.NET Decompiler with support for PDB generation, ReadyToRun, Metadata (&more) - cross-platform!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

322 lines
10 KiB

// Copyright (c) 2016 Daniel Grunwald
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Threading;
using ICSharpCode.Decompiler.IL;
using ICSharpCode.Decompiler.TypeSystem;
using ICSharpCode.Decompiler.Util;
namespace ICSharpCode.Decompiler.FlowAnalysis
{
/// <summary>
/// DataFlowVisitor that performs definite assignment analysis.
/// </summary>
class DefiniteAssignmentVisitor : DataFlowVisitor<DefiniteAssignmentVisitor.State>
{
/// <summary>
/// State for definite assignment analysis.
/// </summary>
[DebuggerDisplay("{bits}")]
public struct State : IDataFlowState<State>
{
/// <summary>
/// bits[i]: There is a code path from the entry point to this state's position
/// that does not write to function.Variables[i].
/// (i.e. the variable is not definitely assigned at the state's position)
///
/// Initial state: all bits set = nothing is definitely assigned
/// Bottom state: all bits clear
/// </summary>
readonly BitSet bits;
/// <summary>
/// Creates the initial state.
/// </summary>
public State(int variableCount)
{
this.bits = new BitSet(variableCount);
this.bits.Set(0, variableCount);
}
private State(BitSet bits)
{
this.bits = bits;
}
public bool LessThanOrEqual(State otherState)
{
return bits.IsSubsetOf(otherState.bits);
}
public State Clone()
{
return new State(bits.Clone());
}
public void ReplaceWith(State newContent)
{
bits.ReplaceWith(newContent.bits);
}
public void JoinWith(State incomingState)
{
bits.UnionWith(incomingState.bits);
}
public void TriggerFinally(State finallyState)
{
// If there is no path to the end of the try-block that leaves a variable v
// uninitialized, then there is no such path to the end of the whole try-finally either.
// (the try-finally cannot complete successfully unless the try block does the same)
// ==> any bits that are false in this.state must be false in the output state.
// Or said otherwise: a variable is definitely assigned after try-finally if it is
// definitely assigned in either the try or the finally block.
// Given that the bits are the opposite of definite assignment, this gives us:
// !outputBits[i] == !bits[i] || !finallyState.bits[i].
// and thus:
// outputBits[i] == bits[i] && finallyState.bits[i].
bits.IntersectWith(finallyState.bits);
}
public void ReplaceWithBottom()
{
bits.ClearAll();
}
public bool IsBottom {
get { return !bits.Any(); }
}
public void MarkVariableInitialized(int variableIndex)
{
bits.Clear(variableIndex);
}
public bool IsPotentiallyUninitialized(int variableIndex)
{
return bits[variableIndex];
}
}
readonly CancellationToken cancellationToken;
readonly ILFunction scope;
readonly BitSet variablesWithUninitializedUsage;
readonly Dictionary<IMethod, State> stateOfLocalFunctionUse = new Dictionary<IMethod, State>();
readonly HashSet<IMethod> localFunctionsNeedingAnalysis = new HashSet<IMethod>();
public DefiniteAssignmentVisitor(ILFunction scope, CancellationToken cancellationToken)
{
cancellationToken.ThrowIfCancellationRequested();
this.cancellationToken = cancellationToken;
this.scope = scope;
this.variablesWithUninitializedUsage = new BitSet(scope.Variables.Count);
base.flagsRequiringManualImpl |= InstructionFlags.MayReadLocals | InstructionFlags.MayWriteLocals;
Initialize(new State(scope.Variables.Count));
}
public bool IsPotentiallyUsedUninitialized(ILVariable v)
{
Debug.Assert(v.Function == scope);
return variablesWithUninitializedUsage[v.IndexInFunction];
}
void HandleStore(ILVariable v)
{
cancellationToken.ThrowIfCancellationRequested();
if (v.Function == scope)
{
// Mark the variable as initialized:
state.MarkVariableInitialized(v.IndexInFunction);
// Note that this gets called even if the store is in unreachable code,
// but that's OK because bottomState.MarkVariableInitialized() has no effect.
// After the state change, we have to call
// PropagateStateOnException() = currentStateOnException.JoinWith(state);
// but because MarkVariableInitialized() only clears a bit,
// this is guaranteed to be a no-op.
