.NET Decompiler with support for PDB generation, ReadyToRun, Metadata (&more) - cross-platform!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1511 lines
57 KiB

// Copyright (c) 2014 Daniel Grunwald
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Collections;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Diagnostics;
using System.Linq;
using System.Threading;
using System.Reflection.Metadata;
using ICSharpCode.Decompiler.TypeSystem;
using ICSharpCode.Decompiler.Util;
using ArrayType = ICSharpCode.Decompiler.TypeSystem.ArrayType;
using ByReferenceType = ICSharpCode.Decompiler.TypeSystem.ByReferenceType;
using PinnedType = ICSharpCode.Decompiler.TypeSystem.Implementation.PinnedType;
using ICSharpCode.Decompiler.Disassembler;
using System.Reflection.Metadata.Ecma335;
namespace ICSharpCode.Decompiler.IL
{
public class ILReader
{
readonly ICompilation compilation;
readonly IDecompilerTypeSystem typeSystem;
public bool UseDebugSymbols { get; set; }
public List<string> Warnings { get; } = new List<string>();
public ILReader(IDecompilerTypeSystem typeSystem)
{
if (typeSystem == null)
throw new ArgumentNullException(nameof(typeSystem));
this.typeSystem = typeSystem;
this.compilation = typeSystem.Compilation;
}
MetadataReader metadata;
IMethod method;
MethodBodyBlock body;
Metadata.IDebugInfoProvider debugInfo;
MethodSignature<ITypeReference> methodSignature;
StackType methodReturnStackType;
BlobReader reader;
int currentInstructionOffset;
ImmutableStack<ILVariable> currentStack;
ILVariable[] parameterVariables;
ILVariable[] localVariables;
BitArray isBranchTarget;
BlockContainer mainContainer;
List<ILInstruction> instructionBuilder;
// Dictionary that stores stacks for each IL instruction
Dictionary<int, ImmutableStack<ILVariable>> stackByOffset;
Dictionary<ExceptionRegion, ILVariable> variableByExceptionHandler;
UnionFind<ILVariable> unionFind;
List<(ILVariable, ILVariable)> stackMismatchPairs;
IEnumerable<ILVariable> stackVariables;
void Init(Metadata.PEFile module, MethodDefinitionHandle methodDefinitionHandle, MethodBodyBlock body)
{
if (body == null)
throw new ArgumentNullException(nameof(body));
this.metadata = module.Metadata;
this.method = typeSystem.ResolveAsMethod(methodDefinitionHandle);
var methodDefinition = metadata.GetMethodDefinition(methodDefinitionHandle);
this.methodSignature = methodDefinition.DecodeSignature(TypeSystem.Implementation.TypeReferenceSignatureDecoder.Instance, default);
this.body = body;
this.reader = body.GetILReader();
this.debugInfo = module.DebugInfo;
this.currentStack = ImmutableStack<ILVariable>.Empty;
this.unionFind = new UnionFind<ILVariable>();
this.stackMismatchPairs = new List<(ILVariable, ILVariable)>();
this.methodReturnStackType = typeSystem.ResolveFromSignature(TypeSystem.Implementation.DynamicTypeReference.Create(methodSignature.ReturnType, methodDefinition.GetCustomAttributes(), metadata)).GetStackType();
InitParameterVariables();
localVariables = InitLocalVariables();
if (body.LocalVariablesInitialized) {
foreach (var v in localVariables) {
v.HasInitialValue = true;
}
}
this.mainContainer = new BlockContainer(expectedResultType: methodReturnStackType);
this.instructionBuilder = new List<ILInstruction>();
this.isBranchTarget = new BitArray(reader.Length);
this.stackByOffset = new Dictionary<int, ImmutableStack<ILVariable>>();
this.variableByExceptionHandler = new Dictionary<ExceptionRegion, ILVariable>();
}
EntityHandle ReadAndDecodeMetadataToken()
{
return MetadataTokens.EntityHandle(reader.ReadInt32());
}
IType ReadAndDecodeTypeReference()
{
var typeReference = MetadataTokens.EntityHandle(reader.ReadInt32());
return typeSystem.ResolveAsType(typeReference);
}
IMethod ReadAndDecodeMethodReference()
{
var methodReference = MetadataTokens.EntityHandle(reader.ReadInt32());
return typeSystem.ResolveAsMethod(methodReference);
}
IField ReadAndDecodeFieldReference()
{
var fieldReference = MetadataTokens.EntityHandle(reader.ReadInt32());
return typeSystem.ResolveAsField(fieldReference);
}
ILVariable[] InitLocalVariables()
{
if (body.LocalSignature.IsNil) return Empty<ILVariable>.Array;
var standaloneSignature = metadata.GetStandaloneSignature(body.LocalSignature);
Debug.Assert(standaloneSignature.GetKind() == StandaloneSignatureKind.LocalVariables);
var variableTypes = standaloneSignature.DecodeLocalSignature(TypeSystem.Implementation.TypeReferenceSignatureDecoder.Instance, default);
var localVariables = new ILVariable[variableTypes.Length];
foreach (var (index, type) in variableTypes.WithIndex()) {
localVariables[index] = CreateILVariable(index, type);
}
return localVariables;
}
void InitParameterVariables()
{
int popCount = method.Parameters.Count;
if (!method.IsStatic)
popCount++;
if (method.Parameters.LastOrDefault()?.Type == SpecialType.ArgList)
popCount--;
parameterVariables = new ILVariable[popCount];
int paramIndex = 0; int offset = 0;
if (methodSignature.Header.IsInstance) {
offset = 1;
parameterVariables[paramIndex++] = CreateILVariable(-1, method.DeclaringType.ToTypeReference(), "this");
}
while (paramIndex < parameterVariables.Length) {
var type = methodSignature.ParameterTypes[paramIndex - offset];
parameterVariables[paramIndex] = CreateILVariable(paramIndex - offset, type, method.Parameters[paramIndex - offset].Name);
paramIndex++;
}
Debug.Assert(paramIndex == parameterVariables.Length);
}
ILVariable CreateILVariable(int index, ITypeReference typeRef)
{
IType type = typeSystem.ResolveFromSignature(typeRef);
VariableKind kind;
if (type is PinnedType pinned) {
kind = VariableKind.PinnedLocal;
type = pinned.ElementType;
} else {
kind = VariableKind.Local;
}
ILVariable ilVar = new ILVariable(kind, type, index);
if (!UseDebugSymbols || debugInfo == null || !debugInfo.TryGetName((MethodDefinitionHandle)method.MetadataToken, index, out string name)) {
ilVar.Name = "V_" + index;
ilVar.HasGeneratedName = true;
} else if (string.IsNullOrWhiteSpace(name)) {
ilVar.Name = "V_" + index;
ilVar.HasGeneratedName = true;
} else {
ilVar.Name = name;
}
return ilVar;
}
ILVariable CreateILVariable(int index, ITypeReference typeReference, string name)
{
IType parameterType = typeSystem.ResolveFromSignature(typeReference);
ITypeDefinition def = parameterType.GetDefinition();
if (def != null && index < 0 && def.IsReferenceType == false) {
parameterType = new ByReferenceType(parameterType);
}
Debug.Assert(!parameterType.IsUnbound());
if (parameterType.IsUnbound()) {
// parameter types should not be unbound, the only known cause for these is a Cecil bug:
Debug.Assert(index < 0); // cecil bug occurs only for "this"
parameterType = new ParameterizedType(parameterType.GetDefinition(), parameterType.TypeArguments);
}
var ilVar = new ILVariable(VariableKind.Parameter, parameterType, index);
Debug.Assert(ilVar.StoreCount == 1); // count the initial store when the method is called with an argument
if (index < 0)
ilVar.Name = "this";
else if (string.IsNullOrEmpty(name))
ilVar.Name = "P_" + index;
else
ilVar.Name = name;
return ilVar;
}
/// <summary>
/// Warn when invalid IL is detected.
