.NET Decompiler with support for PDB generation, ReadyToRun, Metadata (&more) - cross-platform!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

401 lines
12 KiB

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using ICSharpCode.Decompiler.TypeSystem;
using ICSharpCode.Decompiler.Util;
namespace ICSharpCode.Decompiler.IL.ControlFlow
{
/// <summary>
/// C# switch statements are not necessarily compiled into IL switch instructions.
/// For example, when the label values are not contiguous, the C# compiler
/// will generate if statements similar to a binary search.
///
/// This class analyses such sequences of if statements to reconstruct the original switch.
/// </summary>
/// <remarks>
/// This analysis expects to be run on basic blocks (not extended basic blocks).
/// </remarks>
class SwitchAnalysis
{
/// <summary>
/// The variable that is used to represent the switch expression.
/// <c>null</c> while analyzing the first block.
/// </summary>
ILVariable switchVar;
/// <summary>
/// The variable to be used as the argument of the switch instruction.
/// </summary>
public ILVariable SwitchVariable => switchVar;
/// <summary>
/// Whether at least one the analyzed blocks contained an IL switch constructors.
/// </summary>
public bool ContainsILSwitch { get; private set; }
/// <summary>
/// Gets the sections that were detected by the previous AnalyzeBlock() call.
/// </summary>
public readonly List<KeyValuePair<LongSet, ILInstruction>> Sections = new List<KeyValuePair<LongSet, ILInstruction>>();
/// <summary>
/// Used to de-duplicate sections with a branch instruction.
/// Invariant: (Sections[targetBlockToSectionIndex[branch.TargetBlock]].Instruction as Branch).TargetBlock == branch.TargetBlock
/// </summary>
readonly Dictionary<Block, int> targetBlockToSectionIndex = new Dictionary<Block, int>();
/// <summary>
/// Used to de-duplicate sections with a value-less leave instruction.
/// Invariant: (Sections[targetBlockToSectionIndex[leave.TargetContainer]].Instruction as Leave).TargetContainer == leave.TargetContainer
/// </summary>
readonly Dictionary<BlockContainer, int> targetContainerToSectionIndex = new Dictionary<BlockContainer, int>();
/// <summary>
/// Blocks that can be deleted if the tail of the initial block is replaced with a switch instruction.
/// </summary>
public readonly List<Block> InnerBlocks = new List<Block>();
public Block RootBlock { get; private set; }
/// <summary>
/// Gets/sets whether to allow unreachable cases in switch instructions.
/// </summary>
public bool AllowUnreachableCases { get; set; }
/// <summary>
/// Analyze the last two statements in the block and see if they can be turned into a
/// switch instruction.
/// </summary>
/// <returns>true if the block could be analyzed successfully; false otherwise</returns>
public bool AnalyzeBlock(Block block)
{
switchVar = null;
RootBlock = block;
targetBlockToSectionIndex.Clear();
targetContainerToSectionIndex.Clear();
Sections.Clear();
InnerBlocks.Clear();
ContainsILSwitch = false;
return AnalyzeBlock(block, LongSet.Universe, tailOnly: true);
}
/// <summary>
/// Analyzes the tail end (last two instructions) of a block.
/// </summary>
/// <remarks>
/// Sets <c>switchVar</c> and <c>defaultInstruction</c> if they are null,
/// and adds found sections to <c>sectionLabels</c> and <c>sectionInstructions</c>.
///
/// If the function returns false, <c>sectionLabels</c> and <c>sectionInstructions</c> are unmodified.
/// </remarks>
/// <param name="block">The block to analyze.</param>
/// <param name="inputValues">The possible values of the "interesting" variable
/// when control flow reaches this block.</param>
/// <param name="tailOnly">If true, analyze only the tail (last two instructions).