}
}
void EnsureInitialized(ILVariable v)
{
if (v.Function == scope && state.IsPotentiallyUninitialized(v.IndexInFunction))
{
variablesWithUninitializedUsage.Set(v.IndexInFunction);
}
}
protected internal override void VisitStLoc(StLoc inst)
{
inst.Value.AcceptVisitor(this);
HandleStore(inst.Variable);
}
protected override void HandleMatchStore(MatchInstruction inst)
{
HandleStore(inst.Variable);
}
protected override void BeginTryCatchHandler(TryCatchHandler inst)
{
HandleStore(inst.Variable);
base.BeginTryCatchHandler(inst);
}
protected internal override void VisitPinnedRegion(PinnedRegion inst)
{
inst.Init.AcceptVisitor(this);
HandleStore(inst.Variable);
inst.Body.AcceptVisitor(this);
}
protected internal override void VisitLdLoc(LdLoc inst)
{
EnsureInitialized(inst.Variable);
}
protected internal override void VisitLdLoca(LdLoca inst)
{
// A variable needs to be initialized before we can take it by reference.
// The exception is if the variable is passed to an out parameter (handled in VisitCall).
EnsureInitialized(inst.Variable);
}
protected internal override void VisitCall(Call inst)
{
HandleCall(inst);
}
protected internal override void VisitCallVirt(CallVirt inst)
{
HandleCall(inst);
}
protected internal override void VisitNewObj(NewObj inst)
{
HandleCall(inst);
}
protected internal override void VisitILFunction(ILFunction inst)
{
DebugStartPoint(inst);
State stateBeforeFunction = state.Clone();
State stateOnExceptionBeforeFunction = currentStateOnException.Clone();
// Note: lambdas are handled at their point of declaration.
// We immediately visit their body, because captured variables need to be definitely initialized at this point.
// We ignore the state after the lambda body (by resetting to the state before), because we don't know
// when the lambda will be invoked.
// This also makes this logic unsuitable for reaching definitions, as we wouldn't see the effect of stores in lambdas.
// Only the simpler case of definite assignment can support lambdas.
inst.Body.AcceptVisitor(this);
// For local functions, the situation is similar to lambdas.
// However, we don't use the state of the declaration site when visiting local functions,
// but instead the state(s) of their point of use.
// Because we might discover additional points of use within the local functions,
// we use a fixed-point iteration.
bool changed;
do
{
changed = false;
foreach (var nestedFunction in inst.LocalFunctions)
{
if (!localFunctionsNeedingAnalysis.Contains(nestedFunction.ReducedMethod))
continue;
localFunctionsNeedingAnalysis.Remove(nestedFunction.ReducedMethod);
State stateOnEntry = stateOfLocalFunctionUse[nestedFunction.ReducedMethod];
this.state.ReplaceWith(stateOnEntry);
this.currentStateOnException.ReplaceWith(stateOnEntry);
nestedFunction.AcceptVisitor(this);
changed = true;
}
} while (changed);
currentStateOnException = stateOnExceptionBeforeFunction;
state = stateBeforeFunction;
DebugEndPoint(inst);
}
void HandleCall(CallInstruction call)
{
DebugStartPoint(call);
bool hasOutArgs = false;
foreach (var arg in call.Arguments)
{
if (arg.MatchLdLoca(out var v) && call.GetParameter(arg.ChildIndex)?.IsOut == true)
{
// Visiting ldloca would require the variable to be initialized,
// but we don't need out arguments to be initialized.
hasOutArgs = true;
}
else
{
arg.AcceptVisitor(this);
}
}
// Mark out arguments as initialized, but only after the whole call:
if (hasOutArgs)
{
foreach (var arg in call.Arguments)
{
if (arg.MatchLdLoca(out var v) && call.GetParameter(arg.ChildIndex)?.IsOut == true)
{
HandleStore(v);
}
}
}
HandleLocalFunctionUse(call.Method);
DebugEndPoint(call);
}
/// <summary>
/// For a use of a local function, remember the current state to use as stateOnEntry when
/// later processing the local function body.
/// </summary>
void HandleLocalFunctionUse(IMethod method)
{
if (method.IsLocalFunction)
{
if (stateOfLocalFunctionUse.TryGetValue(method, out var stateOnEntry))
{
if (!state.LessThanOrEqual(stateOnEntry))
{
stateOnEntry.JoinWith(state);
localFunctionsNeedingAnalysis.Add(method);
}
}
else
{
stateOfLocalFunctionUse.Add(method, state.Clone());
localFunctionsNeedingAnalysis.Add(method);
}
}
}
protected internal override void VisitLdFtn(LdFtn inst)
{
DebugStartPoint(inst);
HandleLocalFunctionUse(inst.Method);
DebugEndPoint(inst);
}
}
}