/// ILSpy should be able to handle invalid IL; but this method can be helpful for debugging the ILReader,
/// as this method should not get called when processing valid IL.
/// </summary>
void Warn(string message)
{
Warnings.Add(string.Format("IL_{0:x4}: {1}", currentInstructionOffset, message));
}
ImmutableStack<ILVariable> MergeStacks(ImmutableStack<ILVariable> a, ImmutableStack<ILVariable> b)
{
if (CheckStackCompatibleWithoutAdjustments(a, b)) {
// We only need to union the input variables, but can
// otherwise re-use the existing stack.
ImmutableStack<ILVariable> output = a;
while (!a.IsEmpty && !b.IsEmpty) {
Debug.Assert(a.Peek().StackType == b.Peek().StackType);
unionFind.Merge(a.Peek(), b.Peek());
a = a.Pop();
b = b.Pop();
}
return output;
} else if (a.Count() != b.Count()) {
// Let's not try to merge mismatched stacks.
Warn("Incompatible stack heights: " + a.Count() + " vs " + b.Count());
return a;
} else {
// The more complex case where the stacks don't match exactly.
var output = new List<ILVariable>();
while (!a.IsEmpty && !b.IsEmpty) {
var varA = a.Peek();
var varB = b.Peek();
if (varA.StackType == varB.StackType) {
unionFind.Merge(varA, varB);
output.Add(varA);
} else {
if (!IsValidTypeStackTypeMerge(varA.StackType, varB.StackType)) {
Warn("Incompatible stack types: " + varA.StackType + " vs " + varB.StackType);
}
if (varA.StackType > varB.StackType) {
output.Add(varA);
// every store to varB should also store to varA
stackMismatchPairs.Add((varB, varA));
} else {
output.Add(varB);
// every store to varA should also store to varB
stackMismatchPairs.Add((varA, varB));
}
}
a = a.Pop();
b = b.Pop();
}
// because we built up output by popping from the input stacks, we need to reverse it to get back the original order
output.Reverse();
return ImmutableStack.CreateRange(output);
}
}
static bool CheckStackCompatibleWithoutAdjustments(ImmutableStack<ILVariable> a, ImmutableStack<ILVariable> b)
{
while (!a.IsEmpty && !b.IsEmpty) {
if (a.Peek().StackType != b.Peek().StackType)
return false;
a = a.Pop();
b = b.Pop();
}
return a.IsEmpty && b.IsEmpty;
}
private bool IsValidTypeStackTypeMerge(StackType stackType1, StackType stackType2)
{
if (stackType1 == StackType.I && stackType2 == StackType.I4)
return true;
if (stackType1 == StackType.I4 && stackType2 == StackType.I)
return true;
if (stackType1 == StackType.F4 && stackType2 == StackType.F8)
return true;
if (stackType1 == StackType.F8 && stackType2 == StackType.F4)
return true;
// allow merging unknown type with any other type
return stackType1 == StackType.Unknown || stackType2 == StackType.Unknown;
}
/// <summary>
/// Stores the given stack for a branch to `offset`.
///
/// The stack may be modified if stack adjustments are necessary. (e.g. implicit I4->I conversion)
/// </summary>
void StoreStackForOffset(int offset, ref ImmutableStack<ILVariable> stack)
{
if (stackByOffset.TryGetValue(offset, out var existing)) {
stack = MergeStacks(existing, stack);
if (stack != existing)
stackByOffset[offset] = stack;
} else {
stackByOffset.Add(offset, stack);
}
}
void ReadInstructions(CancellationToken cancellationToken)
{
// Fill isBranchTarget and branchStackDict based on exception handlers
foreach (var eh in body.ExceptionRegions) {
ImmutableStack<ILVariable> ehStack = null;
if (eh.Kind == ExceptionRegionKind.Catch) {
var v = new ILVariable(VariableKind.Exception, typeSystem.ResolveAsType(eh.CatchType), eh.HandlerOffset) {
Name = "E_" + eh.HandlerOffset,
HasGeneratedName = true
};
variableByExceptionHandler.Add(eh, v);
ehStack = ImmutableStack.Create(v);
} else if (eh.Kind == ExceptionRegionKind.Filter) {
var v = new ILVariable(VariableKind.Exception, typeSystem.Compilation.FindType(KnownTypeCode.Object), eh.HandlerOffset) {
Name = "E_" + eh.HandlerOffset,
HasGeneratedName = true
};
variableByExceptionHandler.Add(eh, v);
ehStack = ImmutableStack.Create(v);
} else {
ehStack = ImmutableStack<ILVariable>.Empty;
}
if (eh.FilterOffset != -1) {
isBranchTarget[eh.FilterOffset] = true;
StoreStackForOffset(eh.FilterOffset, ref ehStack);
}
if (eh.HandlerOffset != -1) {
isBranchTarget[eh.HandlerOffset] = true;
StoreStackForOffset(eh.HandlerOffset, ref ehStack);
}
}
reader.Reset();
while (reader.RemainingBytes > 0) {
cancellationToken.ThrowIfCancellationRequested();
int start = reader.Offset;
StoreStackForOffset(start, ref currentStack);
ILInstruction decodedInstruction = DecodeInstruction();
if (decodedInstruction.ResultType == StackType.Unknown)
Warn("Unknown result type (might be due to invalid IL or missing references)");
decodedInstruction.CheckInvariant(ILPhase.InILReader);
int end = reader.Offset;
decodedInstruction.ILRange = new Interval(start, end);
UnpackPush(decodedInstruction).ILRange = decodedInstruction.ILRange;
instructionBuilder.Add(decodedInstruction);
if (decodedInstruction.HasDirectFlag(InstructionFlags.EndPointUnreachable)) {
if (!stackByOffset.TryGetValue(end, out currentStack)) {
currentStack = ImmutableStack<ILVariable>.Empty;
}
}
}
var visitor = new CollectStackVariablesVisitor(unionFind);
for (int i = 0; i < instructionBuilder.Count; i++) {
instructionBuilder[i] = instructionBuilder[i].AcceptVisitor(visitor);
}
stackVariables = visitor.variables;
InsertStackAdjustments();
}
void InsertStackAdjustments()
{
if (stackMismatchPairs.Count == 0)
return;
var dict = new MultiDictionary<ILVariable, ILVariable>();
foreach (var (origA, origB) in stackMismatchPairs) {
var a = unionFind.Find(origA);
var b = unionFind.Find(origB);
Debug.Assert(a.StackType < b.StackType);
// For every store to a, insert a converting store to b.
if (!dict[a].Contains(b))
dict.Add(a, b);
}
var newInstructions = new List<ILInstruction>();
foreach (var inst in instructionBuilder) {
newInstructions.Add(inst);
if (inst is StLoc store) {
foreach (var additionalVar in dict[store.Variable]) {
ILInstruction value = new LdLoc(store.Variable);
value = new Conv(value, additionalVar.StackType.ToPrimitiveType(), false, Sign.Signed);
newInstructions.Add(new StLoc(additionalVar, value) {
IsStackAdjustment = true,
ILRange = inst.ILRange
});
}
}
}
instructionBuilder = newInstructions;
}
/// <summary>
/// Debugging helper: writes the decoded instruction stream interleaved with the inferred evaluation stack layout.
