.NET Decompiler with support for PDB generation, ReadyToRun, Metadata (&more) - cross-platform!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

421 lines
14 KiB

#nullable enable
// Copyright (c) 2016 Siegfried Pammer
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Diagnostics;
using System.Linq.Expressions;
using ICSharpCode.Decompiler.TypeSystem;
namespace ICSharpCode.Decompiler.IL
{
public enum CompoundEvalMode : byte
{
/// <summary>
/// The compound.assign instruction will evaluate to the old value.
/// This mode is used only for post-increment/decrement.
/// </summary>
EvaluatesToOldValue,
/// <summary>
/// The compound.assign instruction will evaluate to the new value.
/// This mode is used for compound assignments and pre-increment/decrement.
/// </summary>
EvaluatesToNewValue
}
public enum CompoundTargetKind : byte
{
/// <summary>
/// The target is an instruction computing an address,
/// and the compound.assign will implicitly load/store from/to that address.
/// </summary>
Address,
/// <summary>
/// The Target must be a call to a property getter,
/// and the compound.assign will implicitly call the corresponding property setter.
/// </summary>
Property,
/// <summary>
/// The target is a dynamic call.
/// </summary>
Dynamic
}
public abstract partial class CompoundAssignmentInstruction : ILInstruction
{
public readonly CompoundEvalMode EvalMode;
/// <summary>
/// If TargetIsProperty is true, the Target must be a call to a property getter,
/// and the compound.assign will implicitly call the corresponding property setter.
/// Otherwise, the Target can be any instruction that evaluates to an address,
/// and the compound.assign will implicit load and store from/to that address.
/// </summary>
public readonly CompoundTargetKind TargetKind;
public CompoundAssignmentInstruction(OpCode opCode, CompoundEvalMode evalMode, ILInstruction target, CompoundTargetKind targetKind, ILInstruction value)
: base(opCode)
{
this.EvalMode = evalMode;
this.Target = target;
this.TargetKind = targetKind;
this.Value = value;
CheckValidTarget();
}
internal override void CheckInvariant(ILPhase phase)
{
base.CheckInvariant(phase);
CheckValidTarget();
}
[Conditional("DEBUG")]
void CheckValidTarget()
{
switch (TargetKind)
{
case CompoundTargetKind.Address:
Debug.Assert(target.ResultType == StackType.Ref || target.ResultType == StackType.I);
break;
case CompoundTargetKind.Property:
Debug.Assert(target.OpCode == OpCode.Call || target.OpCode == OpCode.CallVirt);
var owner = ((CallInstruction)target).Method.AccessorOwner as IProperty;
Debug.Assert(owner != null && owner.CanSet);
break;
case CompoundTargetKind.Dynamic:
Debug.Assert(target.OpCode == OpCode.DynamicGetMemberInstruction || target.OpCode == OpCode.DynamicGetIndexInstruction);
break;
}
}
protected void WriteSuffix(ITextOutput output)
{
switch (TargetKind)
{
case CompoundTargetKind.Address:
output.Write(".address");
break;
case CompoundTargetKind.Property:
output.Write(".property");
break;
}
switch (EvalMode)
{
case CompoundEvalMode.EvaluatesToNewValue:
output.Write(".new");
break;
case CompoundEvalMode.EvaluatesToOldValue:
output.Write(".old");
break;
}
}
}
public partial class NumericCompoundAssign : CompoundAssignmentInstruction, ILiftableInstruction
{
/// <summary>
/// Gets whether the instruction checks for overflow.
/// </summary>
public readonly bool CheckForOverflow;
/// <summary>
/// For integer operations that depend on the sign, specifies whether the operation
/// is signed or unsigned.
/// For instructions that produce the same result for either sign, returns Sign.None.
/// </summary>
public readonly Sign Sign;
public readonly StackType LeftInputType;
public readonly StackType RightInputType;
public StackType UnderlyingResultType { get; }
/// <summary>
/// The operator used by this assignment operator instruction.
/// </summary>
public readonly BinaryNumericOperator Operator;
public bool IsLifted { get; }
public NumericCompoundAssign(BinaryNumericInstruction binary, ILInstruction target,
CompoundTargetKind targetKind, ILInstruction value, IType type, CompoundEvalMode evalMode)
: base(OpCode.NumericCompoundAssign, evalMode, target, targetKind, value)
{
Debug.Assert(IsBinaryCompatibleWithType(binary, type, null));
this.CheckForOverflow = binary.CheckForOverflow;
this.Sign = binary.Sign;
this.LeftInputType = binary.LeftInputType;
this.RightInputType = binary.RightInputType;
this.UnderlyingResultType = binary.UnderlyingResultType;
this.Operator = binary.Operator;
this.IsLifted = binary.IsLifted;
this.type = type;
this.AddILRange(binary);
Debug.Assert(evalMode == CompoundEvalMode.EvaluatesToNewValue || (Operator == BinaryNumericOperator.Add || Operator == BinaryNumericOperator.Sub));
Debug.Assert(this.ResultType == (IsLifted ? StackType.O : UnderlyingResultType));
}
/// <summary>
/// Gets whether the specific binary instruction is compatible with a compound operation on the specified type.
