.NET Decompiler with support for PDB generation, ReadyToRun, Metadata (&more) - cross-platform!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

738 lines
27 KiB

// Copyright (c) 2011 AlphaSierraPapa for the SharpDevelop Team
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using ICSharpCode.Decompiler.FlowAnalysis;
using ICSharpCode.NRefactory.Utils;
using Mono.Cecil;
using Mono.Cecil.Cil;
using Mono.CSharp;
namespace ICSharpCode.Decompiler.ILAst
{
public enum ILAstOptimizationStep
{
RemoveRedundantCode,
ReduceBranchInstructionSet,
InlineVariables,
CopyPropagation,
YieldReturn,
PropertyAccessInstructions,
SplitToMovableBlocks,
TypeInference,
SimplifyShortCircuit,
SimplifyTernaryOperator,
SimplifyNullCoalescing,
JoinBasicBlocks,
TransformDecimalCtorToConstant,
SimplifyLdObjAndStObj,
TransformArrayInitializers,
TransformObjectInitializers,
SimplifyNullableOperators,
MakeAssignmentExpression,
IntroducePostIncrement,
InlineVariables2,
FindLoops,
FindConditions,
FlattenNestedMovableBlocks,
RemoveRedundantCode2,
GotoRemoval,
DuplicateReturns,
ReduceIfNesting,
InlineVariables3,
CachedDelegateInitialization,
IntroduceFixedStatements,
RecombineVariables,
TypeInference2,
RemoveRedundantCode3,
None
}
public partial class ILAstOptimizer
{
int nextLabelIndex = 0;
DecompilerContext context;
TypeSystem typeSystem;
ILBlock method;
public void Optimize(DecompilerContext context, ILBlock method, ILAstOptimizationStep abortBeforeStep = ILAstOptimizationStep.None)
{
this.context = context;
this.typeSystem = context.CurrentMethod.Module.TypeSystem;
this.method = method;
if (abortBeforeStep == ILAstOptimizationStep.RemoveRedundantCode) return;
RemoveRedundantCode(method);
if (abortBeforeStep == ILAstOptimizationStep.ReduceBranchInstructionSet) return;
foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
ReduceBranchInstructionSet(block);
}
// ReduceBranchInstructionSet runs before inlining because the non-aggressive inlining heuristic
// looks at which type of instruction consumes the inlined variable.
if (abortBeforeStep == ILAstOptimizationStep.InlineVariables) return;
// Works better after simple goto removal because of the following debug pattern: stloc X; br Next; Next:; ldloc X
ILInlining inlining1 = new ILInlining(method);
inlining1.InlineAllVariables();
if (abortBeforeStep == ILAstOptimizationStep.CopyPropagation) return;
inlining1.CopyPropagation();
if (abortBeforeStep == ILAstOptimizationStep.YieldReturn) return;
YieldReturnDecompiler.Run(context, method);
if (abortBeforeStep == ILAstOptimizationStep.PropertyAccessInstructions) return;
IntroducePropertyAccessInstructions(method);
if (abortBeforeStep == ILAstOptimizationStep.SplitToMovableBlocks) return;
foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
SplitToBasicBlocks(block);
}
if (abortBeforeStep == ILAstOptimizationStep.TypeInference) return;
// Types are needed for the ternary operator optimization
TypeAnalysis.Run(context, method);
foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
bool modified;
do {
modified = false;
if (abortBeforeStep == ILAstOptimizationStep.SimplifyShortCircuit) return;
modified |= block.RunOptimization(new SimpleControlFlow(context, method).SimplifyShortCircuit);
if (abortBeforeStep == ILAstOptimizationStep.SimplifyTernaryOperator) return;
modified |= block.RunOptimization(new SimpleControlFlow(context, method).SimplifyTernaryOperator);
