's an object initializer, change all the first arguments to 'InitializedObject'
ChangeFirstArgumentToInitializedObject(initializer);
inlining = new ILInlining(method);
inlining.InlineIfPossible(body, ref originalPos);
return true;
}
/// <summary>
/// Gets whether the type supports collection initializers.
/// </summary>
static bool IsCollectionType(TypeReference tr)
{
if (tr == null)
return false;
TypeDefinition td = tr.Resolve();
while (td != null) {
if (td.Interfaces.Any(intf => intf.Name == "IEnumerable" && intf.Namespace == "System.Collections"))
return true;
td = td.BaseType != null ? td.BaseType.Resolve() : null;
}
return false;
}
/// <summary>
/// Gets whether 'expr' represents a setter in an object initializer.
/// ('CallvirtSetter(Property, v, value)')
/// </summary>
static bool IsSetterInObjectInitializer(ILExpression expr)
{
if (expr == null)
return false;
if (expr.Code == ILCode.CallvirtSetter || expr.Code == ILCode.CallSetter || expr.Code == ILCode.Stfld) {
return expr.Arguments.Count == 2;
}
return false;
}
/// <summary>
/// Gets whether 'expr' represents the invocation of an 'Add' method in a collection initializer.
/// </summary>
static bool IsAddMethodCall(ILExpression expr)
{
MethodReference addMethod;
List<ILExpression> args;
if (expr.Match(ILCode.Callvirt, out addMethod, out args) || expr.Match(ILCode.Call, out addMethod, out args)) {
if (addMethod.Name == "Add" && addMethod.HasThis) {
return args.Count >= 2;
}
}
return false;
}
/// <summary>
/// Parses an object initializer.
/// </summary>
/// <param name="body">ILAst block</param>
/// <param name="pos">
/// Input: position of the instruction assigning to 'v'.
/// Output: first position after the object initializer
/// </param>
/// <param name="v">The variable that holds the object being initialized</param>
/// <param name="newObjExpr">The newobj instruction</param>
/// <returns>InitObject instruction</returns>
ILExpression ParseObjectInitializer(List<ILNode> body, ref int pos, ILVariable v, ILExpression newObjExpr, bool isCollection, bool isValueType)
{
// Take care not to modify any existing ILExpressions in here.
// We just construct new ones around the old ones, any modifications must wait until the whole
// object/collection initializer was analyzed.
ILExpression objectInitializer = new ILExpression(isCollection ? ILCode.InitCollection : ILCode.InitObject, null, newObjExpr);
List<ILExpression> initializerStack = new List<ILExpression>();
initializerStack.Add(objectInitializer);
while (++pos < body.Count) {
ILExpression nextExpr = body[pos] as ILExpression;
if (IsSetterInObjectInitializer(nextExpr)) {
if (!AdjustInitializerStack(initializerStack, nextExpr.Arguments[0], v, false, isValueType)) {
CleanupInitializerStackAfterFailedAdjustment(initializerStack);
break;
}
initializerStack[initializerStack.Count - 1].Arguments.Add(nextExpr);
} else if (IsAddMethodCall(nextExpr)) {
if (!AdjustInitializerStack(initializerStack, nextExpr.Arguments[0], v, true, isValueType)) {
CleanupInitializerStackAfterFailedAdjustment(initializerStack);
break;
}
initializerStack[initializerStack.Count - 1].Arguments.Add(nextExpr);
} else {
// can't match any more initializers: end of object initializer
break;
}
}
return objectInitializer;
}
static bool AdjustInitializerStack(List<ILExpression> initializerStack, ILExpression argument, ILVariable v, bool isCollection, bool isValueType)
{
// Argument is of the form 'getter(getter(...(v)))'
// Unpack it into a list of getters:
List<ILExpression> getters = new List<ILExpression>();
while (argument.Code == ILCode.CallvirtGetter || argument.Code == ILCode.CallGetter || argument.Code == ILCode.Ldfld) {