/// </summary>
internal static bool IsBinaryCompatibleWithType(BinaryNumericInstruction binary, IType type, DecompilerSettings? settings)
{
if (binary.IsLifted)
{
if (!NullableType.IsNullable(type))
return false;
type = NullableType.GetUnderlyingType(type);
}
if (type.Kind == TypeKind.Unknown)
{
return false; // avoid introducing a potentially-incorrect compound assignment
}
else if (type.Kind == TypeKind.Enum)
{
switch (binary.Operator)
{
case BinaryNumericOperator.Add:
case BinaryNumericOperator.Sub:
case BinaryNumericOperator.BitAnd:
case BinaryNumericOperator.BitOr:
case BinaryNumericOperator.BitXor:
break; // OK
default:
return false; // operator not supported on enum types
}
}
else if (type.Kind == TypeKind.Pointer)
{
switch (binary.Operator)
{
case BinaryNumericOperator.Add:
case BinaryNumericOperator.Sub:
// ensure that the byte offset is a multiple of the pointer size
return PointerArithmeticOffset.Detect(
binary.Right,
((PointerType)type).ElementType,
checkForOverflow: binary.CheckForOverflow
) != null;
default:
return false; // operator not supported on pointer types
}
}
else if ((type.IsKnownType(KnownTypeCode.IntPtr) || type.IsKnownType(KnownTypeCode.UIntPtr)) && type.Kind is not TypeKind.NInt or TypeKind.NUInt)
{
// If the LHS is C# 9 IntPtr (but not nint or C# 11 IntPtr):
// "target.intptr *= 2;" is compiler error, but
// "target.intptr *= (nint)2;" works
if (settings != null && !settings.NativeIntegers)
{
// But if native integers are not available, we cannot use compound assignment.
return false;
}
// The trick with casting the RHS to n(u)int doesn't work for shifts:
switch (binary.Operator)
{
case BinaryNumericOperator.ShiftLeft:
case BinaryNumericOperator.ShiftRight:
return false;
}
}
if (binary.Sign != Sign.None)
{
bool signMismatchAllowed = (binary.Sign == Sign.Unsigned && binary.Operator == BinaryNumericOperator.ShiftRight && (settings == null || settings.UnsignedRightShift));
if (type.IsCSharpSmallIntegerType())
{
// C# will use numeric promotion to int, binary op must be signed
if (binary.Sign != Sign.Signed && !signMismatchAllowed)
return false;
}
else
{
// C# will use sign from type; except for right shift with C# 11 >>> operator.
if (type.GetSign() != binary.Sign && !signMismatchAllowed)
return false;
}
}
// Can't transform if the RHS value would be need to be truncated for the LHS type.
if (Transforms.TransformAssignment.IsImplicitTruncation(binary.Right, type, null, binary.IsLifted))
return false;
return true;
}
protected override InstructionFlags ComputeFlags()
{
var flags = Target.Flags | Value.Flags | InstructionFlags.SideEffect;
if (CheckForOverflow || (Operator == BinaryNumericOperator.Div || Operator == BinaryNumericOperator.Rem))
flags |= InstructionFlags.MayThrow;
return flags;
}
public override InstructionFlags DirectFlags {
get {
var flags = InstructionFlags.SideEffect;
if (CheckForOverflow || (Operator == BinaryNumericOperator.Div || Operator == BinaryNumericOperator.Rem))
flags |= InstructionFlags.MayThrow;
return flags;
}
}
public override void WriteTo(ITextOutput output, ILAstWritingOptions options)
{
WriteILRange(output, options);
output.Write(OpCode);
output.Write("." + BinaryNumericInstruction.GetOperatorName(Operator));
if (CheckForOverflow)
{
output.Write(".ovf");
}
if (Sign == Sign.Unsigned)
{
output.Write(".unsigned");
}
else if (Sign == Sign.Signed)
{
output.Write(".signed");
}
output.Write('.');
output.Write(UnderlyingResultType.ToString().ToLowerInvariant());
if (IsLifted)
{
output.Write(".lifted");
}
base.WriteSuffix(output);
output.Write('(');
Target.WriteTo(output, options);
output.Write(", ");
Value.WriteTo(output, options);
output.Write(')');
}
}
public partial class UserDefinedCompoundAssign : CompoundAssignmentInstruction
{
public readonly IMethod Method;
