.NET Decompiler with support for PDB generation, ReadyToRun, Metadata (&more) - cross-platform!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

466 lines
15 KiB

// Copyright (c) 2018 Siegfried Pammer
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Reflection.Metadata.Ecma335;
using Iced.Intel;
using ICSharpCode.Decompiler;
using ICSharpCode.Decompiler.IL;
using ICSharpCode.Decompiler.Metadata;
using ILCompiler.Reflection.ReadyToRun;
using ILCompiler.Reflection.ReadyToRun.Amd64;
namespace ICSharpCode.ILSpy.ReadyToRun
{
internal class ReadyToRunDisassembler
{
private readonly ITextOutput output;
private readonly ReadyToRunReader reader;
private readonly RuntimeFunction runtimeFunction;
public ReadyToRunDisassembler(ITextOutput output, ReadyToRunReader reader, RuntimeFunction runtimeFunction)
{
this.output = output;
this.reader = reader;
this.runtimeFunction = runtimeFunction;
}
public void Disassemble(PEFile currentFile, int bitness, ulong address, bool showMetadataTokens, bool showMetadataTokensInBase10)
{
// TODO: Decorate the disassembly with GCInfo
ReadyToRunMethod readyToRunMethod = runtimeFunction.Method;
WriteCommentLine(readyToRunMethod.SignatureString);
Dictionary<ulong, UnwindCode> unwindInfo = null;
if (ReadyToRunOptions.GetIsShowUnwindInfo(null) && bitness == 64)
{
unwindInfo = WriteUnwindInfo();
}
bool isShowDebugInfo = ReadyToRunOptions.GetIsShowDebugInfo(null);
DebugInfoHelper debugInfo = null;
if (isShowDebugInfo)
{
debugInfo = WriteDebugInfo();
}
byte[] codeBytes = new byte[runtimeFunction.Size];
for (int i = 0; i < runtimeFunction.Size; i++)
{
codeBytes[i] = reader.Image[reader.GetOffset(runtimeFunction.StartAddress) + i];
}
var codeReader = new ByteArrayCodeReader(codeBytes);
var decoder = Decoder.Create(bitness, codeReader);
decoder.IP = address;
ulong endRip = decoder.IP + (uint)codeBytes.Length;
var instructions = new InstructionList();
while (decoder.IP < endRip)
{
decoder.Decode(out instructions.AllocUninitializedElement());
}
string disassemblyFormat = ReadyToRunOptions.GetDisassemblyFormat(null);
Formatter formatter = null;
if (disassemblyFormat.Equals(ReadyToRunOptions.intel))
{
formatter = new NasmFormatter();
}
else
{
Debug.Assert(disassemblyFormat.Equals(ReadyToRunOptions.gas));
formatter = new GasFormatter();
}
formatter.Options.DigitSeparator = "`";
formatter.Options.FirstOperandCharIndex = 10;
var tempOutput = new StringOutput();
ulong baseInstrIP = instructions[0].IP;
foreach (var instr in instructions)
{
int byteBaseIndex = (int)(instr.IP - address);
if (isShowDebugInfo && runtimeFunction.DebugInfo != null)
{
foreach (var bound in runtimeFunction.DebugInfo.BoundsList)
{
if (bound.NativeOffset == byteBaseIndex)
{
if (bound.ILOffset == (uint)DebugInfoBoundsType.Prolog)
{
WriteCommentLine("Prolog");
}
else if (bound.ILOffset == (uint)DebugInfoBoundsType.Epilog)
{
WriteCommentLine("Epilog");
}
else
{
