.NET Decompiler with support for PDB generation, ReadyToRun, Metadata (&more) - cross-platform!
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

871 lines
29 KiB

// Copyright (c) 2011-2017 Daniel Grunwald
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Diagnostics;
using System.Linq;
using System.Reflection;
using ICSharpCode.Decompiler.TypeSystem;
using ICSharpCode.Decompiler.TypeSystem.Implementation;
namespace ICSharpCode.Decompiler.IL.Transforms
{
[Flags]
public enum InliningOptions
{
None = 0,
Aggressive = 1,
IntroduceNamedArguments = 2,
FindDeconstruction = 4,
AllowChangingOrderOfEvaluationForExceptions = 8,
AllowInliningOfLdloca = 0x10
}
/// <summary>
/// Performs inlining transformations.
/// </summary>
public class ILInlining : IILTransform, IBlockTransform, IStatementTransform
{
internal InliningOptions options;
public void Run(ILFunction function, ILTransformContext context)
{
foreach (var block in function.Descendants.OfType<Block>())
{
InlineAllInBlock(function, block, this.options, context);
}
function.Variables.RemoveDead();
}
public void Run(Block block, BlockTransformContext context)
{
InlineAllInBlock(context.Function, block, this.options, context);
}
public void Run(Block block, int pos, StatementTransformContext context)
{
var options = this.options | OptionsForBlock(block, pos, context);
while (InlineOneIfPossible(block, pos, options, context: context))
{
// repeat inlining until nothing changes.
}
}
internal static InliningOptions OptionsForBlock(Block block, int pos, ILTransformContext context)
{
InliningOptions options = InliningOptions.None;
if (context.Settings.AggressiveInlining || IsCatchWhenBlock(block))
{
options |= InliningOptions.Aggressive;
}
else
{
var function = block.Ancestors.OfType<ILFunction>().FirstOrDefault();
var inst = block.Instructions[pos];
if (IsInConstructorInitializer(function, inst) || PreferExpressionsOverStatements(function))
options |= InliningOptions.Aggressive;
}
if (!context.Settings.UseRefLocalsForAccurateOrderOfEvaluation)
{
options |= InliningOptions.AllowChangingOrderOfEvaluationForExceptions;
}
return options;
}
static bool PreferExpressionsOverStatements(ILFunction function)
{
switch (function.Kind)
{
case ILFunctionKind.Delegate:
return function.Parameters.Any(p => CSharp.CSharpDecompiler.IsTransparentIdentifier(p.Name));
case ILFunctionKind.ExpressionTree:
return true;
default:
return false;
}
}
public static bool InlineAllInBlock(ILFunction function, Block block, InliningOptions options, ILTransformContext context)
{
bool modified = false;
var instructions = block.Instructions;
for (int i = instructions.Count - 1; i >= 0; i--)
{
if (instructions[i] is StLoc inst)
{
if (InlineOneIfPossible(block, i, options, context))
{
modified = true;
continue;
}
}
}
return modified;
}
internal static bool IsInConstructorInitializer(ILFunction function, ILInstruction inst)
{
int ctorCallStart = function.ChainedConstructorCallILOffset;
if (inst.EndILOffset > ctorCallStart)
return false;
var topLevelInst = inst.Ancestors.LastOrDefault(instr => instr.Parent is Block);
if (topLevelInst == null)
return false;
return topLevelInst.EndILOffset <= ctorCallStart;
}
internal static bool IsCatchWhenBlock(Block block)
{
var container = BlockContainer.FindClosestContainer(block);
return container?.Parent is TryCatchHandler handler
&& handler.Filter == container;
}
/// <summary>
/// Inlines instructions before pos into block.Instructions[pos].
/// </summary>
/// <returns>The number of instructions that were inlined.</returns>
public static int InlineInto(Block block, int pos, InliningOptions options, ILTransformContext context)
{
if (pos >= block.Instructions.Count)
return 0;
int count = 0;
while (--pos >= 0)
{
if (InlineOneIfPossible(block, pos, options, context))
count++;
else
break;
}
return count;
}
/// <summary>
/// Aggressively inlines the stloc instruction at block.Body[pos] into the next instruction, if possible.