/// If false, analyze the whole block.</param>
bool AnalyzeBlock(Block block, LongSet inputValues, bool tailOnly = false)
{
if (block.Instructions.Count == 0)
{
// might happen if the block was already marked for deletion in SwitchDetection
return false;
}
if (tailOnly)
{
Debug.Assert(block == RootBlock);
}
else
{
Debug.Assert(switchVar != null); // switchVar should always be determined by the top-level call
if (block.IncomingEdgeCount != 1 || block == RootBlock)
return false; // for now, let's only consider if-structures that form a tree
if (block.Parent != RootBlock.Parent)
return false; // all blocks should belong to the same container
}
LongSet trueValues;
if (block.Instructions.Count >= 2
&& block.Instructions[block.Instructions.Count - 2].MatchIfInstruction(out var condition, out var trueInst)
&& AnalyzeCondition(condition, out trueValues)
)
{
if (!(tailOnly || block.Instructions.Count == 2))
return false;
trueValues = trueValues.IntersectWith(inputValues);
if (trueValues.SetEquals(inputValues) || trueValues.IsEmpty)
return false;
Block trueBlock;
if (trueInst.MatchBranch(out trueBlock) && AnalyzeBlock(trueBlock, trueValues))
{
// OK, true block was further analyzed.
InnerBlocks.Add(trueBlock);
}
else
{
// Create switch section for trueInst.
AddSection(trueValues, trueInst);
}
}
else if (block.Instructions.Last() is SwitchInstruction switchInst)
{
if (!(tailOnly || block.Instructions.Count == 1))
return false;
if (AnalyzeSwitch(switchInst, inputValues))
{
ContainsILSwitch = true; // OK
return true;
}
else
{ // switch analysis failed (e.g. switchVar mismatch)
return false;
}
}
else
{ // unknown inst
return false;
}
var remainingValues = inputValues.ExceptWith(trueValues);
ILInstruction falseInst = block.Instructions.Last();
Block falseBlock;
if (falseInst.MatchBranch(out falseBlock) && AnalyzeBlock(falseBlock, remainingValues))
{
// OK, false block was further analyzed.
InnerBlocks.Add(falseBlock);
}
else
{
// Create switch section for falseInst.
AddSection(remainingValues, falseInst);
}
return true;
}
private bool AnalyzeSwitch(SwitchInstruction inst, LongSet inputValues)
{
Debug.Assert(!inst.IsLifted);
long offset;
if (MatchSwitchVar(inst.Value))
{
offset = 0;
}
else if (inst.Value is BinaryNumericInstruction bop)
{
if (bop.CheckForOverflow)
return false;
if (MatchSwitchVar(bop.Left) && bop.Right.MatchLdcI(out long val))
{
switch (bop.Operator)
{
case BinaryNumericOperator.Add:
offset = unchecked(-val);
break;
case BinaryNumericOperator.Sub:
offset = val;
break;
default: // unknown bop.Operator
return false;
}
}
else
{ // unknown bop.Left
return false;
}
}
else
{ // unknown inst.Value
return false;
}
foreach (var section in inst.Sections)
{
var matchValues = section.Labels.AddOffset(offset).IntersectWith(inputValues);
if (!AllowUnreachableCases && matchValues.IsEmpty)
return false;
if (matchValues.Count() > 1 && section.Body.MatchBranch(out var targetBlock) && AnalyzeBlock(targetBlock, matchValues))
{
InnerBlocks.Add(targetBlock);
}
else
{
AddSection(matchValues, section.Body);
}
}
return true;
}
/// <summary>
/// Adds a new section to the Sections list.
///
/// If the instruction is a branch instruction, unify the new section with an existing section
/// that also branches to the same target.