WriteCommentLine($"IL_{bound.ILOffset:x4}");
}
}
}
}
formatter.Format(instr, tempOutput);
output.Write(instr.IP.ToString("X16"));
output.Write(" ");
int instrLen = instr.Length;
for (int i = 0; i < instrLen; i++)
{
output.Write(codeBytes[byteBaseIndex + i].ToString("X2"));
}
int missingBytes = 10 - instrLen;
for (int i = 0; i < missingBytes; i++)
{
output.Write(" ");
}
output.Write(" ");
output.Write(tempOutput.ToStringAndReset());
DecorateUnwindInfo(unwindInfo, baseInstrIP, instr);
DecorateDebugInfo(instr, debugInfo, baseInstrIP);
DecorateCallSite(currentFile, showMetadataTokens, showMetadataTokensInBase10, instr);
}
output.WriteLine();
}
private void WriteCommentLine(string comment)
{
output.WriteLine("; " + comment);
}
private class NativeVarInfoRecord
{
public ulong codeOffset;
public bool isStart;
public bool isRegRelative;
public string register;
public int registerOffset;
public Variable variable;
}
private class DebugInfoHelper
{
public List<NativeVarInfoRecord> records;
public int i;
public Dictionary<string, Dictionary<int, HashSet<Variable>>> registerRelativeVariables;
public Dictionary<string, HashSet<Variable>> registerVariables;
public DebugInfoHelper()
{
this.registerRelativeVariables = new Dictionary<string, Dictionary<int, HashSet<Variable>>>();
this.registerVariables = new Dictionary<string, HashSet<Variable>>();
}
public void Update(ulong codeOffset)
{
HashSet<Variable> variables;
while (i < records.Count && records[i].codeOffset == codeOffset)
{
if (records[i].isRegRelative)
{
Dictionary<int, HashSet<Variable>> offsetToVariableMap;
if (records[i].isStart)
{
if (!this.registerRelativeVariables.TryGetValue(records[i].register, out offsetToVariableMap))
{
offsetToVariableMap = new Dictionary<int, HashSet<Variable>>();
this.registerRelativeVariables.Add(records[i].register, offsetToVariableMap);
}
if (!offsetToVariableMap.TryGetValue(records[i].registerOffset, out variables))
{
variables = new HashSet<Variable>();
offsetToVariableMap.Add(records[i].registerOffset, variables);
}
variables.Add(records[i].variable);
}
else
{
offsetToVariableMap = this.registerRelativeVariables[records[i].register];
variables = offsetToVariableMap[records[i].registerOffset];
variables.Remove(records[i].variable);
}
}
else
{
if (records[i].isStart)
{
if (!this.registerVariables.TryGetValue(records[i].register, out variables))
{
variables = new HashSet<Variable>();
this.registerVariables.Add(records[i].register, variables);
}
variables.Add(records[i].variable);
}
else
{
// If the optimizing compiler decides that two variables will always have the same value within a basic block
// It might assign the same location for two variables.
// The compiler also generates potentially wrong 1 byte long debug info record for arguments in prolog.
// These record might describe the same variable in overlapping ranges.
// See https://cshung.github.io/posts/debug-info-debugging/ for the investigation.