/// </summary>
public static bool InlineIfPossible(Block block, int pos, ILTransformContext context)
{
return InlineOneIfPossible(block, pos, InliningOptions.Aggressive, context);
}
/// <summary>
/// Inlines the stloc instruction at block.Instructions[pos] into the next instruction, if possible.
/// </summary>
public static bool InlineOneIfPossible(Block block, int pos, InliningOptions options, ILTransformContext context)
{
context.CancellationToken.ThrowIfCancellationRequested();
StLoc stloc = block.Instructions[pos] as StLoc;
if (stloc == null || stloc.Variable.Kind == VariableKind.PinnedLocal)
return false;
ILVariable v = stloc.Variable;
// ensure the variable is accessed only a single time
if (v.StoreCount != 1)
return false;
if (v.LoadCount > 1 || v.LoadCount + v.AddressCount != 1)
return false;
// TODO: inlining of small integer types might be semantically incorrect,
// but we can't avoid it this easily without breaking lots of tests.
//if (v.Type.IsSmallIntegerType())
// return false; // stloc might perform implicit truncation
return InlineOne(stloc, options, context);
}
/// <summary>
/// Inlines the stloc instruction at block.Instructions[pos] into the next instruction.
///
/// Note that this method does not check whether 'v' has only one use;
/// the caller is expected to validate whether inlining 'v' has any effects on other uses of 'v'.
/// </summary>
public static bool InlineOne(StLoc stloc, InliningOptions options, ILTransformContext context)
{
ILVariable v = stloc.Variable;
Block block = (Block)stloc.Parent;
int pos = stloc.ChildIndex;
if (DoInline(v, stloc.Value, block.Instructions.ElementAtOrDefault(pos + 1), options, context))
{
// Assign the ranges of the stloc instruction:
stloc.Value.AddILRange(stloc);
// Remove the stloc instruction:
Debug.Assert(block.Instructions[pos] == stloc);
block.Instructions.RemoveAt(pos);
return true;
}
else if (v.LoadCount == 0 && v.AddressCount == 0)
{
// The variable is never loaded
if (SemanticHelper.IsPure(stloc.Value.Flags))
{
// Remove completely if the instruction has no effects
// (except for reading locals)
context.Step("Remove dead store without side effects", stloc);
block.Instructions.RemoveAt(pos);
return true;
}
else if (v.Kind == VariableKind.StackSlot)
{
context.Step("Remove dead store, but keep expression", stloc);
// Assign the ranges of the stloc instruction:
stloc.Value.AddILRange(stloc);
// Remove the stloc, but keep the inner expression
stloc.ReplaceWith(stloc.Value);
return true;
}
}
return false;
}
/// <summary>
/// Inlines 'expr' into 'next', if possible.
///
/// Note that this method does not check whether 'v' has only one use;
/// the caller is expected to validate whether inlining 'v' has any effects on other uses of 'v'.
