.NET Decompiler with support for PDB generation, ReadyToRun, Metadata (&more) - cross-platform!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

427 lines
16 KiB

// Copyright (c) 2010-2013 AlphaSierraPapa for the SharpDevelop Team
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Collections.Generic;
using ICSharpCode.Decompiler.TypeSystem.Implementation;
namespace ICSharpCode.Decompiler.TypeSystem
{
/// <summary>
/// Static helper methods for reflection names.
/// </summary>
public static class ReflectionHelper
{
/// <summary>
/// A reflection class used to represent <c>null</c>.
/// </summary>
public sealed class Null {}
/// <summary>
/// A reflection class used to represent <c>dynamic</c>.
/// </summary>
public sealed class Dynamic {}
/// <summary>
/// A reflection class used to represent an unbound type argument.
/// </summary>
public sealed class UnboundTypeArgument {}
#region ICompilation.FindType
/// <summary>
/// Retrieves the specified type in this compilation.
/// Returns <see cref="SpecialType.UnknownType"/> if the type cannot be found in this compilation.
/// </summary>
/// <remarks>
/// This method cannot be used with open types; all type parameters will be substituted
/// with <see cref="SpecialType.UnknownType"/>.
/// </remarks>
public static IType FindType(this ICompilation compilation, Type type)
{
return type.ToTypeReference().Resolve(compilation.TypeResolveContext);
}
#endregion
#region Type.ToTypeReference()
/// <summary>
/// Creates a reference to the specified type.
/// </summary>
/// <param name="type">The type to be converted.</param>
/// <returns>Returns the type reference.</returns>
/// <remarks>
/// If the type is open (contains type parameters '`0' or '``0'),
/// an <see cref="ITypeResolveContext"/> with the appropriate CurrentTypeDefinition/CurrentMember is required
/// to resolve the type reference.
/// For closed types, the root type resolve context for the compilation is sufficient.
/// </remarks>
public static ITypeReference ToTypeReference(this Type type)
{
if (type == null)
return SpecialType.UnknownType;
if (type.IsGenericType && !type.IsGenericTypeDefinition) {
ITypeReference def = ToTypeReference(type.GetGenericTypeDefinition());
Type[] arguments = type.GetGenericArguments();
ITypeReference[] args = new ITypeReference[arguments.Length];
bool allUnbound = true;
for (int i = 0; i < arguments.Length; i++) {
args[i] = ToTypeReference(arguments[i]);
allUnbound &= args[i].Equals(SpecialType.UnboundTypeArgument);
}
if (allUnbound)
return def;
else
return new ParameterizedTypeReference(def, args);
} else if (type.IsArray) {
return new ArrayTypeReference(ToTypeReference(type.GetElementType()), type.GetArrayRank());
} else if (type.IsPointer) {
return new PointerTypeReference(ToTypeReference(type.GetElementType()));
} else if (type.IsByRef) {
return new ByReferenceTypeReference(ToTypeReference(type.GetElementType()));
} else if (type.IsGenericParameter) {
if (type.DeclaringMethod != null) {
return TypeParameterReference.Create(SymbolKind.Method, type.GenericParameterPosition);
} else {
return TypeParameterReference.Create(SymbolKind.TypeDefinition, type.GenericParameterPosition);
}
} else if (type.DeclaringType != null) {
if (type == typeof(Dynamic))
return SpecialType.Dynamic;
else if (type == typeof(Null))
return SpecialType.NullType;
else if (type == typeof(UnboundTypeArgument))
return SpecialType.UnboundTypeArgument;
ITypeReference baseTypeRef = ToTypeReference(type.DeclaringType);
int typeParameterCount;
string name = SplitTypeParameterCountFromReflectionName(type.Name, out typeParameterCount);
return new NestedTypeReference(baseTypeRef, name, typeParameterCount);
} else {
IModuleReference assemblyReference = new DefaultAssemblyReference(type.Assembly.FullName);
int typeParameterCount;
string name = SplitTypeParameterCountFromReflectionName(type.Name, out typeParameterCount);
return new GetClassTypeReference(assemblyReference, type.Namespace, name, typeParameterCount);
}
}
#endregion
#region SplitTypeParameterCountFromReflectionName
/// <summary>
/// Removes the ` with type parameter count from the reflection name.
/// </summary>
/// <remarks>Do not use this method with the full name of inner classes.</remarks>
public static string SplitTypeParameterCountFromReflectionName(string reflectionName)
{
int pos = reflectionName.LastIndexOf('`');
if (pos < 0) {
return reflectionName;
} else {
return reflectionName.Substring(0, pos);
}
}
/// <summary>
/// Removes the ` with type parameter count from the reflection name.