if (abortBeforeStep == ILAstOptimizationStep.SimplifyNullCoalescing) return;
modified |= block.RunOptimization(new SimpleControlFlow(context, method).SimplifyNullCoalescing);
if (abortBeforeStep == ILAstOptimizationStep.JoinBasicBlocks) return;
modified |= block.RunOptimization(new SimpleControlFlow(context, method).JoinBasicBlocks);
if (abortBeforeStep == ILAstOptimizationStep.TransformDecimalCtorToConstant) return;
modified |= block.RunOptimization(TransformDecimalCtorToConstant);
modified |= block.RunOptimization(SimplifyLdcI4ConvI8);
if (abortBeforeStep == ILAstOptimizationStep.SimplifyLdObjAndStObj) return;
modified |= block.RunOptimization(SimplifyLdObjAndStObj);
if (abortBeforeStep == ILAstOptimizationStep.TransformArrayInitializers) return;
modified |= block.RunOptimization(TransformArrayInitializers);
if (abortBeforeStep == ILAstOptimizationStep.TransformObjectInitializers) return;
modified |= block.RunOptimization(TransformObjectInitializers);
if (abortBeforeStep == ILAstOptimizationStep.SimplifyNullableOperators) return;
modified |= block.RunOptimization(SimplifyNullableOperators);
if (abortBeforeStep == ILAstOptimizationStep.MakeAssignmentExpression) return;
modified |= block.RunOptimization(MakeAssignmentExpression);
modified |= block.RunOptimization(MakeCompoundAssignments);
if (abortBeforeStep == ILAstOptimizationStep.IntroducePostIncrement) return;
modified |= block.RunOptimization(IntroducePostIncrement);
if (abortBeforeStep == ILAstOptimizationStep.InlineVariables2) return;
modified |= new ILInlining(method).InlineAllInBlock(block);
new ILInlining(method).CopyPropagation();
} while(modified);
}
if (abortBeforeStep == ILAstOptimizationStep.FindLoops) return;
foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
new LoopsAndConditions(context).FindLoops(block);
}
if (abortBeforeStep == ILAstOptimizationStep.FindConditions) return;
foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
new LoopsAndConditions(context).FindConditions(block);
}
if (abortBeforeStep == ILAstOptimizationStep.FlattenNestedMovableBlocks) return;
FlattenBasicBlocks(method);
if (abortBeforeStep == ILAstOptimizationStep.RemoveRedundantCode2) return;
RemoveRedundantCode(method);
if (abortBeforeStep == ILAstOptimizationStep.GotoRemoval) return;
new GotoRemoval().RemoveGotos(method);
if (abortBeforeStep == ILAstOptimizationStep.DuplicateReturns) return;
DuplicateReturnStatements(method);
if (abortBeforeStep == ILAstOptimizationStep.ReduceIfNesting) return;
ReduceIfNesting(method);
if (abortBeforeStep == ILAstOptimizationStep.InlineVariables3) return;
// The 2nd inlining pass is necessary because DuplicateReturns and the introduction of ternary operators
// open up additional inlining possibilities.
new ILInlining(method).InlineAllVariables();
if (abortBeforeStep == ILAstOptimizationStep.CachedDelegateInitialization) return;
foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
for (int i = 0; i < block.Body.Count; i++) {
// TODO: Move before loops
CachedDelegateInitializationWithField(block, ref i);
CachedDelegateInitializationWithLocal(block, ref i);
}
}
if (abortBeforeStep == ILAstOptimizationStep.IntroduceFixedStatements) return;
// we need post-order traversal, not pre-order, for "fixed" to work correctly
foreach (ILBlock block in TreeTraversal.PostOrder<ILNode>(method, n => n.GetChildren()).OfType<ILBlock>()) {
for (int i = block.Body.Count - 1; i >= 0; i--) {