getters.Add(argument);
if (argument.Arguments.Count != 1)
return false;
argument = argument.Arguments[0];
}
// Ensure that the final argument is 'v'
if (isValueType) {
ILVariable loadedVar;
if (!(argument.Match(ILCode.Ldloca, out loadedVar) && loadedVar == v))
return false;
} else {
if (!argument.MatchLdloc(v))
return false;
}
// Now compare the getters with those that are currently active on the initializer stack:
int i;
for (i = 1; i <= Math.Min(getters.Count, initializerStack.Count - 1); i++) {
ILExpression g1 = initializerStack[i].Arguments[0]; // getter stored in initializer
ILExpression g2 = getters[getters.Count - i]; // matching getter from argument
if (g1.Operand != g2.Operand) {
// operands differ, so we abort the comparison
break;
}
}
// Remove all initializers from the stack that were not matched with one from the argument:
initializerStack.RemoveRange(i, initializerStack.Count - i);
// Now create new initializers for the remaining arguments:
for (; i <= getters.Count; i++) {
ILExpression g = getters[getters.Count - i];
MemberReference mr = (MemberReference)g.Operand;
TypeReference returnType;
if (mr is FieldReference)
returnType = TypeAnalysis.GetFieldType((FieldReference)mr);
else
returnType = TypeAnalysis.SubstituteTypeArgs(((MethodReference)mr).ReturnType, mr);
ILExpression nestedInitializer = new ILExpression(
IsCollectionType(returnType) ? ILCode.InitCollection : ILCode.InitObject,
null, g);
// add new initializer to its parent:
ILExpression parentInitializer = initializerStack[initializerStack.Count - 1];
if (parentInitializer.Code == ILCode.InitCollection) {
// can't add children to collection initializer
if (parentInitializer.Arguments.Count == 1) {
// convert empty collection initializer to object initializer
parentInitializer.Code = ILCode.InitObject;
} else {
return false;
}
}
parentInitializer.Arguments.Add(nestedInitializer);
initializerStack.Add(nestedInitializer);
}
ILExpression lastInitializer = initializerStack[initializerStack.Count - 1];
if (isCollection) {
return lastInitializer.Code == ILCode.InitCollection;
} else {
if (lastInitializer.Code == ILCode.InitCollection) {
if (lastInitializer.Arguments.Count == 1) {
// convert empty collection initializer to object initializer
lastInitializer.Code = ILCode.InitObject;
return true;
} else {
return false;
}
} else {
return true;
}
}
}
static void CleanupInitializerStackAfterFailedAdjustment(List<ILExpression> initializerStack)
{
// There might be empty nested initializers left over; so we'll remove those:
while (initializerStack.Count > 1 && initializerStack[initializerStack.Count - 1].Arguments.Count == 1) {
ILExpression parent = initializerStack[initializerStack.Count - 2];
Debug.Assert(parent.Arguments.Last() == initializerStack[initializerStack.Count - 1]);
parent.Arguments.RemoveAt(parent.Arguments.Count - 1);
initializerStack.RemoveAt(initializerStack.Count - 1);
}
}
static void ChangeFirstArgumentToInitializedObject(ILExpression initializer)
{
// Go through all elements in the initializer (so skip the newobj-instr. at the start)
for (int i = 1; i < initializer.Arguments.Count; i++) {
ILExpression element = initializer.Arguments[i];
if (element.Code == ILCode.InitCollection || element.Code == ILCode.InitObject) {
// nested collection/object initializer
ILExpression getCollection = element.Arguments[0];
getCollection.Arguments[0] = new ILExpression(ILCode.InitializedObject, null);
ChangeFirstArgumentToInitializedObject(element); // handle the collection elements
} else {
element.Arguments[0] = new ILExpression(ILCode.InitializedObject, null);
}
}
}
}
}