/// </summary>
/// <remarks>Do not use this method with the full name of inner classes.</remarks>
public static string SplitTypeParameterCountFromReflectionName(string reflectionName, out int typeParameterCount)
{
int pos = reflectionName.LastIndexOf('`');
if (pos < 0) {
typeParameterCount = 0;
return reflectionName;
} else {
string typeCount = reflectionName.Substring(pos + 1);
if (int.TryParse(typeCount, out typeParameterCount))
return reflectionName.Substring(0, pos);
else
return reflectionName;
}
}
#endregion
#region TypeCode support
/// <summary>
/// Retrieves a built-in type using the specified type code.
/// </summary>
public static IType FindType(this ICompilation compilation, TypeCode typeCode)
{
return compilation.FindType((KnownTypeCode)typeCode);
}
/// <summary>
/// Creates a reference to the specified type.
/// </summary>
/// <param name="typeCode">The type to be converted.</param>
/// <returns>Returns the type reference.</returns>
public static ITypeReference ToTypeReference(this TypeCode typeCode)
{
return KnownTypeReference.Get((KnownTypeCode)typeCode);
}
/// <summary>
/// Gets the type code for the specified type, or TypeCode.Empty if none of the other type codes match.
/// </summary>
public static TypeCode GetTypeCode(this IType type)
{
ITypeDefinition def = type as ITypeDefinition;
if (def != null) {
KnownTypeCode typeCode = def.KnownTypeCode;
if (typeCode <= KnownTypeCode.String && typeCode != KnownTypeCode.Void)
return (TypeCode)typeCode;
else
return TypeCode.Empty;
}
return TypeCode.Empty;
}
#endregion
#region ParseReflectionName
/// <summary>
/// Parses a reflection name into a type reference.
/// </summary>
/// <param name="reflectionTypeName">The reflection name of the type.</param>
/// <returns>A type reference that represents the reflection name.</returns>
/// <exception cref="ReflectionNameParseException">The syntax of the reflection type name is invalid</exception>
/// <remarks>
/// If the type is open (contains type parameters '`0' or '``0'),
/// an <see cref="ITypeResolveContext"/> with the appropriate CurrentTypeDefinition/CurrentMember is required
/// to resolve the reference to the ITypeParameter.
/// For looking up closed, assembly qualified type names, the root type resolve context for the compilation
/// is sufficient.
/// When looking up a type name that isn't assembly qualified, the type reference will look in
/// <see cref="ITypeResolveContext.CurrentModule"/> first, and if the type is not found there,
/// it will look in all other assemblies of the compilation.
/// </remarks>
/// <seealso cref="FullTypeName(string)"/>
public static ITypeReference ParseReflectionName(string reflectionTypeName)
{
if (reflectionTypeName == null)
throw new ArgumentNullException("reflectionTypeName");
int pos = 0;
ITypeReference r = ParseReflectionName(reflectionTypeName, ref pos);
if (pos < reflectionTypeName.Length)
throw new ReflectionNameParseException(pos, "Expected end of type name");
return r;
}
static bool IsReflectionNameSpecialCharacter(char c)
{
switch (c) {
case '+':
case '`':
case '[':
case ']':
case ',':
case '*':
case '&':
return true;
default:
return false;
}
}
/// <summary>
/// Parses the reflection name starting at pos.
/// If local is true, only parses local type names, not assembly qualified type names.
/// </summary>
static ITypeReference ParseReflectionName(string reflectionTypeName, ref int pos, bool local=false)
{
if (pos == reflectionTypeName.Length)
throw new ReflectionNameParseException(pos, "Unexpected end");
ITypeReference reference;
if (reflectionTypeName[pos] == '`') {
// type parameter reference
pos++;
if (pos == reflectionTypeName.Length)
throw new ReflectionNameParseException(pos, "Unexpected end");
if (reflectionTypeName[pos] == '`') {
// method type parameter reference
pos++;
int index = ReadTypeParameterCount(reflectionTypeName, ref pos);
reference = TypeParameterReference.Create(SymbolKind.Method, index);
} else {
// class type parameter reference
int index = ReadTypeParameterCount(reflectionTypeName, ref pos);
reference = TypeParameterReference.Create(SymbolKind.TypeDefinition, index);
}
} else {
// not a type parameter reference: read the actual type name
string typeName = ReadTypeName(reflectionTypeName, ref pos, out int tpc);
string assemblyName = local ? null : SkipAheadAndReadAssemblyName(reflectionTypeName, pos);
reference = CreateGetClassTypeReference(assemblyName, typeName, tpc);
}
// read type suffixes
while (pos < reflectionTypeName.Length) {
switch (reflectionTypeName[pos++]) {
case '+':
int tpc;