// TODO: Move before loops
if (i < block.Body.Count)
IntroduceFixedStatements(block.Body, i);
}
}
if (abortBeforeStep == ILAstOptimizationStep.RecombineVariables) return;
RecombineVariables(method);
if (abortBeforeStep == ILAstOptimizationStep.TypeInference2) return;
TypeAnalysis.Reset(method);
TypeAnalysis.Run(context, method);
if (abortBeforeStep == ILAstOptimizationStep.RemoveRedundantCode3) return;
GotoRemoval.RemoveRedundantCode(method);
// ReportUnassignedILRanges(method);
}
/// <summary>
/// Removes redundatant Br, Nop, Dup, Pop
/// </summary>
/// <param name="method"></param>
void RemoveRedundantCode(ILBlock method)
{
Dictionary<ILLabel, int> labelRefCount = new Dictionary<ILLabel, int>();
foreach (ILLabel target in method.GetSelfAndChildrenRecursive<ILExpression>(e => e.IsBranch()).SelectMany(e => e.GetBranchTargets())) {
labelRefCount[target] = labelRefCount.GetOrDefault(target) + 1;
}
foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
List<ILNode> body = block.Body;
List<ILNode> newBody = new List<ILNode>(body.Count);
for (int i = 0; i < body.Count; i++) {
ILLabel target;
ILExpression popExpr;
if (body[i].Match(ILCode.Br, out target) && i+1 < body.Count && body[i+1] == target) {
// Ignore the branch
if (labelRefCount[target] == 1)
i++; // Ignore the label as well
} else if (body[i].Match(ILCode.Nop)){
// Ignore nop
} else if (body[i].Match(ILCode.Pop, out popExpr)) {
ILVariable v;
if (!popExpr.Match(ILCode.Ldloc, out v))
throw new Exception("Pop should have just ldloc at this stage");
// Best effort to move the ILRange to previous statement
ILVariable prevVar;
ILExpression prevExpr;
if (i - 1 >= 0 && body[i - 1].Match(ILCode.Stloc, out prevVar, out prevExpr) && prevVar == v)
prevExpr.ILRanges.AddRange(((ILExpression)body[i]).ILRanges);
// Ignore pop
} else {
newBody.Add(body[i]);
}
}
block.Body = newBody;
}
// 'dup' removal
foreach (ILExpression expr in method.GetSelfAndChildrenRecursive<ILExpression>()) {
for (int i = 0; i < expr.Arguments.Count; i++) {
ILExpression child;
if (expr.Arguments[i].Match(ILCode.Dup, out child)) {
child.ILRanges.AddRange(expr.Arguments[i].ILRanges);
expr.Arguments[i] = child;
}
}
}
}
/// <summary>
/// Reduces the branch codes to just br and brtrue.
/// Moves ILRanges to the branch argument
/// </summary>
void ReduceBranchInstructionSet(ILBlock block)
{
for (int i = 0; i < block.Body.Count; i++) {
ILExpression expr = block.Body[i] as ILExpression;
if (expr != null && expr.Prefixes == null) {
switch(expr.Code) {
case ILCode.Switch:
case ILCode.Brtrue:
expr.Arguments.Single().ILRanges.AddRange(expr.ILRanges);
expr.ILRanges.Clear();
continue;
case ILCode.__Brfalse: block.Body[i] = new ILExpression(ILCode.Brtrue, expr.Operand, new ILExpression(ILCode.LogicNot, null, expr.Arguments.Single())); break;
case ILCode.__Beq: block.Body[i] = new ILExpression(ILCode.Brtrue, expr.Operand, new ILExpression(ILCode.Ceq, null, expr.Arguments)); break;
case ILCode.__Bne_Un: block.Body[i] = new ILExpression(ILCode.Brtrue, expr.Operand, new ILExpression(ILCode.LogicNot, null, new ILExpression(ILCode.Ceq, null, expr.Arguments))); break;
case ILCode.__Bgt: block.Body[i] = new ILExpression(ILCode.Brtrue, expr.Operand, new ILExpression(ILCode.Cgt, null, expr.Arguments)); break;
case ILCode.__Bgt_Un: block.Body[i] = new ILExpression(ILCode.Brtrue, expr.Operand, new ILExpression(ILCode.Cgt_Un, null, expr.Arguments)); break;