/// </summary>
static bool DoInline(ILVariable v, ILInstruction inlinedExpression, ILInstruction next, InliningOptions options, ILTransformContext context)
{
var r = FindLoadInNext(next, v, inlinedExpression, options);
if (r.Type == FindResultType.Found || r.Type == FindResultType.NamedArgument)
{
var loadInst = r.LoadInst;
if (loadInst.OpCode == OpCode.LdLoca)
{
if (!IsGeneratedTemporaryForAddressOf((LdLoca)loadInst, v, inlinedExpression, options))
return false;
}
else
{
Debug.Assert(loadInst.OpCode == OpCode.LdLoc);
bool aggressive = (options & InliningOptions.Aggressive) != 0;
if (!aggressive && v.Kind != VariableKind.StackSlot
&& !NonAggressiveInlineInto(next, r, inlinedExpression, v))
{
return false;
}
}
if (r.Type == FindResultType.NamedArgument)
{
NamedArgumentTransform.IntroduceNamedArgument(r.CallArgument, context);
// Now that the argument is evaluated early, we can inline as usual
}
context.Step($"Inline variable '{v.Name}'", inlinedExpression);
// Assign the ranges of the ldloc instruction:
inlinedExpression.AddILRange(loadInst);
if (loadInst.OpCode == OpCode.LdLoca)
{
// it was an ldloca instruction, so we need to use the pseudo-opcode 'addressof'
// to preserve the semantics of the compiler-generated temporary
Debug.Assert(((LdLoca)loadInst).Variable == v);
loadInst.ReplaceWith(new AddressOf(inlinedExpression, v.Type));
}
else
{
loadInst.ReplaceWith(inlinedExpression);
}
return true;
}
return false;
}
/// <summary>
/// Is this a temporary variable generated by the C# compiler for instance method calls on value type values
/// </summary>
/// <param name="loadInst">The load instruction (a descendant within 'next')</param>
/// <param name="v">The variable being inlined.</param>
static bool IsGeneratedTemporaryForAddressOf(LdLoca loadInst, ILVariable v, ILInstruction inlinedExpression, InliningOptions options)
{
Debug.Assert(loadInst.Variable == v);
if (!options.HasFlag(InliningOptions.AllowInliningOfLdloca))
{
return false; // inlining of ldloca is not allowed in the early inlining stage
}
// Inlining a value type variable is allowed only if the resulting code will maintain the semantics
// that the method is operating on a copy.
// Thus, we have to ensure we're operating on an r-value.
// Additionally, we cannot inline in cases where the C# compiler prohibits the direct use
// of the rvalue (e.g. M(ref (MyStruct)obj); is invalid).
if (IsUsedAsThisPointerInCall(loadInst, out var method, out var constrainedTo) || IsPassedToInParameter(loadInst, out method))
{
if (options.HasFlag(InliningOptions.Aggressive))
{
// Inlining might be required in ctor initializers (see #2714).
// expressionBuilder.VisitAddressOf will handle creating the copy for us.
return true;
}
switch (ClassifyExpression(inlinedExpression))
{
case ExpressionClassification.RValue:
// For struct method calls on rvalues, the C# compiler always generates temporaries.
return true;
case ExpressionClassification.MutableLValue:
// For struct method calls on mutable lvalues, the C# compiler never generates temporaries.
return false;
case ExpressionClassification.ReadonlyLValue:
// For struct method calls on readonly lvalues, the C# compiler
// only generates a temporary if it isn't a "readonly struct"
return MethodRequiresCopyForReadonlyLValue(method, constrainedTo);
default:
throw new InvalidOperationException("invalid expression classification");
}
}
else if (IsUsedAsThisPointerInFieldRead(loadInst))
{
// mcs generated temporaries for field reads on rvalues (#1555)
return ClassifyExpression(inlinedExpression) == ExpressionClassification.RValue;
}
else
{
return false;
}
}
internal static bool MethodRequiresCopyForReadonlyLValue(IMethod method, IType constrainedTo = null)
{
if (method == null)
return true;
var type = constrainedTo ?? method.DeclaringType;
if (type.IsReferenceType == true)
return false; // reference types are never implicitly copied
if (method.ThisIsRefReadOnly)
return false; // no copies for calls on readonly structs
return true;
}
internal static bool IsUsedAsThisPointerInCall(LdLoca ldloca)
{
return IsUsedAsThisPointerInCall(ldloca, out _, out _);
}