string typeName = ReadTypeName(reflectionTypeName, ref pos, out tpc);
reference = new NestedTypeReference(reference, typeName, tpc);
break;
case '*':
reference = new PointerTypeReference(reference);
break;
case '&':
reference = new ByReferenceTypeReference(reference);
break;
case '[':
// this might be an array or a generic type
if (pos == reflectionTypeName.Length)
throw new ReflectionNameParseException(pos, "Unexpected end");
if (reflectionTypeName[pos] != ']' && reflectionTypeName[pos] != ',') {
// it's a generic type
List<ITypeReference> typeArguments = new List<ITypeReference>();
bool first = true;
while (first || pos < reflectionTypeName.Length && reflectionTypeName[pos] == ',') {
if (first) {
first = false;
} else {
pos++; // skip ','
}
if (pos < reflectionTypeName.Length && reflectionTypeName[pos] == '[') {
// non-local type names are enclosed in another set of []
pos++;
typeArguments.Add(ParseReflectionName(reflectionTypeName, ref pos));
if (pos < reflectionTypeName.Length && reflectionTypeName[pos] == ']')
pos++;
else
throw new ReflectionNameParseException(pos, "Expected end of type argument");
} else {
// local type names occur directly in the outer []
typeArguments.Add(ParseReflectionName(reflectionTypeName, ref pos, local: true));
}
}
if (pos < reflectionTypeName.Length && reflectionTypeName[pos] == ']') {
pos++;
reference = new ParameterizedTypeReference(reference, typeArguments);
} else {
throw new ReflectionNameParseException(pos, "Expected end of generic type");
}
} else {
// it's an array
int dimensions = 1;
while (pos < reflectionTypeName.Length && reflectionTypeName[pos] == ',') {
dimensions++;
pos++;
}
if (pos < reflectionTypeName.Length && reflectionTypeName[pos] == ']') {
pos++; // end of array
reference = new ArrayTypeReference(reference, dimensions);
} else {
throw new ReflectionNameParseException(pos, "Invalid array modifier");
}
}
break;
case ',' when !local:
// assembly qualified name, ignore everything up to the end/next ']'
while (pos < reflectionTypeName.Length && reflectionTypeName[pos] != ']')
pos++;
break;
default:
pos--; // reset pos to the character we couldn't read
if (reflectionTypeName[pos] == ']' || reflectionTypeName[pos] == ',')
return reference; // return from a nested generic
else
throw new ReflectionNameParseException(pos, "Unexpected character: '" + reflectionTypeName[pos] + "'");
}
}
return reference;
}
static ITypeReference CreateGetClassTypeReference(string assemblyName, string typeName, int tpc)
{
IModuleReference assemblyReference;
if (assemblyName != null) {
assemblyReference = new DefaultAssemblyReference(assemblyName);
} else {
assemblyReference = null;
}
int pos = typeName.LastIndexOf('.');
if (pos < 0)
return new GetClassTypeReference(assemblyReference, string.Empty, typeName, tpc);
else
return new GetClassTypeReference(assemblyReference, typeName.Substring(0, pos), typeName.Substring(pos + 1), tpc);
}
static string SkipAheadAndReadAssemblyName(string reflectionTypeName, int pos)
{
int nestingLevel = 0;
while (pos < reflectionTypeName.Length) {
switch (reflectionTypeName[pos++]) {
case '[':
nestingLevel++;
break;
case ']':
if (nestingLevel == 0)
return null;
nestingLevel--;
break;
case ',':
if (nestingLevel == 0) {
// first skip the whitespace
while (pos < reflectionTypeName.Length && reflectionTypeName[pos] == ' ')
pos++;
// everything up to the end/next ']' is the assembly name
int endPos = pos;
while (endPos < reflectionTypeName.Length && reflectionTypeName[endPos] != ']')
endPos++;
return reflectionTypeName.Substring(pos, endPos - pos);
}
break;
}
}
return null;
}
static string ReadTypeName(string reflectionTypeName, ref int pos, out int tpc)
{
int startPos = pos;
// skip the simple name portion:
while (pos < reflectionTypeName.Length && !IsReflectionNameSpecialCharacter(reflectionTypeName[pos]))
pos++;
if (pos == startPos)
throw new ReflectionNameParseException(pos, "Expected type name");
string typeName = reflectionTypeName.Substring(startPos, pos - startPos);
if (pos < reflectionTypeName.Length && reflectionTypeName[pos] == '`') {
pos++;
tpc = ReadTypeParameterCount(reflectionTypeName, ref pos);
} else {
tpc = 0;
}
return typeName;
}
internal static int ReadTypeParameterCount(string reflectionTypeName, ref int pos)
{
int startPos = pos;
while (pos < reflectionTypeName.Length) {
char c = reflectionTypeName[pos];
if (c < '0' || c > '9')
break;
pos++;
}
int tpc;
if (!int.TryParse(reflectionTypeName.Substring(startPos, pos - startPos), out tpc))
throw new ReflectionNameParseException(pos, "Expected type parameter count");
return tpc;
}
#endregion
}
}