case ILCode.__Ble: block.Body[i] = new ILExpression(ILCode.Brtrue, expr.Operand, new ILExpression(ILCode.LogicNot, null, new ILExpression(ILCode.Cgt, null, expr.Arguments))); break;
case ILCode.__Ble_Un: block.Body[i] = new ILExpression(ILCode.Brtrue, expr.Operand, new ILExpression(ILCode.LogicNot, null, new ILExpression(ILCode.Cgt_Un, null, expr.Arguments))); break;
case ILCode.__Blt: block.Body[i] = new ILExpression(ILCode.Brtrue, expr.Operand, new ILExpression(ILCode.Clt, null, expr.Arguments)); break;
case ILCode.__Blt_Un: block.Body[i] = new ILExpression(ILCode.Brtrue, expr.Operand, new ILExpression(ILCode.Clt_Un, null, expr.Arguments)); break;
case ILCode.__Bge: block.Body[i] = new ILExpression(ILCode.Brtrue, expr.Operand, new ILExpression(ILCode.LogicNot, null, new ILExpression(ILCode.Clt, null, expr.Arguments))); break;
case ILCode.__Bge_Un: block.Body[i] = new ILExpression(ILCode.Brtrue, expr.Operand, new ILExpression(ILCode.LogicNot, null, new ILExpression(ILCode.Clt_Un, null, expr.Arguments))); break;
default:
continue;
}
((ILExpression)block.Body[i]).Arguments.Single().ILRanges.AddRange(expr.ILRanges);
}
}
}
/// <summary>
/// Converts call and callvirt instructions that read/write properties into CallGetter/CallSetter instructions.
///
/// CallGetter/CallSetter is used to allow the ILAst to represent "while ((SomeProperty = value) != null)".
/// </summary>
void IntroducePropertyAccessInstructions(ILNode node)
{
ILExpression parentExpr = node as ILExpression;
if (parentExpr != null) {
for (int i = 0; i < parentExpr.Arguments.Count; i++) {
ILExpression expr = parentExpr.Arguments[i];
IntroducePropertyAccessInstructions(expr);
IntroducePropertyAccessInstructions(expr, parentExpr, i);
}
} else {
foreach (ILNode child in node.GetChildren()) {
IntroducePropertyAccessInstructions(child);
ILExpression expr = child as ILExpression;
if (expr != null) {
IntroducePropertyAccessInstructions(expr, null, -1);
}
}
}
}
void IntroducePropertyAccessInstructions(ILExpression expr, ILExpression parentExpr, int posInParent)
{
if (expr.Code == ILCode.Call || expr.Code == ILCode.Callvirt) {
MethodReference cecilMethod = (MethodReference)expr.Operand;
if (cecilMethod.DeclaringType is ArrayType) {
switch (cecilMethod.Name) {
case "Get":
expr.Code = ILCode.CallGetter;
break;
case "Set":
expr.Code = ILCode.CallSetter;
break;
case "Address":
ByReferenceType brt = cecilMethod.ReturnType as ByReferenceType;
if (brt != null) {
MethodReference getMethod = new MethodReference("Get", brt.ElementType, cecilMethod.DeclaringType);
foreach (var p in cecilMethod.Parameters)
getMethod.Parameters.Add(p);
getMethod.HasThis = cecilMethod.HasThis;
expr.Operand = getMethod;
}
expr.Code = ILCode.CallGetter;
if (parentExpr != null) {
parentExpr.Arguments[posInParent] = new ILExpression(ILCode.AddressOf, null, expr);
}
break;
}
} else {
MethodDefinition cecilMethodDef = cecilMethod.Resolve();
if (cecilMethodDef != null) {
if (cecilMethodDef.IsGetter)
expr.Code = (expr.Code == ILCode.Call) ? ILCode.CallGetter : ILCode.CallvirtGetter;
else if (cecilMethodDef.IsSetter)
expr.Code = (expr.Code == ILCode.Call) ? ILCode.CallSetter : ILCode.CallvirtSetter;
}
}
}
}
/// <summary>
/// Group input into a set of blocks that can be later arbitraliby schufled.
/// The method adds necessary branches to make control flow between blocks
/// explicit and thus order independent.