/// </summary>
public void WriteTypedIL(Metadata.PEFile module, MethodDefinitionHandle method, MethodBodyBlock body, ITextOutput output, CancellationToken cancellationToken = default(CancellationToken))
{
Init(module, method, body);
ReadInstructions(cancellationToken);
foreach (var inst in instructionBuilder) {
if (inst is StLoc stloc && stloc.IsStackAdjustment) {
output.Write(" ");
inst.WriteTo(output, new ILAstWritingOptions());
output.WriteLine();
continue;
}
output.Write(" [");
bool isFirstElement = true;
foreach (var element in stackByOffset[inst.ILRange.Start]) {
if (isFirstElement)
isFirstElement = false;
else
output.Write(", ");
output.WriteReference(element.Name, element, isLocal: true);
output.Write(":");
output.Write(element.StackType);
}
output.Write(']');
output.WriteLine();
if (isBranchTarget[inst.ILRange.Start])
output.Write('*');
else
output.Write(' ');
output.WriteDefinition("IL_" + inst.ILRange.Start.ToString("x4"), inst.ILRange.Start);
output.Write(": ");
inst.WriteTo(output, new ILAstWritingOptions());
output.WriteLine();
}
new Disassembler.MethodBodyDisassembler(output, cancellationToken) { DetectControlStructure = false }
.WriteExceptionHandlers(module, method, body);
}
/// <summary>
/// Decodes the specified method body and returns an ILFunction.
/// </summary>
public ILFunction ReadIL(Metadata.PEFile module, MethodDefinitionHandle method, MethodBodyBlock body, CancellationToken cancellationToken = default(CancellationToken))
{
cancellationToken.ThrowIfCancellationRequested();
Init(module, method, body);
ReadInstructions(cancellationToken);
var blockBuilder = new BlockBuilder(body, typeSystem, variableByExceptionHandler);
blockBuilder.CreateBlocks(mainContainer, instructionBuilder, isBranchTarget, cancellationToken);
var resolvedMethod = typeSystem.ResolveAsMethod(method);
var function = new ILFunction(resolvedMethod, body.GetCodeSize(), mainContainer);
CollectionExtensions.AddRange(function.Variables, parameterVariables);
CollectionExtensions.AddRange(function.Variables, localVariables);
CollectionExtensions.AddRange(function.Variables, stackVariables);
CollectionExtensions.AddRange(function.Variables, variableByExceptionHandler.Values);
function.AddRef(); // mark the root node
foreach (var c in function.Descendants.OfType<BlockContainer>()) {
c.SortBlocks();
}
function.Warnings.AddRange(Warnings);
return function;
}
static ILInstruction UnpackPush(ILInstruction inst)
{
ILVariable v;
ILInstruction inner;
if (inst.MatchStLoc(out v, out inner) && v.Kind == VariableKind.StackSlot)
return inner;
else
return inst;
}
ILInstruction Neg()
{
switch (PeekStackType()) {
case StackType.I4:
return Push(new BinaryNumericInstruction(BinaryNumericOperator.Sub, new LdcI4(0), Pop(), checkForOverflow: false, sign: Sign.None));
case StackType.I:
return Push(new BinaryNumericInstruction(BinaryNumericOperator.Sub, new Conv(new LdcI4(0), PrimitiveType.I, false, Sign.None), Pop(), checkForOverflow: false, sign: Sign.None));
case StackType.I8:
return Push(new BinaryNumericInstruction(BinaryNumericOperator.Sub, new LdcI8(0), Pop(), checkForOverflow: false, sign: Sign.None));
case StackType.F4:
return Push(new BinaryNumericInstruction(BinaryNumericOperator.Sub, new LdcF4(0), Pop(), checkForOverflow: false, sign: Sign.None));
case StackType.F8:
return Push(new BinaryNumericInstruction(BinaryNumericOperator.Sub, new LdcF8(0), Pop(), checkForOverflow: false, sign: Sign.None));
default:
Warn("Unsupported input type for neg.");
goto case StackType.I4;
}
}
ILInstruction DecodeInstruction()
{
if (reader.RemainingBytes == 0)
return new InvalidBranch("Unexpected end of body");
var opCode = ILParser.DecodeOpCode(ref reader);
switch (opCode) {
case ILOpCode.Constrained:
return DecodeConstrainedCall();
case ILOpCode.Readonly:
return DecodeReadonly();
case ILOpCode.Tail:
return DecodeTailCall();
case ILOpCode.Unaligned:
return DecodeUnaligned();
case ILOpCode.Volatile:
return DecodeVolatile();
case ILOpCode.Add:
return BinaryNumeric(BinaryNumericOperator.Add);
case ILOpCode.Add_ovf:
return BinaryNumeric(BinaryNumericOperator.Add, true, Sign.Signed);
case ILOpCode.Add_ovf_un:
return BinaryNumeric(BinaryNumericOperator.Add, true, Sign.Unsigned);
case ILOpCode.And:
return BinaryNumeric(BinaryNumericOperator.BitAnd);
case ILOpCode.Arglist:
return Push(new Arglist());
case ILOpCode.Beq:
return DecodeComparisonBranch(opCode, ComparisonKind.Equality);
case ILOpCode.Beq_s:
return DecodeComparisonBranch(opCode, ComparisonKind.Equality);
case ILOpCode.Bge:
return DecodeComparisonBranch(opCode, ComparisonKind.GreaterThanOrEqual);
case ILOpCode.Bge_s:
return DecodeComparisonBranch(opCode, ComparisonKind.GreaterThanOrEqual);
case ILOpCode.Bge_un:
return DecodeComparisonBranch(opCode, ComparisonKind.GreaterThanOrEqual, un: true);
case ILOpCode.Bge_un_s:
return DecodeComparisonBranch(opCode, ComparisonKind.GreaterThanOrEqual, un: true);
case ILOpCode.Bgt:
return DecodeComparisonBranch(opCode, ComparisonKind.GreaterThan);
case ILOpCode.Bgt_s:
return DecodeComparisonBranch(opCode, ComparisonKind.GreaterThan);
case ILOpCode.Bgt_un:
return DecodeComparisonBranch(opCode, ComparisonKind.GreaterThan, un: true);
case ILOpCode.Bgt_un_s:
return DecodeComparisonBranch(opCode, ComparisonKind.GreaterThan, un: true);
case ILOpCode.Ble:
return DecodeComparisonBranch(opCode, ComparisonKind.LessThanOrEqual);
case ILOpCode.Ble_s:
return DecodeComparisonBranch(opCode, ComparisonKind.LessThanOrEqual);
case ILOpCode.Ble_un:
return DecodeComparisonBranch(opCode, ComparisonKind.LessThanOrEqual, un: true);
case ILOpCode.Ble_un_s:
return DecodeComparisonBranch(opCode, ComparisonKind.LessThanOrEqual, un: true);
case ILOpCode.Blt:
return DecodeComparisonBranch(opCode, ComparisonKind.LessThan);
case ILOpCode.Blt_s:
return DecodeComparisonBranch(opCode, ComparisonKind.LessThan);
case ILOpCode.Blt_un:
return DecodeComparisonBranch(opCode, ComparisonKind.LessThan, un: true);
case ILOpCode.Blt_un_s:
return DecodeComparisonBranch(opCode, ComparisonKind.LessThan, un: true);
case ILOpCode.Bne_un:
return DecodeComparisonBranch(opCode, ComparisonKind.Inequality, un: true);
case ILOpCode.Bne_un_s:
return DecodeComparisonBranch(opCode, ComparisonKind.Inequality, un: true);
case ILOpCode.Br:
return DecodeUnconditionalBranch(opCode);
case ILOpCode.Br_s:
return DecodeUnconditionalBranch(opCode);
case ILOpCode.Break:
return new DebugBreak();
case ILOpCode.Brfalse:
return DecodeConditionalBranch(opCode, true);
case ILOpCode.Brfalse_s:
return DecodeConditionalBranch(opCode, true);
case ILOpCode.Brtrue:
return DecodeConditionalBranch(opCode, false);
case ILOpCode.Brtrue_s:
return DecodeConditionalBranch(opCode, false);
case ILOpCode.Call:
return DecodeCall(OpCode.Call);
case ILOpCode.Callvirt:
return DecodeCall(OpCode.CallVirt);
case ILOpCode.Calli:
return DecodeCallIndirect();
case ILOpCode.Ceq:
return Push(Comparison(ComparisonKind.Equality));
case ILOpCode.Cgt:
return Push(Comparison(ComparisonKind.GreaterThan));
case ILOpCode.Cgt_un:
return Push(Comparison(ComparisonKind.GreaterThan, un: true));
case ILOpCode.Clt:
return Push(Comparison(ComparisonKind.LessThan));
case ILOpCode.Clt_un:
return Push(Comparison(ComparisonKind.LessThan, un: true));
case ILOpCode.Ckfinite:
return new Ckfinite(Peek());
case ILOpCode.Conv_i1:
return Push(new Conv(Pop(), PrimitiveType.I1, false, Sign.None));
case ILOpCode.Conv_i2:
return Push(new Conv(Pop(), PrimitiveType.I2, false, Sign.None));
case ILOpCode.Conv_i4:
return Push(new Conv(Pop(), PrimitiveType.I4, false, Sign.None));
case ILOpCode.Conv_i8:
return Push(new Conv(Pop(), PrimitiveType.I8, false, Sign.None));
case ILOpCode.Conv_r4:
return Push(new Conv(Pop(), PrimitiveType.R4, false, Sign.Signed));
case ILOpCode.Conv_r8:
return Push(new Conv(Pop(), PrimitiveType.R8, false, Sign.Signed));
case ILOpCode.Conv_u1:
return Push(new Conv(Pop(), PrimitiveType.U1, false, Sign.None));
case ILOpCode.Conv_u2:
return Push(new Conv(Pop(), PrimitiveType.U2, false, Sign.None));
case ILOpCode.Conv_u4:
return Push(new Conv(Pop(), PrimitiveType.U4, false, Sign.None));
case ILOpCode.Conv_u8:
return Push(new Conv(Pop(), PrimitiveType.U8, false, Sign.None));
case ILOpCode.Conv_i:
return Push(new Conv(Pop(), PrimitiveType.I, false, Sign.None));
case ILOpCode.Conv_u:
return Push(new Conv(Pop(), PrimitiveType.U, false, Sign.None));
case ILOpCode.Conv_r_un:
return Push(new Conv(Pop(), PrimitiveType.R8, false, Sign.Unsigned));
case ILOpCode.Conv_ovf_i1:
return Push(new Conv(Pop(), PrimitiveType.I1, true, Sign.Signed));
case ILOpCode.Conv_ovf_i2:
return Push(new Conv(Pop(), PrimitiveType.I2, true, Sign.Signed));
case ILOpCode.Conv_ovf_i4:
return Push(new Conv(Pop(), PrimitiveType.I4, true, Sign.Signed));
case ILOpCode.Conv_ovf_i8:
return Push(new Conv(Pop(), PrimitiveType.I8, true, Sign.Signed));
case ILOpCode.Conv_ovf_u1:
return Push(new Conv(Pop(), PrimitiveType.U1, true, Sign.Signed));
case ILOpCode.Conv_ovf_u2:
return Push(new Conv(Pop(), PrimitiveType.U2, true, Sign.Signed));
case ILOpCode.Conv_ovf_u4:
return Push(new Conv(Pop(), PrimitiveType.U4, true, Sign.Signed));
case ILOpCode.Conv_ovf_u8:
return Push(new Conv(Pop(), PrimitiveType.U8, true, Sign.Signed));
case ILOpCode.Conv_ovf_i:
return Push(new Conv(Pop(), PrimitiveType.I, true, Sign.Signed));
case ILOpCode.Conv_ovf_u:
return Push(new Conv(Pop(), PrimitiveType.U, true, Sign.Signed));
case ILOpCode.Conv_ovf_i1_un:
return Push(new Conv(Pop(), PrimitiveType.I1, true, Sign.Unsigned));
case ILOpCode.Conv_ovf_i2_un:
return Push(new Conv(Pop(), PrimitiveType.I2, true, Sign.Unsigned));
case ILOpCode.Conv_ovf_i4_un:
return Push(new Conv(Pop(), PrimitiveType.I4, true, Sign.Unsigned));
case ILOpCode.Conv_ovf_i8_un:
return Push(new Conv(Pop(), PrimitiveType.I8, true, Sign.Unsigned));
case ILOpCode.Conv_ovf_u1_un:
return Push(new Conv(Pop(), PrimitiveType.U1, true, Sign.Unsigned));
case ILOpCode.Conv_ovf_u2_un:
return Push(new Conv(Pop(), PrimitiveType.U2, true, Sign.Unsigned));
case ILOpCode.Conv_ovf_u4_un:
return Push(new Conv(Pop(), PrimitiveType.U4, true, Sign.Unsigned));
case ILOpCode.Conv_ovf_u8_un:
return Push(new Conv(Pop(), PrimitiveType.U8, true, Sign.Unsigned));
case ILOpCode.Conv_ovf_i_un:
return Push(new Conv(Pop(), PrimitiveType.I, true, Sign.Unsigned));
case ILOpCode.Conv_ovf_u_un:
return Push(new Conv(Pop(), PrimitiveType.U, true, Sign.Unsigned));
case ILOpCode.Cpblk:
return new Cpblk(size: Pop(StackType.I4), sourceAddress: PopPointer(), destAddress: PopPointer());
case ILOpCode.Div:
return BinaryNumeric(BinaryNumericOperator.Div, false, Sign.Signed);
case ILOpCode.Div_un:
return BinaryNumeric(BinaryNumericOperator.Div, false, Sign.Unsigned);
case ILOpCode.Dup:
return Push(Peek());
case ILOpCode.Endfilter:
return new Leave(null, Pop());
case ILOpCode.Endfinally:
return new Leave(null);
case ILOpCode.Initblk:
return new Initblk(size: Pop(StackType.I4), value: Pop(StackType.I4), address: PopPointer());
case ILOpCode.Jmp:
return DecodeJmp();
case ILOpCode.Ldarg:
case ILOpCode.Ldarg_s:
return Push(Ldarg(ILParser.DecodeIndex(ref reader, opCode)));
case ILOpCode.Ldarg_0:
return Push(Ldarg(0));
case ILOpCode.Ldarg_1:
return Push(Ldarg(1));
case ILOpCode.Ldarg_2:
return Push(Ldarg(2));
case ILOpCode.Ldarg_3:
return Push(Ldarg(3));
case ILOpCode.Ldarga:
case ILOpCode.Ldarga_s:
return Push(Ldarga(ILParser.DecodeIndex(ref reader, opCode)));
case ILOpCode.Ldc_i4:
return Push(new LdcI4(reader.ReadInt32()));
case ILOpCode.Ldc_i8:
return Push(new LdcI8(reader.ReadInt64()));
case ILOpCode.Ldc_r4:
return Push(new LdcF4(reader.ReadSingle()));
case ILOpCode.Ldc_r8:
return Push(new LdcF8(reader.ReadDouble()));
case ILOpCode.Ldc_i4_m1:
return Push(new LdcI4(-1));
case ILOpCode.Ldc_i4_0:
return Push(new LdcI4(0));
case ILOpCode.Ldc_i4_1:
return Push(new LdcI4(1));
case ILOpCode.Ldc_i4_2:
return Push(new LdcI4(2));
case ILOpCode.Ldc_i4_3:
return Push(new LdcI4(3));
case ILOpCode.Ldc_i4_4:
return Push(new LdcI4(4));
case ILOpCode.Ldc_i4_5:
return Push(new LdcI4(5));
case ILOpCode.Ldc_i4_6:
return Push(new LdcI4(6));
case ILOpCode.Ldc_i4_7:
return Push(new LdcI4(7));
case ILOpCode.Ldc_i4_8:
return Push(new LdcI4(8));
case ILOpCode.Ldc_i4_s:
return Push(new LdcI4(reader.ReadSByte()));
case ILOpCode.Ldnull:
return Push(new LdNull());
case ILOpCode.Ldstr:
return Push(DecodeLdstr());
case ILOpCode.Ldftn:
return Push(new LdFtn(ReadAndDecodeMethodReference()));
case ILOpCode.Ldind_i1:
return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.SByte)));
case ILOpCode.Ldind_i2:
return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.Int16)));
case ILOpCode.Ldind_i4:
return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.Int32)));
case ILOpCode.Ldind_i8:
return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.Int64)));
case ILOpCode.Ldind_u1:
return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.Byte)));
case ILOpCode.Ldind_u2:
return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.UInt16)));
case ILOpCode.Ldind_u4:
return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.UInt32)));
case ILOpCode.Ldind_r4:
return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.Single)));
case ILOpCode.Ldind_r8:
return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.Double)));
case ILOpCode.Ldind_i:
return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.IntPtr)));
case ILOpCode.Ldind_ref:
return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.Object)));
case ILOpCode.Ldloc:
case ILOpCode.Ldloc_s:
return Push(Ldloc(ILParser.DecodeIndex(ref reader, opCode)));
case ILOpCode.Ldloc_0:
return Push(Ldloc(0));
case ILOpCode.Ldloc_1:
return Push(Ldloc(1));
case ILOpCode.Ldloc_2:
return Push(Ldloc(2));
case ILOpCode.Ldloc_3:
return Push(Ldloc(3));
case ILOpCode.Ldloca:
case ILOpCode.Ldloca_s:
return Push(Ldloca(ILParser.DecodeIndex(ref reader, opCode)));
case ILOpCode.Leave:
return DecodeUnconditionalBranch(opCode, isLeave: true);
case ILOpCode.Leave_s:
return DecodeUnconditionalBranch(opCode, isLeave: true);
case ILOpCode.Localloc:
return Push(new LocAlloc(Pop()));
case ILOpCode.Mul:
return BinaryNumeric(BinaryNumericOperator.Mul, false, Sign.None);
case ILOpCode.Mul_ovf:
return BinaryNumeric(BinaryNumericOperator.Mul, true, Sign.Signed);
case ILOpCode.Mul_ovf_un:
return BinaryNumeric(BinaryNumericOperator.Mul, true, Sign.Unsigned);
case ILOpCode.Neg:
return Neg();
case ILOpCode.Newobj:
return DecodeCall(OpCode.NewObj);
case ILOpCode.Nop:
return new Nop();
case ILOpCode.Not:
return Push(new BitNot(Pop()));
case ILOpCode.Or:
return BinaryNumeric(BinaryNumericOperator.BitOr);
case ILOpCode.Pop:
Pop();
return new Nop() { Kind = NopKind.Pop };
case ILOpCode.Rem:
return BinaryNumeric(BinaryNumericOperator.Rem, false, Sign.Signed);
case ILOpCode.Rem_un:
return BinaryNumeric(BinaryNumericOperator.Rem, false, Sign.Unsigned);
case ILOpCode.Ret:
return Return();
case ILOpCode.Shl:
return BinaryNumeric(BinaryNumericOperator.ShiftLeft, false, Sign.None);
case ILOpCode.Shr:
return BinaryNumeric(BinaryNumericOperator.ShiftRight, false, Sign.Signed);
case ILOpCode.Shr_un:
return BinaryNumeric(BinaryNumericOperator.ShiftRight, false, Sign.Unsigned);
case ILOpCode.Starg:
case ILOpCode.Starg_s:
return Starg(ILParser.DecodeIndex(ref reader, opCode));
case ILOpCode.Stind_i1:
return new StObj(value: Pop(StackType.I4), target: PopPointer(), type: compilation.FindType(KnownTypeCode.SByte));
case ILOpCode.Stind_i2:
return new StObj(value: Pop(StackType.I4), target: PopPointer(), type: compilation.FindType(KnownTypeCode.Int16));
case ILOpCode.Stind_i4:
return new StObj(value: Pop(StackType.I4), target: PopPointer(), type: compilation.FindType(KnownTypeCode.Int32));
case ILOpCode.Stind_i8:
return new StObj(value: Pop(StackType.I8), target: PopPointer(), type: compilation.FindType(KnownTypeCode.Int64));
case ILOpCode.Stind_r4:
return new StObj(value: Pop(StackType.F4), target: PopPointer(), type: compilation.FindType(KnownTypeCode.Single));
case ILOpCode.Stind_r8:
return new StObj(value: Pop(StackType.F8), target: PopPointer(), type: compilation.FindType(KnownTypeCode.Double));
case ILOpCode.Stind_i:
return new StObj(value: Pop(StackType.I), target: PopPointer(), type: compilation.FindType(KnownTypeCode.IntPtr));
case ILOpCode.Stind_ref:
return new StObj(value: Pop(StackType.O), target: PopPointer(), type: compilation.FindType(KnownTypeCode.Object));
case ILOpCode.Stloc:
case ILOpCode.Stloc_s:
return Stloc(ILParser.DecodeIndex(ref reader, opCode));
case ILOpCode.Stloc_0:
return Stloc(0);
case ILOpCode.Stloc_1:
return Stloc(1);
case ILOpCode.Stloc_2:
return Stloc(2);
case ILOpCode.Stloc_3:
return Stloc(3);
case ILOpCode.Sub:
return BinaryNumeric(BinaryNumericOperator.Sub, false, Sign.None);
case ILOpCode.Sub_ovf:
return BinaryNumeric(BinaryNumericOperator.Sub, true, Sign.Signed);
case ILOpCode.Sub_ovf_un:
return BinaryNumeric(BinaryNumericOperator.Sub, true, Sign.Unsigned);
case ILOpCode.Switch:
return DecodeSwitch();
case ILOpCode.Xor:
return BinaryNumeric(BinaryNumericOperator.BitXor);
case ILOpCode.Box:
{
var type = ReadAndDecodeTypeReference();
return Push(new Box(Pop(type.GetStackType()), type));
}
case ILOpCode.Castclass:
return Push(new CastClass(Pop(StackType.O), ReadAndDecodeTypeReference()));
case ILOpCode.Cpobj:
{
var type = ReadAndDecodeTypeReference();
var ld = new LdObj(PopPointer(), type);
return new StObj(PopPointer(), ld, type);
}
case ILOpCode.Initobj:
return InitObj(PopPointer(), ReadAndDecodeTypeReference());
case ILOpCode.Isinst:
return Push(new IsInst(Pop(StackType.O), ReadAndDecodeTypeReference()));
case ILOpCode.Ldelem:
return LdElem(ReadAndDecodeTypeReference());
case ILOpCode.Ldelem_i1:
return LdElem(compilation.FindType(KnownTypeCode.SByte));
case ILOpCode.Ldelem_i2:
return LdElem(compilation.FindType(KnownTypeCode.Int16));
case ILOpCode.Ldelem_i4:
return LdElem(compilation.FindType(KnownTypeCode.Int32));
case ILOpCode.Ldelem_i8:
return LdElem(compilation.FindType(KnownTypeCode.Int64));
case ILOpCode.Ldelem_u1:
return LdElem(compilation.FindType(KnownTypeCode.Byte));
case ILOpCode.Ldelem_u2:
return LdElem(compilation.FindType(KnownTypeCode.UInt16));
case ILOpCode.Ldelem_u4:
return LdElem(compilation.FindType(KnownTypeCode.UInt32));
case ILOpCode.Ldelem_r4:
return LdElem(compilation.FindType(KnownTypeCode.Single));
case ILOpCode.Ldelem_r8:
return LdElem(compilation.FindType(KnownTypeCode.Double));
case ILOpCode.Ldelem_i:
return LdElem(compilation.FindType(KnownTypeCode.IntPtr));
case ILOpCode.Ldelem_ref:
return LdElem(compilation.FindType(KnownTypeCode.Object));
case ILOpCode.Ldelema:
return Push(new LdElema(indices: Pop(), array: Pop(), type: ReadAndDecodeTypeReference()));
case ILOpCode.Ldfld:
{
var field = ReadAndDecodeFieldReference();
return Push(new LdObj(new LdFlda(PopLdFldTarget(field), field) { DelayExceptions = true }, field.Type));
}
case ILOpCode.Ldflda:
{
var field = ReadAndDecodeFieldReference();
return Push(new LdFlda(PopFieldTarget(field), field));