static bool IsUsedAsThisPointerInCall(LdLoca ldloca, out IMethod method, out IType constrainedType)
{
method = null;
constrainedType = null;
if (ldloca.Variable.Type.IsReferenceType ?? false)
return false;
ILInstruction inst = ldloca;
while (inst.Parent is LdFlda ldflda)
{
inst = ldflda;
}
if (inst.ChildIndex != 0)
return false;
switch (inst.Parent.OpCode)
{
case OpCode.Call:
case OpCode.CallVirt:
var callInst = (CallInstruction)inst.Parent;
method = callInst.Method;
constrainedType = callInst.ConstrainedTo;
if (method.IsAccessor)
{
if (method.AccessorKind == MethodSemanticsAttributes.Getter)
{
// C# doesn't allow property compound assignments on temporary structs
return !(inst.Parent.Parent is CompoundAssignmentInstruction cai
&& cai.TargetKind == CompoundTargetKind.Property
&& cai.Target == inst.Parent);
}
else
{
// C# doesn't allow calling setters on temporary structs
return false;
}
}
return !method.IsStatic;
case OpCode.Await:
method = ((Await)inst.Parent).GetAwaiterMethod;
return true;
case OpCode.NullableUnwrap:
return ((NullableUnwrap)inst.Parent).RefInput;
case OpCode.MatchInstruction:
method = ((MatchInstruction)inst.Parent).Method;
return true;
default:
return false;
}
}
static bool IsUsedAsThisPointerInFieldRead(LdLoca ldloca)
{
if (ldloca.Variable.Type.IsReferenceType ?? false)
return false;
ILInstruction inst = ldloca;
while (inst.Parent is LdFlda ldflda)
{
inst = ldflda;
}
return inst != ldloca && inst.Parent is LdObj;
}
static bool IsPassedToInParameter(LdLoca ldloca, out IMethod method)
{
method = null;
if (ldloca.Parent is not CallInstruction call)
{
return false;
}
method = call.Method;
return call.GetParameter(ldloca.ChildIndex)?.ReferenceKind is ReferenceKind.In;
}
/// <summary>
/// Gets whether the instruction, when converted into C#, turns into an l-value that can
/// be used to mutate a value-type.
/// If this function returns false, the C# compiler would introduce a temporary copy
/// when calling a method on a value-type (and any mutations performed by the method will be lost)
/// </summary>
internal static ExpressionClassification ClassifyExpression(ILInstruction inst)
{
switch (inst.OpCode)
{
case OpCode.LdLoc:
case OpCode.StLoc:
ILVariable v = ((IInstructionWithVariableOperand)inst).Variable;
if (v.IsRefReadOnly
|| v.Kind == VariableKind.ForeachLocal
|| v.Kind == VariableKind.UsingLocal)
{
return ExpressionClassification.ReadonlyLValue;
}
else
{
return ExpressionClassification.MutableLValue;
}
case OpCode.LdObj:
// ldobj typically refers to a storage location,
// but readonly fields are an exception.
if (IsReadonlyReference(((LdObj)inst).Target))
{
return ExpressionClassification.ReadonlyLValue;
}
else
{
return ExpressionClassification.MutableLValue;
}
case OpCode.StObj:
// stobj is the same as ldobj.
if (IsReadonlyReference(((StObj)inst).Target))
{
return ExpressionClassification.ReadonlyLValue;
}
else
{
return ExpressionClassification.MutableLValue;
}
case OpCode.Call:
var m = ((CallInstruction)inst).Method;
// multi-dimensional array getters are lvalues,
// everything else is an rvalue.
if (m.DeclaringType.Kind == TypeKind.Array)
{
return ExpressionClassification.MutableLValue;
}
else
{
return ExpressionClassification.RValue;
}
default:
return ExpressionClassification.RValue; // most instructions result in an rvalue
}
}
internal static bool IsReadonlyReference(ILInstruction addr)
{
switch (addr)
{
case LdFlda ldflda:
return ldflda.Field.IsReadOnly
|| (ldflda.Field.DeclaringType.Kind == TypeKind.Struct && IsReadonlyReference(ldflda.Target));
case LdsFlda ldsflda:
return ldsflda.Field.IsReadOnly;
case LdLoc ldloc:
return ldloc.Variable.IsRefReadOnly;
case Call call:
return call.Method.ReturnTypeIsRefReadOnly;
case CallVirt call:
return call.Method.ReturnTypeIsRefReadOnly;
case CallIndirect calli:
return calli.FunctionPointerType.ReturnIsRefReadOnly;
case AddressOf _:
// C# doesn't allow mutation of value-type temporaries
return true;
default:
if (addr.MatchLdFld(out _, out var field))
return field.ReturnTypeIsRefReadOnly;
return false;
}
}
/// <summary>
/// Determines whether a variable should be inlined in non-aggressive mode, even though it is not a generated variable.