/// </summary>
void SplitToBasicBlocks(ILBlock block)
{
List<ILNode> basicBlocks = new List<ILNode>();
ILLabel entryLabel = block.Body.FirstOrDefault() as ILLabel ?? new ILLabel() { Name = "Block_" + (nextLabelIndex++) };
ILBasicBlock basicBlock = new ILBasicBlock();
basicBlocks.Add(basicBlock);
basicBlock.Body.Add(entryLabel);
block.EntryGoto = new ILExpression(ILCode.Br, entryLabel);
if (block.Body.Count > 0) {
if (block.Body[0] != entryLabel)
basicBlock.Body.Add(block.Body[0]);
for (int i = 1; i < block.Body.Count; i++) {
ILNode lastNode = block.Body[i - 1];
ILNode currNode = block.Body[i];
// Start a new basic block if necessary
if (currNode is ILLabel ||
currNode is ILTryCatchBlock || // Counts as label
lastNode.IsConditionalControlFlow() ||
lastNode.IsUnconditionalControlFlow())
{
// Try to reuse the label
ILLabel label = currNode is ILLabel ? ((ILLabel)currNode) : new ILLabel() { Name = "Block_" + (nextLabelIndex++) };
// Terminate the last block
if (!lastNode.IsUnconditionalControlFlow()) {
// Explicit branch from one block to other
basicBlock.Body.Add(new ILExpression(ILCode.Br, label));
}
// Start the new block
basicBlock = new ILBasicBlock();
basicBlocks.Add(basicBlock);
basicBlock.Body.Add(label);
// Add the node to the basic block
if (currNode != label)
basicBlock.Body.Add(currNode);
} else {
basicBlock.Body.Add(currNode);
}
}
}
block.Body = basicBlocks;
return;
}
void DuplicateReturnStatements(ILBlock method)
{
Dictionary<ILLabel, ILNode> nextSibling = new Dictionary<ILLabel, ILNode>();
// Build navigation data
foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
for (int i = 0; i < block.Body.Count - 1; i++) {
ILLabel curr = block.Body[i] as ILLabel;
if (curr != null) {
nextSibling[curr] = block.Body[i + 1];
}
}
}
// Duplicate returns
foreach(ILBlock block in method.GetSelfAndChildrenRecursive<ILBlock>()) {
for (int i = 0; i < block.Body.Count; i++) {
ILLabel targetLabel;
if (block.Body[i].Match(ILCode.Br, out targetLabel) || block.Body[i].Match(ILCode.Leave, out targetLabel)) {
// Skip extra labels
while(nextSibling.ContainsKey(targetLabel) && nextSibling[targetLabel] is ILLabel) {
targetLabel = (ILLabel)nextSibling[targetLabel];
}
// Inline return statement
ILNode target;
List<ILExpression> retArgs;
if (nextSibling.TryGetValue(targetLabel, out target)) {
if (target.Match(ILCode.Ret, out retArgs)) {
ILVariable locVar;
object constValue;
if (retArgs.Count == 0) {
block.Body[i] = new ILExpression(ILCode.Ret, null);
} else if (retArgs.Single().Match(ILCode.Ldloc, out locVar)) {
block.Body[i] = new ILExpression(ILCode.Ret, null, new ILExpression(ILCode.Ldloc, locVar));
} else if (retArgs.Single().Match(ILCode.Ldc_I4, out constValue)) {
block.Body[i] = new ILExpression(ILCode.Ret, null, new ILExpression(ILCode.Ldc_I4, constValue));
}
}
} else {
if (method.Body.Count > 0 && method.Body.Last() == targetLabel) {
// It exits the main method - so it is same as return;
block.Body[i] = new ILExpression(ILCode.Ret, null);
}
}
}
}
}
}
/// <summary>
/// Flattens all nested basic blocks, except the the top level 'node' argument
/// </summary>
void FlattenBasicBlocks(ILNode node)
{
ILBlock block = node as ILBlock;
if (block != null) {
List<ILNode> flatBody = new List<ILNode>();
foreach (ILNode child in block.GetChildren()) {
FlattenBasicBlocks(child);
ILBasicBlock childAsBB = child as ILBasicBlock;
if (childAsBB != null) {
if (!(childAsBB.Body.FirstOrDefault() is ILLabel))
throw new Exception("Basic block has to start with a label. \n" + childAsBB.ToString());
if (childAsBB.Body.LastOrDefault() is ILExpression && !childAsBB.Body.LastOrDefault().IsUnconditionalControlFlow())
throw new Exception("Basci block has to end with unconditional control flow. \n" + childAsBB.ToString());
flatBody.AddRange(childAsBB.GetChildren());
} else {
flatBody.Add(child);
}
}
block.EntryGoto = null;
block.Body = flatBody;
} else if (node is ILExpression) {
// Optimization - no need to check expressions
} else if (node != null) {
// Recursively find all ILBlocks
foreach(ILNode child in node.GetChildren()) {
FlattenBasicBlocks(child);
}
}
}
/// <summary>
/// Reduce the nesting of conditions.