}
case ILOpCode.Stfld:
{
var field = ReadAndDecodeFieldReference();
return new StObj(value: Pop(field.Type.GetStackType()), target: new LdFlda(PopFieldTarget(field), field) { DelayExceptions = true }, type: field.Type);
}
case ILOpCode.Ldlen:
return Push(new LdLen(StackType.I, Pop()));
case ILOpCode.Ldobj:
return Push(new LdObj(PopPointer(), ReadAndDecodeTypeReference()));
case ILOpCode.Ldsfld:
{
var field = ReadAndDecodeFieldReference();
return Push(new LdObj(new LdsFlda(field), field.Type));
}
case ILOpCode.Ldsflda:
return Push(new LdsFlda(ReadAndDecodeFieldReference()));
case ILOpCode.Stsfld:
{
var field = ReadAndDecodeFieldReference();
return new StObj(value: Pop(field.Type.GetStackType()), target: new LdsFlda(field), type: field.Type);
}
case ILOpCode.Ldtoken:
return Push(LdToken(ReadAndDecodeMetadataToken()));
case ILOpCode.Ldvirtftn:
return Push(new LdVirtFtn(Pop(), ReadAndDecodeMethodReference()));
case ILOpCode.Mkrefany:
return Push(new MakeRefAny(PopPointer(), ReadAndDecodeTypeReference()));
case ILOpCode.Newarr:
return Push(new NewArr(ReadAndDecodeTypeReference(), Pop()));
case ILOpCode.Refanytype:
return Push(new RefAnyType(Pop()));
case ILOpCode.Refanyval:
return Push(new RefAnyValue(Pop(), ReadAndDecodeTypeReference()));
case ILOpCode.Rethrow:
return new Rethrow();
case ILOpCode.Sizeof:
return Push(new SizeOf(ReadAndDecodeTypeReference()));
case ILOpCode.Stelem:
return StElem(ReadAndDecodeTypeReference());
case ILOpCode.Stelem_i1:
return StElem(compilation.FindType(KnownTypeCode.SByte));
case ILOpCode.Stelem_i2:
return StElem(compilation.FindType(KnownTypeCode.Int16));
case ILOpCode.Stelem_i4:
return StElem(compilation.FindType(KnownTypeCode.Int32));
case ILOpCode.Stelem_i8:
return StElem(compilation.FindType(KnownTypeCode.Int64));
case ILOpCode.Stelem_r4:
return StElem(compilation.FindType(KnownTypeCode.Single));
case ILOpCode.Stelem_r8:
return StElem(compilation.FindType(KnownTypeCode.Double));
case ILOpCode.Stelem_i:
return StElem(compilation.FindType(KnownTypeCode.IntPtr));
case ILOpCode.Stelem_ref:
return StElem(compilation.FindType(KnownTypeCode.Object));
case ILOpCode.Stobj:
{
var type = ReadAndDecodeTypeReference();
return new StObj(value: Pop(type.GetStackType()), target: PopPointer(), type: type);
}
case ILOpCode.Throw:
return new Throw(Pop());
case ILOpCode.Unbox:
return Push(new Unbox(Pop(), ReadAndDecodeTypeReference()));
case ILOpCode.Unbox_any:
return Push(new UnboxAny(Pop(), ReadAndDecodeTypeReference()));
default:
return new InvalidBranch("Unknown opcode: " + opCode.ToString());
}
}
StackType PeekStackType()
{
if (currentStack.IsEmpty)
return StackType.Unknown;
else
return currentStack.Peek().StackType;
}
class CollectStackVariablesVisitor : ILVisitor<ILInstruction>
{
readonly UnionFind<ILVariable> unionFind;
internal readonly HashSet<ILVariable> variables = new HashSet<ILVariable>();
public CollectStackVariablesVisitor(UnionFind<ILVariable> unionFind)
{
Debug.Assert(unionFind != null);
this.unionFind = unionFind;
}
protected override ILInstruction Default(ILInstruction inst)
{
foreach (var child in inst.Children) {
var newChild = child.AcceptVisitor(this);
if (newChild != child)
child.ReplaceWith(newChild);
}
return inst;
}
protected internal override ILInstruction VisitLdLoc(LdLoc inst)
{
base.VisitLdLoc(inst);
if (inst.Variable.Kind == VariableKind.StackSlot) {
var variable = unionFind.Find(inst.Variable);
if (variables.Add(variable))
variable.Name = "S_" + (variables.Count - 1);
return new LdLoc(variable) { ILRange = inst.ILRange };
}
return inst;
}
protected internal override ILInstruction VisitStLoc(StLoc inst)
{
base.VisitStLoc(inst);
if (inst.Variable.Kind == VariableKind.StackSlot) {
var variable = unionFind.Find(inst.Variable);
if (variables.Add(variable))
variable.Name = "S_" + (variables.Count - 1);
return new StLoc(variable, inst.Value) { ILRange = inst.ILRange };
}
return inst;
}
}
ILInstruction Push(ILInstruction inst)
{
Debug.Assert(inst.ResultType != StackType.Void);
IType type = compilation.FindType(inst.ResultType.ToKnownTypeCode());
var v = new ILVariable(VariableKind.StackSlot, type, inst.ResultType, inst.ILRange.Start);
v.HasGeneratedName = true;
currentStack = currentStack.Push(v);
return new StLoc(v, inst);
}
ILInstruction Peek()
{
if (currentStack.IsEmpty) {
return new InvalidExpression("Stack underflow") { ILRange = new Interval(reader.Offset, reader.Offset) };
}
return new LdLoc(currentStack.Peek());
}
ILInstruction Pop()
{
if (currentStack.IsEmpty) {
return new InvalidExpression("Stack underflow") { ILRange = new Interval(reader.Offset, reader.Offset) };
}
ILVariable v;
currentStack = currentStack.Pop(out v);
return new LdLoc(v);
}
ILInstruction Pop(StackType expectedType)
{
ILInstruction inst = Pop();
if (expectedType != inst.ResultType) {
if (inst is InvalidExpression) {
((InvalidExpression)inst).ExpectedResultType = expectedType;
} else if (expectedType == StackType.I && inst.ResultType == StackType.I4) {
// IL allows implicit I4->I conversions
inst = new Conv(inst, PrimitiveType.I, false, Sign.None);
} else if (expectedType == StackType.I4 && inst.ResultType == StackType.I) {
// C++/CLI also sometimes implicitly converts in the other direction:
inst = new Conv(inst, PrimitiveType.I4, false, Sign.None);
} else if (expectedType == StackType.Unknown) {
inst = new Conv(inst, PrimitiveType.Unknown, false, Sign.None);
} else if (inst.ResultType == StackType.Ref) {
// Implicitly stop GC tracking; this occurs when passing the result of 'ldloca' or 'ldsflda'
// to a method expecting a native pointer.
inst = new Conv(inst, PrimitiveType.I, false, Sign.None);
switch (expectedType) {
case StackType.I4:
inst = new Conv(inst, PrimitiveType.I4, false, Sign.None);
break;
case StackType.I:
break;
case StackType.I8:
inst = new Conv(inst, PrimitiveType.I8, false, Sign.None);
break;
default:
Warn($"Expected {expectedType}, but got {StackType.Ref}");
inst = new Conv(inst, expectedType.ToPrimitiveType(), false, Sign.None);
break;
}
} else if (expectedType == StackType.Ref) {
// implicitly start GC tracking / object to interior
if (!inst.ResultType.IsIntegerType() && inst.ResultType != StackType.O) {
// We also handle the invalid to-ref cases here because the else case
// below uses expectedType.ToKnownTypeCode(), which doesn't work for Ref.