/// </summary>
/// <param name="next">The next top-level expression</param>
/// <param name="v">The variable being eliminated by inlining.</param>
/// <param name="inlinedExpression">The expression being inlined</param>
static bool NonAggressiveInlineInto(ILInstruction next, FindResult findResult, ILInstruction inlinedExpression, ILVariable v)
{
if (findResult.Type == FindResultType.NamedArgument)
{
var originalStore = (StLoc)inlinedExpression.Parent;
return !originalStore.ILStackWasEmpty;
}
Debug.Assert(findResult.Type == FindResultType.Found);
var loadInst = findResult.LoadInst;
Debug.Assert(loadInst.IsDescendantOf(next));
// decide based on the source expression being inlined
switch (inlinedExpression.OpCode)
{
case OpCode.DefaultValue:
case OpCode.StObj:
case OpCode.NumericCompoundAssign:
case OpCode.UserDefinedCompoundAssign:
case OpCode.Await:
case OpCode.SwitchInstruction:
return true;
case OpCode.LdLoc:
if (v.StateMachineField == null && ((LdLoc)inlinedExpression).Variable.StateMachineField != null)
{
// Roslyn likes to put the result of fetching a state machine field into a temporary variable,
// so inline more aggressively in such cases.
return true;
}
break;
}
if (inlinedExpression.ResultType == StackType.Ref)
{
// VB likes to use ref locals for compound assignment
// (the C# compiler uses ref stack slots instead).
// We want to avoid unnecessary ref locals, so we'll always inline them if possible.
return true;
}
var parent = loadInst.Parent;
if (NullableLiftingTransform.MatchNullableCtor(parent, out _, out _))
{
// inline into nullable ctor call in lifted operator
parent = parent.Parent;
}
if (parent is ILiftableInstruction liftable && liftable.IsLifted)
{
return true; // inline into lifted operators
}
// decide based on the new parent into which we are inlining:
switch (parent.OpCode)
{
case OpCode.NullCoalescingInstruction:
if (NullableType.IsNullable(v.Type))
return true; // inline nullables into ?? operator
break;
case OpCode.NullableUnwrap:
return true; // inline into ?. operator
case OpCode.UserDefinedLogicOperator:
case OpCode.DynamicLogicOperatorInstruction:
return true; // inline into (left slot of) user-defined && or || operator
case OpCode.DynamicGetMemberInstruction:
case OpCode.DynamicGetIndexInstruction:
if (parent.Parent.OpCode == OpCode.DynamicCompoundAssign)
return true; // inline into dynamic compound assignments
break;
case OpCode.DynamicCompoundAssign:
return true;
case OpCode.GetPinnableReference:
case OpCode.LocAllocSpan:
return true; // inline size-expressions into localloc.span
case OpCode.Call:
case OpCode.CallVirt:
// Aggressive inline into property/indexer getter calls for compound assignment calls
// (The compiler generates locals for these because it doesn't want to evalute the args twice for getter+setter)
if (parent.SlotInfo == CompoundAssignmentInstruction.TargetSlot)
{
return true;
}
if (((CallInstruction)parent).Method is SyntheticRangeIndexAccessor)
{
return true;
}
break;
case OpCode.CallIndirect when loadInst.SlotInfo == CallIndirect.FunctionPointerSlot:
return true;
case OpCode.LdElema:
if (((LdElema)parent).WithSystemIndex)
{
return true;
}
break;
case OpCode.Leave:
case OpCode.YieldReturn:
return true;
case OpCode.SwitchInstruction:
// Preserve type info on switch instruction, if we're inlining a local variable into the switch-value slot.
if (v.Kind != VariableKind.StackSlot && loadInst.SlotInfo == SwitchInstruction.ValueSlot)
{
((SwitchInstruction)parent).Type ??= v.Type;
}
return true;
//case OpCode.BinaryNumericInstruction when parent.SlotInfo == SwitchInstruction.ValueSlot:
case OpCode.StringToInt when parent.SlotInfo == SwitchInstruction.ValueSlot:
return true;
case OpCode.MatchInstruction:
var match = (MatchInstruction)parent;
if (match.IsDeconstructTuple
|| (match.CheckType && match.Variable.Type.IsReferenceType != true))
{
return true;
}
break;
}
// decide based on the top-level target instruction into which we are inlining:
switch (next.OpCode)
{
case OpCode.IfInstruction:
while (parent.MatchLogicNot(out _))
{
parent = parent.Parent;
}
return parent == next;
default:
return false;
}
}
/// <summary>
/// Gets whether 'expressionBeingMoved' can be inlined into 'expr'.