/// It should be done on flat data that already had most gotos removed
/// </summary>
void ReduceIfNesting(ILNode node)
{
ILBlock block = node as ILBlock;
if (block != null) {
for (int i = 0; i < block.Body.Count; i++) {
ILCondition cond = block.Body[i] as ILCondition;
if (cond != null) {
bool trueExits = cond.TrueBlock.Body.LastOrDefault().IsUnconditionalControlFlow();
bool falseExits = cond.FalseBlock.Body.LastOrDefault().IsUnconditionalControlFlow();
if (trueExits) {
// Move the false block after the condition
block.Body.InsertRange(i + 1, cond.FalseBlock.GetChildren());
cond.FalseBlock = new ILBlock();
} else if (falseExits) {
// Move the true block after the condition
block.Body.InsertRange(i + 1, cond.TrueBlock.GetChildren());
cond.TrueBlock = new ILBlock();
}
// Eliminate empty true block
if (!cond.TrueBlock.GetChildren().Any() && cond.FalseBlock.GetChildren().Any()) {
// Swap bodies
ILBlock tmp = cond.TrueBlock;
cond.TrueBlock = cond.FalseBlock;
cond.FalseBlock = tmp;
cond.Condition = new ILExpression(ILCode.LogicNot, null, cond.Condition);
}
}
}
}
// We are changing the number of blocks so we use plain old recursion to get all blocks
foreach(ILNode child in node.GetChildren()) {
if (child != null && !(child is ILExpression))
ReduceIfNesting(child);
}
}
void RecombineVariables(ILBlock method)
{
// Recombine variables that were split when the ILAst was created
// This ensures that a single IL variable is a single C# variable (gets assigned only one name)
// The DeclareVariables transformation might then split up the C# variable again if it is used indendently in two separate scopes.
Dictionary<VariableDefinition, ILVariable> dict = new Dictionary<VariableDefinition, ILVariable>();
foreach (ILExpression expr in method.GetSelfAndChildrenRecursive<ILExpression>()) {
ILVariable v = expr.Operand as ILVariable;
if (v != null && v.OriginalVariable != null) {
ILVariable combinedVariable;
if (!dict.TryGetValue(v.OriginalVariable, out combinedVariable)) {
dict.Add(v.OriginalVariable, v);
combinedVariable = v;
}
expr.Operand = combinedVariable;
}
}
}
void ReportUnassignedILRanges(ILBlock method)
{
var unassigned = ILRange.Invert(method.GetSelfAndChildrenRecursive<ILExpression>().SelectMany(e => e.ILRanges), context.CurrentMethod.Body.CodeSize).ToList();
if (unassigned.Count > 0)
Debug.WriteLine(string.Format("Unassigned ILRanges for {0}.{1}: {2}", this.context.CurrentMethod.DeclaringType.Name, this.context.CurrentMethod.Name, string.Join(", ", unassigned.Select(r => r.ToString()))));
}
}
public static class ILAstOptimizerExtensionMethods
{
/// <summary>
/// Perform one pass of a given optimization on this block.
/// This block must consist of only basicblocks.