Warn($"Expected {expectedType}, but got {inst.ResultType}");
}
inst = new Conv(inst, PrimitiveType.Ref, false, Sign.None);
} else if (expectedType == StackType.F8 && inst.ResultType == StackType.F4) {
// IL allows implicit F4->F8 conversions, because in IL F4 and F8 are the same.
inst = new Conv(inst, PrimitiveType.R8, false, Sign.Signed);
} else if (expectedType == StackType.F4 && inst.ResultType == StackType.F8) {
// IL allows implicit F8->F4 conversions, because in IL F4 and F8 are the same.
inst = new Conv(inst, PrimitiveType.R4, false, Sign.Signed);
} else {
Warn($"Expected {expectedType}, but got {inst.ResultType}");
inst = new Conv(inst, expectedType.ToPrimitiveType(), false, Sign.Signed);
}
}
return inst;
}
ILInstruction PopPointer()
{
ILInstruction inst = Pop();
switch (inst.ResultType) {
case StackType.I4:
return new Conv(inst, PrimitiveType.I, false, Sign.None);
case StackType.I:
case StackType.Ref:
case StackType.Unknown:
return inst;
default:
Warn("Expected native int or pointer, but got " + inst.ResultType);
return inst;
}
}
ILInstruction PopFieldTarget(IField field)
{
return field.DeclaringType.IsReferenceType == true ? Pop(StackType.O) : PopPointer();
}
ILInstruction PopLdFldTarget(IField field)
{
if (field.DeclaringType.IsReferenceType == true)
return Pop(StackType.O);
return PeekStackType() == StackType.O ? new AddressOf(Pop()) : PopPointer();
}
private ILInstruction Return()
{
if (methodReturnStackType == StackType.Void)
return new IL.Leave(mainContainer);
else
return new IL.Leave(mainContainer, Pop(methodReturnStackType));
}
private ILInstruction DecodeLdstr()
{
return new LdStr(ILParser.DecodeUserString(ref reader, metadata));
}
private ILInstruction Ldarg(int v)
{
return new LdLoc(parameterVariables[v]);
}
private ILInstruction Ldarga(int v)
{
return new LdLoca(parameterVariables[v]);
}
private ILInstruction Starg(int v)
{
return new StLoc(parameterVariables[v], Pop(parameterVariables[v].StackType));
}
private ILInstruction Ldloc(int v)
{
return new LdLoc(localVariables[v]);
}
private ILInstruction Ldloca(int v)
{
return new LdLoca(localVariables[v]);
}
private ILInstruction Stloc(int v)
{
return new StLoc(localVariables[v], Pop(localVariables[v].StackType));
}
private ILInstruction LdElem(IType type)
{
return Push(new LdObj(new LdElema(indices: Pop(), array: Pop(), type: type) { DelayExceptions = true }, type));
}
private ILInstruction StElem(IType type)
{
var value = Pop(type.GetStackType());
var index = Pop();
var array = Pop();
return new StObj(new LdElema(type, array, index) { DelayExceptions = true }, value, type);
}
ILInstruction InitObj(ILInstruction target, IType type)
{
var value = new DefaultValue(type);
value.ILStackWasEmpty = currentStack.IsEmpty;
return new StObj(target, value, type);
}
IType constrainedPrefix;
private ILInstruction DecodeConstrainedCall()
{
constrainedPrefix = ReadAndDecodeTypeReference();
var inst = DecodeInstruction();
var call = UnpackPush(inst) as CallInstruction;
if (call != null)
Debug.Assert(call.ConstrainedTo == constrainedPrefix);
else
Warn("Ignored invalid 'constrained' prefix");
constrainedPrefix = null;
return inst;
}
private ILInstruction DecodeTailCall()
{
var inst = DecodeInstruction();
var call = UnpackPush(inst) as CallInstruction;
if (call != null)
call.IsTail = true;
else
Warn("Ignored invalid 'tail' prefix");
return inst;
}
private ILInstruction DecodeUnaligned()
{
byte alignment = reader.ReadByte();
var inst = DecodeInstruction();
var sup = UnpackPush(inst) as ISupportsUnalignedPrefix;
if (sup != null)
sup.UnalignedPrefix = alignment;
else
Warn("Ignored invalid 'unaligned' prefix");
return inst;
}
private ILInstruction DecodeVolatile()
{
var inst = DecodeInstruction();
var svp = UnpackPush(inst) as ISupportsVolatilePrefix;
if (svp != null)
svp.IsVolatile = true;
else
Warn("Ignored invalid 'volatile' prefix");
return inst;
}
private ILInstruction DecodeReadonly()
{
var inst = DecodeInstruction();
var ldelema = UnpackPush(inst) as LdElema;
if (ldelema != null)
ldelema.IsReadOnly = true;
else
Warn("Ignored invalid 'readonly' prefix");
return inst;
}
ILInstruction DecodeCall(OpCode opCode)
{
var method = ReadAndDecodeMethodReference();
int firstArgument = (opCode != OpCode.NewObj && !method.IsStatic) ? 1 : 0;
var arguments = new ILInstruction[firstArgument + method.Parameters.Count];
for (int i = method.Parameters.Count - 1; i >= 0; i--) {
arguments[firstArgument + i] = Pop(method.Parameters[i].Type.GetStackType());
}
if (firstArgument == 1) {
arguments[0] = Pop(CallInstruction.ExpectedTypeForThisPointer(constrainedPrefix ?? method.DeclaringType));
}
switch (method.DeclaringType.Kind) {
case TypeKind.Array:
var elementType = ((ArrayType)method.DeclaringType).ElementType;
if (opCode == OpCode.NewObj)
return Push(new NewArr(elementType, arguments));
if (method.Name == "Set") {
var target = arguments[0];
var value = arguments.Last();
var indices = arguments.Skip(1).Take(arguments.Length - 2).ToArray();
return new StObj(new LdElema(elementType, target, indices), value, elementType);
}
if (method.Name == "Get") {
var target = arguments[0];
var indices = arguments.Skip(1).ToArray();
return Push(new LdObj(new LdElema(elementType, target, indices), elementType));
}
if (method.Name == "Address") {
var target = arguments[0];
var indices = arguments.Skip(1).ToArray();
return Push(new LdElema(elementType, target, indices));
}
Warn("Unknown method called on array type: " + method.Name);
goto default;
default:
var call = CallInstruction.Create(opCode, method);
call.ILStackWasEmpty = currentStack.IsEmpty;
call.ConstrainedTo = constrainedPrefix;
call.Arguments.AddRange(arguments);
if (call.ResultType != StackType.Void)
return Push(call);
return call;
}
}
ILInstruction DecodeCallIndirect()
{
var standaloneSignature = metadata.GetStandaloneSignature((StandaloneSignatureHandle)ReadAndDecodeMetadataToken());
Debug.Assert(standaloneSignature.GetKind() == StandaloneSignatureKind.Method);
var signature = standaloneSignature.DecodeMethodSignature(TypeSystem.Implementation.TypeReferenceSignatureDecoder.Instance, default);
var functionPointer = Pop(StackType.I);
Debug.Assert(!signature.Header.IsInstance);
var parameterTypes = new IType[signature.ParameterTypes.Length];
var arguments = new ILInstruction[parameterTypes.Length];
for (int i = signature.ParameterTypes.Length - 1; i >= 0; i--) {
parameterTypes[i] = typeSystem.ResolveFromSignature(signature.ParameterTypes[i]);
arguments[i] = Pop(parameterTypes[i].GetStackType());
}
var call = new CallIndirect(
signature.Header.CallingConvention,
typeSystem.ResolveFromSignature(signature.ReturnType),