/// </summary>
public static bool CanInlineInto(ILInstruction expr, ILVariable v, ILInstruction expressionBeingMoved)
{
return FindLoadInNext(expr, v, expressionBeingMoved, InliningOptions.None).Type == FindResultType.Found;
}
internal enum FindResultType
{
/// <summary>
/// Found a load; inlining is possible.
/// </summary>
Found,
/// <summary>
/// Load not found and re-ordering not possible. Stop the search.
/// </summary>
Stop,
/// <summary>
/// Load not found, but the expressionBeingMoved can be re-ordered with regards to the
/// tested expression, so we may continue searching for the matching load.
/// </summary>
Continue,
/// <summary>
/// Found a load in call, but re-ordering not possible with regards to the
/// other call arguments.
/// Inlining is not possible, but we might convert the call to named arguments.
/// Only used with <see cref="InliningOptions.IntroduceNamedArguments"/>.
/// </summary>
NamedArgument,
/// <summary>
/// Found a deconstruction.
/// Only used with <see cref="InliningOptions.FindDeconstruction"/>.
/// </summary>
Deconstruction,
}
internal readonly struct FindResult
{
public readonly FindResultType Type;
public readonly ILInstruction LoadInst; // ldloc or ldloca instruction that loads the variable to be inlined
public readonly ILInstruction CallArgument; // argument of call that needs to be promoted to a named argument
private FindResult(FindResultType type, ILInstruction loadInst, ILInstruction callArg)
{
this.Type = type;
this.LoadInst = loadInst;
this.CallArgument = callArg;
}
public static readonly FindResult Stop = new FindResult(FindResultType.Stop, null, null);
public static readonly FindResult Continue = new FindResult(FindResultType.Continue, null, null);
public static FindResult Found(ILInstruction loadInst)
{
Debug.Assert(loadInst.OpCode == OpCode.LdLoc || loadInst.OpCode == OpCode.LdLoca);
return new FindResult(FindResultType.Found, loadInst, null);
}
public static FindResult NamedArgument(ILInstruction loadInst, ILInstruction callArg)
{
Debug.Assert(loadInst.OpCode == OpCode.LdLoc || loadInst.OpCode == OpCode.LdLoca);
Debug.Assert(callArg.Parent is CallInstruction);
return new FindResult(FindResultType.NamedArgument, loadInst, callArg);
}
public static FindResult Deconstruction(DeconstructInstruction deconstruction)
{
return new FindResult(FindResultType.Deconstruction, deconstruction, null);
}
}
/// <summary>
/// Finds the position to inline to.
/// </summary>
/// <returns>true = found; false = cannot continue search; null = not found</returns>
internal static FindResult FindLoadInNext(ILInstruction expr, ILVariable v, ILInstruction expressionBeingMoved, InliningOptions options)
{
if (expr == null)
return FindResult.Stop;
if (expr.MatchLdLoc(v) || expr.MatchLdLoca(v))
{
// Match found, we can inline
if (expr.SlotInfo == StObj.TargetSlot && !((StObj)expr.Parent).CanInlineIntoTargetSlot(expressionBeingMoved))
{
if ((options & InliningOptions.AllowChangingOrderOfEvaluationForExceptions) != 0)
{
// Intentionally change code semantics so that we can avoid a ref local
if (expressionBeingMoved is LdFlda ldflda)
ldflda.DelayExceptions = true;
else if (expressionBeingMoved is LdElema ldelema)
ldelema.DelayExceptions = true;
}
else
{
// special case: the StObj.TargetSlot does not accept some kinds of expressions
return FindResult.Stop;
}
}
return FindResult.Found(expr);
}
else if (expr is Block block)
{
// Inlining into inline-blocks?