/// </summary>
public static bool RunOptimization(this ILBlock block, Func<List<ILNode>, ILBasicBlock, int, bool> optimization)
{
bool modified = false;
List<ILNode> body = block.Body;
for (int i = body.Count - 1; i >= 0; i--) {
if (i < body.Count && optimization(body, (ILBasicBlock)body[i], i)) {
modified = true;
}
}
return modified;
}
public static bool RunOptimization(this ILBlock block, Func<List<ILNode>, ILExpression, int, bool> optimization)
{
bool modified = false;
foreach (ILBasicBlock bb in block.Body) {
for (int i = bb.Body.Count - 1; i >= 0; i--) {
ILExpression expr = bb.Body.ElementAtOrDefault(i) as ILExpression;
if (expr != null && optimization(bb.Body, expr, i)) {
modified = true;
}
}
}
return modified;
}
public static bool IsConditionalControlFlow(this ILNode node)
{
ILExpression expr = node as ILExpression;
return expr != null && expr.Code.IsConditionalControlFlow();
}
public static bool IsUnconditionalControlFlow(this ILNode node)
{
ILExpression expr = node as ILExpression;
return expr != null && expr.Code.IsUnconditionalControlFlow();
}
/// <summary>
/// The expression has no effect on the program and can be removed
/// if its return value is not needed.
/// </summary>
public static bool HasNoSideEffects(this ILExpression expr)
{
// Remember that if expression can throw an exception, it is a side effect
switch(expr.Code) {
case ILCode.Ldloc:
case ILCode.Ldloca:
case ILCode.Ldstr:
case ILCode.Ldnull:
case ILCode.Ldc_I4:
case ILCode.Ldc_I8:
case ILCode.Ldc_R4:
case ILCode.Ldc_R8:
return true;
default:
return false;
}
}
public static bool IsStoreToArray(this ILCode code)
{
switch (code) {
case ILCode.Stelem_Any:
case ILCode.Stelem_I:
case ILCode.Stelem_I1:
case ILCode.Stelem_I2:
case ILCode.Stelem_I4:
case ILCode.Stelem_I8:
case ILCode.Stelem_R4:
case ILCode.Stelem_R8:
case ILCode.Stelem_Ref:
return true;
default:
return false;
}
}
public static bool IsLoadFromArray(this ILCode code)
{
switch (code) {
case ILCode.Ldelem_Any:
case ILCode.Ldelem_I:
case ILCode.Ldelem_I1:
case ILCode.Ldelem_I2:
case ILCode.Ldelem_I4:
case ILCode.Ldelem_I8:
case ILCode.Ldelem_U1:
case ILCode.Ldelem_U2:
case ILCode.Ldelem_U4:
case ILCode.Ldelem_R4:
case ILCode.Ldelem_R8:
case ILCode.Ldelem_Ref:
return true;
default:
return false;
}
}
/// <summary>
/// Can the expression be used as a statement in C#?
/// </summary>
public static bool CanBeExpressionStatement(this ILExpression expr)
{
switch(expr.Code) {
case ILCode.Call:
case ILCode.Callvirt:
// property getters can't be expression statements, but all other method calls can be
MethodReference mr = (MethodReference)expr.Operand;
return !mr.Name.StartsWith("get_", StringComparison.Ordinal);
case ILCode.Newobj:
case ILCode.Newarr:
case ILCode.Stloc:
return true;
default:
return false;
}
}
public static void RemoveTail(this List<ILNode> body, params ILCode[] codes)
{
for (int i = 0; i < codes.Length; i++) {
if (((ILExpression)body[body.Count - codes.Length + i]).Code != codes[i])
throw new Exception("Tailing code does not match expected.");
}
body.RemoveRange(body.Count - codes.Length, codes.Length);
}
public static V GetOrDefault<K,V>(this Dictionary<K, V> dict, K key)
{
V ret;
dict.TryGetValue(key, out ret);
return ret;
}
public static void RemoveOrThrow<T>(this ICollection<T> collection, T item)
{
if (!collection.Remove(item))
throw new Exception("The item was not found in the collection");
}
public static void RemoveOrThrow<K,V>(this Dictionary<K,V> collection, K key)
{
if (!collection.Remove(key))
throw new Exception("The key was not found in the dictionary");
}
}
}