variables = this.registerVariables[records[i].register];
variables.Remove(records[i].variable);
}
}
i++;
}
}
}
private DebugInfoHelper WriteDebugInfo()
{
List<NativeVarInfoRecord> records = new List<NativeVarInfoRecord>();
foreach (RuntimeFunction runtimeFunction in runtimeFunction.Method.RuntimeFunctions)
{
DebugInfo debugInfo = runtimeFunction.DebugInfo;
if (debugInfo != null && debugInfo.BoundsList.Count > 0)
{
for (int i = 0; i < debugInfo.VariablesList.Count; ++i)
{
var varLoc = debugInfo.VariablesList[i];
if (varLoc.StartOffset == varLoc.EndOffset)
{
// This could happen if the compiler is generating bogus variable info mapping record that covers 0 instructions
// See https://github.com/dotnet/runtime/issues/47202
// Debug.Assert(false);
continue;
}
switch (varLoc.VariableLocation.VarLocType)
{
case VarLocType.VLT_STK:
case VarLocType.VLT_STK_BYREF:
records.Add(new NativeVarInfoRecord {
codeOffset = varLoc.StartOffset,
isStart = true,
isRegRelative = true,
register = DebugInfo.GetPlatformSpecificRegister(debugInfo.Machine, varLoc.VariableLocation.Data1),
registerOffset = varLoc.VariableLocation.Data2,
variable = varLoc.Variable
});
;
records.Add(new NativeVarInfoRecord {
codeOffset = varLoc.EndOffset,
isStart = false,
isRegRelative = true,
register = DebugInfo.GetPlatformSpecificRegister(debugInfo.Machine, varLoc.VariableLocation.Data1),
registerOffset = varLoc.VariableLocation.Data2,
variable = varLoc.Variable
});
break;
case VarLocType.VLT_REG:
records.Add(new NativeVarInfoRecord {
codeOffset = varLoc.StartOffset,
isStart = true,
isRegRelative = false,
register = DebugInfo.GetPlatformSpecificRegister(debugInfo.Machine, varLoc.VariableLocation.Data1),
variable = varLoc.Variable
});
records.Add(new NativeVarInfoRecord {
codeOffset = varLoc.EndOffset,
isStart = false,
isRegRelative = false,
register = DebugInfo.GetPlatformSpecificRegister(debugInfo.Machine, varLoc.VariableLocation.Data1),
variable = varLoc.Variable
});
break;
default:
// TODO
break;
}
}
}
}
records.Sort((x, y) => {
if (x.codeOffset < y.codeOffset)
{
return -1;
}
else if (x.codeOffset > y.codeOffset)
{
return 1;
}
else
{
if (!x.isStart && y.isStart)
{
return -1;
}
else if (x.isStart && !y.isStart)
{
return 1;
}
else
{
return 0;
}
}
});
return new DebugInfoHelper {
records = records
};
}
private Dictionary<ulong, UnwindCode> WriteUnwindInfo()
{
Dictionary<ulong, UnwindCode> unwindCodes = new Dictionary<ulong, UnwindCode>();
if (runtimeFunction.UnwindInfo is UnwindInfo amd64UnwindInfo)
{
string parsedFlags = "";
if ((amd64UnwindInfo.Flags & (int)UnwindFlags.UNW_FLAG_EHANDLER) != 0)
{
parsedFlags += " EHANDLER";
}
if ((amd64UnwindInfo.Flags & (int)UnwindFlags.UNW_FLAG_UHANDLER) != 0)
{
parsedFlags += " UHANDLER";
}
if ((amd64UnwindInfo.Flags & (int)UnwindFlags.UNW_FLAG_CHAININFO) != 0)
{
parsedFlags += " CHAININFO";
}
if (parsedFlags.Length == 0)
{
parsedFlags = " NHANDLER";
}
WriteCommentLine($"UnwindInfo:");
WriteCommentLine($"Version: {amd64UnwindInfo.Version}");
WriteCommentLine($"Flags: 0x{amd64UnwindInfo.Flags:X2}{parsedFlags}");
WriteCommentLine($"FrameRegister: {((amd64UnwindInfo.FrameRegister == 0) ? "none" : amd64UnwindInfo.FrameRegister.ToString().ToLower())}");
for (int unwindCodeIndex = 0; unwindCodeIndex < amd64UnwindInfo.UnwindCodes.Count; unwindCodeIndex++)
{
unwindCodes.Add((ulong)(amd64UnwindInfo.UnwindCodes[unwindCodeIndex].CodeOffset), amd64UnwindInfo.UnwindCodes[unwindCodeIndex]);
}
}