public bool IsLifted => false; // TODO: implement lifted user-defined compound assignments
public UserDefinedCompoundAssign(IMethod method, CompoundEvalMode evalMode,
ILInstruction target, CompoundTargetKind targetKind, ILInstruction value)
: base(OpCode.UserDefinedCompoundAssign, evalMode, target, targetKind, value)
{
this.Method = method;
Debug.Assert(Method.IsOperator || IsStringConcat(method));
Debug.Assert(evalMode == CompoundEvalMode.EvaluatesToNewValue || IsIncrementOrDecrement(method));
}
public static bool IsIncrementOrDecrement(IMethod method, DecompilerSettings? settings = null)
{
if (!(method.IsOperator && method.IsStatic))
return false;
if (method.Name is "op_Increment" or "op_Decrement")
return true;
if (method.Name is "op_CheckedIncrement" or "op_CheckedDecrement")
return settings?.CheckedOperators ?? true;
return false;
}
public static bool IsStringConcat(IMethod method)
{
return method.Name == "Concat" && method.IsStatic && method.DeclaringType.IsKnownType(KnownTypeCode.String);
}
public override StackType ResultType => Method.ReturnType.GetStackType();
public override void WriteTo(ITextOutput output, ILAstWritingOptions options)
{
WriteILRange(output, options);
output.Write(OpCode);
base.WriteSuffix(output);
output.Write(' ');
Method.WriteTo(output);
output.Write('(');
this.Target.WriteTo(output, options);
output.Write(", ");
this.Value.WriteTo(output, options);
output.Write(')');
}
}
public partial class DynamicCompoundAssign : CompoundAssignmentInstruction
{
public ExpressionType Operation { get; }
public CSharpArgumentInfo TargetArgumentInfo { get; }
public CSharpArgumentInfo ValueArgumentInfo { get; }
public CSharpBinderFlags BinderFlags { get; }
public DynamicCompoundAssign(ExpressionType op, CSharpBinderFlags binderFlags,
ILInstruction target, CSharpArgumentInfo targetArgumentInfo,
ILInstruction value, CSharpArgumentInfo valueArgumentInfo,
CompoundTargetKind targetKind = CompoundTargetKind.Dynamic)
: base(OpCode.DynamicCompoundAssign, CompoundEvalModeFromOperation(op), target, targetKind, value)
{
if (!IsExpressionTypeSupported(op))
throw new ArgumentOutOfRangeException(nameof(op));
this.BinderFlags = binderFlags;
this.Operation = op;
this.TargetArgumentInfo = targetArgumentInfo;
this.ValueArgumentInfo = valueArgumentInfo;
}
public override void WriteTo(ITextOutput output, ILAstWritingOptions options)
{
WriteILRange(output, options);
output.Write(OpCode);
output.Write("." + Operation.ToString().ToLower());
DynamicInstruction.WriteBinderFlags(BinderFlags, output, options);
base.WriteSuffix(output);
output.Write(' ');
DynamicInstruction.WriteArgumentList(output, options, (Target, TargetArgumentInfo), (Value, ValueArgumentInfo));
}
internal static bool IsExpressionTypeSupported(ExpressionType type)
{
return type == ExpressionType.AddAssign
|| type == ExpressionType.AddAssignChecked
|| type == ExpressionType.AndAssign
|| type == ExpressionType.DivideAssign
|| type == ExpressionType.ExclusiveOrAssign
|| type == ExpressionType.LeftShiftAssign
|| type == ExpressionType.ModuloAssign
|| type == ExpressionType.MultiplyAssign
|| type == ExpressionType.MultiplyAssignChecked
|| type == ExpressionType.OrAssign
|| type == ExpressionType.PostDecrementAssign
|| type == ExpressionType.PostIncrementAssign
|| type == ExpressionType.PreDecrementAssign
|| type == ExpressionType.PreIncrementAssign
|| type == ExpressionType.RightShiftAssign
|| type == ExpressionType.SubtractAssign
|| type == ExpressionType.SubtractAssignChecked;
}
static CompoundEvalMode CompoundEvalModeFromOperation(ExpressionType op)
{
switch (op)
{
case ExpressionType.PostIncrementAssign:
case ExpressionType.PostDecrementAssign:
return CompoundEvalMode.EvaluatesToOldValue;
default:
return CompoundEvalMode.EvaluatesToNewValue;
}
}
}
}