parameterTypes.ToImmutableArray(),
arguments,
functionPointer
);
if (call.ResultType != StackType.Void)
return Push(call);
else
return call;
}
ILInstruction Comparison(ComparisonKind kind, bool un = false)
{
var right = Pop();
var left = Pop();
// make the implicit I4->I conversion explicit:
if (left.ResultType == StackType.I4 && right.ResultType == StackType.I) {
left = new Conv(left, PrimitiveType.I, false, Sign.None);
} else if (left.ResultType == StackType.I && right.ResultType == StackType.I4) {
right = new Conv(right, PrimitiveType.I, false, Sign.None);
}
// Based on Table 4: Binary Comparison or Branch Operation
if (left.ResultType.IsFloatType() && right.ResultType.IsFloatType()) {
if (left.ResultType != right.ResultType) {
// make the implicit F4->F8 conversion explicit:
if (left.ResultType == StackType.F4) {
left = new Conv(left, PrimitiveType.R8, false, Sign.Signed);
} else if (right.ResultType == StackType.F4) {
right = new Conv(right, PrimitiveType.R8, false, Sign.Signed);
}
}
if (un) {
// for floats, 'un' means 'unordered'
return Comp.LogicNot(new Comp(kind.Negate(), Sign.None, left, right));
} else {
return new Comp(kind, Sign.None, left, right);
}
} else if (left.ResultType.IsIntegerType() && right.ResultType.IsIntegerType() && !kind.IsEqualityOrInequality()) {
// integer comparison where the sign matters
Debug.Assert(right.ResultType.IsIntegerType());
return new Comp(kind, un ? Sign.Unsigned : Sign.Signed, left, right);
} else if (left.ResultType == right.ResultType) {
// integer equality, object reference or managed reference comparison
return new Comp(kind, Sign.None, left, right);
} else {
Warn($"Invalid comparison between {left.ResultType} and {right.ResultType}");
if (left.ResultType < right.ResultType) {
left = new Conv(left, right.ResultType.ToPrimitiveType(), false, Sign.Signed);
} else {
right = new Conv(right, left.ResultType.ToPrimitiveType(), false, Sign.Signed);
}
return new Comp(kind, Sign.None, left, right);
}
}
bool IsInvalidBranch(int target) => target < 0 || target >= reader.Length;
ILInstruction DecodeComparisonBranch(ILOpCode opCode, ComparisonKind kind, bool un = false)
{
int start = reader.Offset - 1; // opCode is always one byte in this case
int target = ILParser.DecodeBranchTarget(ref reader, opCode);
var condition = Comparison(kind, un);
condition.ILRange = new Interval(start, reader.Offset);
if (!IsInvalidBranch(target)) {
MarkBranchTarget(target);
return new IfInstruction(condition, new Branch(target));
} else {
return new IfInstruction(condition, new InvalidBranch("Invalid branch target"));
}
}
ILInstruction DecodeConditionalBranch(ILOpCode opCode, bool negate)
{
int target = ILParser.DecodeBranchTarget(ref reader, opCode);
ILInstruction condition = Pop();
switch (condition.ResultType) {
case StackType.O:
// introduce explicit comparison with null
condition = new Comp(
negate ? ComparisonKind.Equality : ComparisonKind.Inequality,
Sign.None, condition, new LdNull());
break;
case StackType.I:
// introduce explicit comparison with 0
condition = new Comp(
negate ? ComparisonKind.Equality : ComparisonKind.Inequality,
Sign.None, condition, new Conv(new LdcI4(0), PrimitiveType.I, false, Sign.None));
break;
case StackType.I8:
// introduce explicit comparison with 0
condition = new Comp(
negate ? ComparisonKind.Equality : ComparisonKind.Inequality,
Sign.None, condition, new LdcI8(0));
break;
case StackType.Ref:
// introduce explicit comparison with null ref
condition = new Comp(
negate ? ComparisonKind.Equality : ComparisonKind.Inequality,
Sign.None, new Conv(condition, PrimitiveType.I, false, Sign.None), new Conv(new LdcI4(0), PrimitiveType.I, false, Sign.None));
break;
case StackType.I4:
if (negate) {
condition = Comp.LogicNot(condition);
}
break;
default:
condition = new Conv(condition, PrimitiveType.I4, false, Sign.None);
if (negate) {
condition = Comp.LogicNot(condition);
}
break;
}
if (!IsInvalidBranch(target)) {
MarkBranchTarget(target);
return new IfInstruction(condition, new Branch(target));
} else {
return new IfInstruction(condition, new InvalidBranch("Invalid branch target"));
}
}
ILInstruction DecodeUnconditionalBranch(ILOpCode opCode, bool isLeave = false)
{
int target = ILParser.DecodeBranchTarget(ref reader, opCode);
if (isLeave) {
currentStack = currentStack.Clear();
}
if (!IsInvalidBranch(target)) {
MarkBranchTarget(target);
return new Branch(target);
} else {
return new InvalidBranch("Invalid branch target");
}
}
void MarkBranchTarget(int targetILOffset)
{
isBranchTarget[targetILOffset] = true;
StoreStackForOffset(targetILOffset, ref currentStack);
}
ILInstruction DecodeSwitch()
{
var targets = ILParser.DecodeSwitchTargets(ref reader);
var instr = new SwitchInstruction(Pop(StackType.I4));
for (int i = 0; i < targets.Length; i++) {
var section = new SwitchSection();
section.Labels = new LongSet(i);
int target = targets[i];
if (!IsInvalidBranch(target)) {
MarkBranchTarget(target);
section.Body = new Branch(target);
} else {
section.Body = new InvalidBranch("Invalid branch target");
}
instr.Sections.Add(section);
}
var defaultSection = new SwitchSection();
defaultSection.Labels = new LongSet(new LongInterval(0, targets.Length)).Invert();
defaultSection.Body = new Nop();
instr.Sections.Add(defaultSection);
return instr;
}
ILInstruction BinaryNumeric(BinaryNumericOperator @operator, bool checkForOverflow = false, Sign sign = Sign.None)
{
var right = Pop();
var left = Pop();
if (@operator != BinaryNumericOperator.ShiftLeft && @operator != BinaryNumericOperator.ShiftRight) {
// make the implicit I4->I conversion explicit:
if (left.ResultType == StackType.I4 && right.ResultType == StackType.I) {
left = new Conv(left, PrimitiveType.I, false, Sign.None);
} else if (left.ResultType == StackType.I && right.ResultType == StackType.I4) {
right = new Conv(right, PrimitiveType.I, false, Sign.None);
}
}
return Push(new BinaryNumericInstruction(@operator, left, right, checkForOverflow, sign));
}
ILInstruction DecodeJmp()
{
IMethod method = ReadAndDecodeMethodReference();
// Translate jmp into tail call:
Call call = new Call(method);
call.IsTail = true;
call.ILStackWasEmpty = true;
if (!method.IsStatic) {
call.Arguments.Add(Ldarg(0));
}
foreach (var p in method.Parameters) {
call.Arguments.Add(Ldarg(call.Arguments.Count));
}
return new Leave(mainContainer, call);
}
ILInstruction LdToken(EntityHandle token)
{
if (token.Kind.IsTypeKind())
return new LdTypeToken(typeSystem.ResolveAsType(token));
if (token.Kind.IsMemberKind())
return new LdMemberToken(typeSystem.ResolveAsMember(token));
throw new NotImplementedException();
}
}
}