return unwindCodes;
}
private void DecorateUnwindInfo(Dictionary<ulong, UnwindCode> unwindInfo, ulong baseInstrIP, Instruction instr)
{
ulong nextInstructionOffset = instr.NextIP - baseInstrIP;
if (unwindInfo != null && unwindInfo.ContainsKey(nextInstructionOffset))
{
UnwindCode unwindCode = unwindInfo[nextInstructionOffset];
output.Write($" ; {unwindCode.UnwindOp}({unwindCode.OpInfoStr})");
}
}
private void DecorateDebugInfo(Instruction instr, DebugInfoHelper debugRecords, ulong baseInstrIP)
{
if (debugRecords != null)
{
HashSet<Variable> variables;
InstructionInfoFactory factory = new InstructionInfoFactory();
InstructionInfo info = factory.GetInfo(instr);
ulong codeOffset = instr.IP - baseInstrIP;
debugRecords.Update(codeOffset);
foreach (UsedMemory usedMemInfo in info.GetUsedMemory())
{
string baseRegister = usedMemInfo.Base.ToString();
int displacement;
unchecked
{ displacement = (int)usedMemInfo.Displacement; }
Dictionary<int, HashSet<Variable>> offsetToVariableMap;
if (debugRecords.registerRelativeVariables.TryGetValue(usedMemInfo.Base.ToString(), out offsetToVariableMap))
{
if (offsetToVariableMap.TryGetValue(displacement, out variables))
{
output.Write($";");
foreach (Variable variable in variables)
{
output.Write($" [{usedMemInfo.Base.ToString().ToLower()}{(displacement < 0 ? '-' : '+')}{Math.Abs(displacement):X}h] = {variable.Type} {variable.Index}");
}
}
}
}
foreach (UsedRegister usedMemInfo in info.GetUsedRegisters())
{
// TODO, if the code is accessing EAX but the debug info maps to RAX, then this match is going to fail.
if (debugRecords.registerVariables.TryGetValue(usedMemInfo.Register.ToString(), out variables))
{
output.Write($";");
foreach (Variable variable in variables)
{
output.Write($" {usedMemInfo.Register.ToString().ToLower()} = {variable.Type} {variable.Index}");
}
}
}
}
}
private void DecorateCallSite(PEFile currentFile, bool showMetadataTokens, bool showMetadataTokensInBase10, Instruction instr)
{
if (instr.IsCallNearIndirect)
{
int importCellAddress = (int)instr.IPRelativeMemoryAddress;
if (reader.ImportSignatures.ContainsKey(importCellAddress))
{
output.Write(" ; ");
ReadyToRunSignature signature = reader.ImportSignatures[importCellAddress];
switch (signature)
{
case MethodDefEntrySignature methodDefSignature:
var methodDefToken = MetadataTokens.EntityHandle(unchecked((int)methodDefSignature.MethodDefToken));
if (showMetadataTokens)
{
if (showMetadataTokensInBase10)
{
output.WriteReference(currentFile, methodDefToken, $"({MetadataTokens.GetToken(methodDefToken)}) ", "metadata");
}
else
{
output.WriteReference(currentFile, methodDefToken, $"({MetadataTokens.GetToken(methodDefToken):X8}) ", "metadata");
}
}
methodDefToken.WriteTo(currentFile, output, default);
break;
case MethodRefEntrySignature methodRefSignature:
var methodRefToken = MetadataTokens.EntityHandle(unchecked((int)methodRefSignature.MethodRefToken));
if (showMetadataTokens)
{
if (showMetadataTokensInBase10)
{
output.WriteReference(currentFile, methodRefToken, $"({MetadataTokens.GetToken(methodRefToken)}) ", "metadata");
}
else
{
output.WriteReference(currentFile, methodRefToken, $"({MetadataTokens.GetToken(methodRefToken):X8}) ", "metadata");
}
}
methodRefToken.WriteTo(currentFile, output, default);
break;
default:
output.WriteLine(reader.ImportSignatures[importCellAddress].ToString(new SignatureFormattingOptions()));
break;
}
output.WriteLine();
}
}
else
{
output.WriteLine();
}
}
}
}