/// </summary>
void AddSection(LongSet values, ILInstruction inst)
{
if (values.IsEmpty)
{
return;
}
if (inst.MatchBranch(out Block targetBlock))
{
if (targetBlockToSectionIndex.TryGetValue(targetBlock, out int index))
{
Sections[index] = new KeyValuePair<LongSet, ILInstruction>(
Sections[index].Key.UnionWith(values),
inst
);
}
else
{
targetBlockToSectionIndex.Add(targetBlock, Sections.Count);
Sections.Add(new KeyValuePair<LongSet, ILInstruction>(values, inst));
}
}
else if (inst.MatchLeave(out BlockContainer targetContainer))
{
if (targetContainerToSectionIndex.TryGetValue(targetContainer, out int index))
{
Sections[index] = new KeyValuePair<LongSet, ILInstruction>(
Sections[index].Key.UnionWith(values),
inst
);
}
else
{
targetContainerToSectionIndex.Add(targetContainer, Sections.Count);
Sections.Add(new KeyValuePair<LongSet, ILInstruction>(values, inst));
}
}
else
{
Sections.Add(new KeyValuePair<LongSet, ILInstruction>(values, inst));
}
}
bool MatchSwitchVar(ILInstruction inst)
{
if (switchVar != null)
return inst.MatchLdLoc(switchVar);
else
return inst.MatchLdLoc(out switchVar);
}
bool MatchSwitchVar(ILInstruction inst, out long sub)
{
if (inst is BinaryNumericInstruction bn
&& bn.Operator == BinaryNumericOperator.Sub
&& !bn.CheckForOverflow && !bn.IsLifted
&& bn.Right.MatchLdcI(out sub))
{
return MatchSwitchVar(bn.Left);
}
sub = 0;
return MatchSwitchVar(inst);
}
/// <summary>
/// Analyzes the boolean condition, returning the set of values of the interesting
/// variable for which the condition evaluates to true.
/// </summary>
private bool AnalyzeCondition(ILInstruction condition, out LongSet trueValues)
{
if (condition is Comp comp && MatchSwitchVar(comp.Left, out var sub) && comp.Right.MatchLdcI(out long val))
{
// if (comp((V - sub) OP val))
trueValues = MakeSetWhereComparisonIsTrue(comp.Kind, val, comp.Sign);
trueValues = trueValues.AddOffset(sub);
return true;
}
else if (MatchSwitchVar(condition))
{
// if (ldloc V) --> branch for all values except 0
trueValues = new LongSet(0).Invert();
return true;
}
else if (condition.MatchLogicNot(out ILInstruction arg))
{
// if (logic.not(X)) --> branch for all values where if (X) does not branch
bool res = AnalyzeCondition(arg, out LongSet falseValues);
trueValues = falseValues.Invert();
return res;
}
else
{
trueValues = LongSet.Empty;
return false;
}
}
/// <summary>
/// Create the LongSet that contains a value x iff x compared with value is true.
/// </summary>
internal static LongSet MakeSetWhereComparisonIsTrue(ComparisonKind kind, long val, Sign sign)
{
switch (kind)
{
case ComparisonKind.Equality:
return new LongSet(val);
case ComparisonKind.Inequality:
return new LongSet(val).Invert();
case ComparisonKind.LessThan:
return MakeGreaterThanOrEqualSet(val, sign).Invert();
case ComparisonKind.LessThanOrEqual:
return MakeLessThanOrEqualSet(val, sign);
case ComparisonKind.GreaterThan:
return MakeLessThanOrEqualSet(val, sign).Invert();
case ComparisonKind.GreaterThanOrEqual:
return MakeGreaterThanOrEqualSet(val, sign);
default:
throw new ArgumentException("Invalid ComparisonKind");
}
}
private static LongSet MakeGreaterThanOrEqualSet(long val, Sign sign)
{
if (sign == Sign.Signed)
{
return new LongSet(LongInterval.Inclusive(val, long.MaxValue));
}
else
{
Debug.Assert(sign == Sign.Unsigned);
if (val >= 0)
{
// The range val to ulong.MaxValue expressed with signed longs
// is not a single contiguous range, but two ranges:
return new LongSet(LongInterval.Inclusive(val, long.MaxValue))
.UnionWith(new LongSet(new LongInterval(long.MinValue, 0)));
}
else
{
return new LongSet(new LongInterval(val, 0));
}
}
}
private static LongSet MakeLessThanOrEqualSet(long val, Sign sign)
{
if (sign == Sign.Signed)
{
return new LongSet(LongInterval.Inclusive(long.MinValue, val));
}
else
{
Debug.Assert(sign == Sign.Unsigned);
if (val >= 0)
{
return new LongSet(LongInterval.Inclusive(0, val));
}
else
{
// The range 0 to (ulong)val expressed with signed longs
// is not a single contiguous range, but two ranges:
return new LongSet(LongInterval.Inclusive(0, long.MaxValue))
.UnionWith(new LongSet(LongInterval.Inclusive(long.MinValue, val)));
}
}
}
}
}