switch (block.Kind)
{
case BlockKind.ControlFlow when block.Parent is BlockContainer:
case BlockKind.ArrayInitializer:
case BlockKind.CollectionInitializer:
case BlockKind.ObjectInitializer:
case BlockKind.CallInlineAssign:
// Allow inlining into the first instruction of the block
if (block.Instructions.Count == 0)
return FindResult.Stop;
return NoContinue(FindLoadInNext(block.Instructions[0], v, expressionBeingMoved, options));
// If FindLoadInNext() returns null, we still can't continue searching
// because we can't inline over the remainder of the block.
case BlockKind.CallWithNamedArgs:
return NamedArgumentTransform.CanExtendNamedArgument(block, v, expressionBeingMoved);
default:
return FindResult.Stop;
}
}
else if (options.HasFlag(InliningOptions.FindDeconstruction) && expr is DeconstructInstruction di)
{
return FindResult.Deconstruction(di);
}
foreach (var child in expr.Children)
{
if (!expr.CanInlineIntoSlot(child.ChildIndex, expressionBeingMoved))
return FindResult.Stop;
// Recursively try to find the load instruction
FindResult r = FindLoadInNext(child, v, expressionBeingMoved, options);
if (r.Type != FindResultType.Continue)
{
if (r.Type == FindResultType.Stop && (options & InliningOptions.IntroduceNamedArguments) != 0 && expr is CallInstruction call)
return NamedArgumentTransform.CanIntroduceNamedArgument(call, child, v, expressionBeingMoved);
return r;
}
}
if (IsSafeForInlineOver(expr, expressionBeingMoved))
return FindResult.Continue; // continue searching
else
return FindResult.Stop; // abort, inlining not possible
}
private static FindResult NoContinue(FindResult findResult)
{
if (findResult.Type == FindResultType.Continue)
return FindResult.Stop;
else
return findResult;
}
/// <summary>
/// Determines whether it is safe to move 'expressionBeingMoved' past 'expr'
/// </summary>
static bool IsSafeForInlineOver(ILInstruction expr, ILInstruction expressionBeingMoved)
{
return SemanticHelper.MayReorder(expressionBeingMoved, expr);
}
/// <summary>
/// Finds the first call instruction within the instructions that were inlined into inst.
/// </summary>
internal static CallInstruction FindFirstInlinedCall(ILInstruction inst)
{
foreach (var child in inst.Children)
{
if (!child.SlotInfo.CanInlineInto)
break;
var call = FindFirstInlinedCall(child);
if (call != null)
{
return call;
}
}
return inst as CallInstruction;
}
/// <summary>
/// Gets whether 'expressionBeingMoved' can be moved from somewhere before 'stmt' to become the replacement of 'targetLoad'.
/// </summary>
public static bool CanMoveInto(ILInstruction expressionBeingMoved, ILInstruction stmt, ILInstruction targetLoad)
{
Debug.Assert(targetLoad.IsDescendantOf(stmt));
for (ILInstruction inst = targetLoad; inst != stmt; inst = inst.Parent)
{
if (!inst.Parent.CanInlineIntoSlot(inst.ChildIndex, expressionBeingMoved))
return false;
// Check whether re-ordering with predecessors is valid:
int childIndex = inst.ChildIndex;
for (int i = 0; i < childIndex; ++i)
{
ILInstruction predecessor = inst.Parent.Children[i];
if (!IsSafeForInlineOver(predecessor, expressionBeingMoved))
return false;
}
}
return true;
}
/// <summary>
/// Gets whether arg can be un-inlined out of stmt.
/// </summary>
/// <seealso cref="ILInstruction.Extract"/>
internal static bool CanUninline(ILInstruction arg, ILInstruction stmt)
{
// moving into and moving out-of are equivalent
return CanMoveInto(arg, stmt, arg);
}
}
internal enum ExpressionClassification
{
RValue,
MutableLValue,
ReadonlyLValue,
}
}