// Copyright (c) 2014 Daniel Grunwald // // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE // FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. using System.Diagnostics; using ICSharpCode.Decompiler.IL; using System.Collections.Generic; using System.Linq; using ICSharpCode.Decompiler.CSharp.Syntax; using ICSharpCode.Decompiler.Semantics; using ICSharpCode.Decompiler.TypeSystem; using ICSharpCode.Decompiler.Util; using System; using System.Threading; using ICSharpCode.Decompiler.IL.Transforms; using ICSharpCode.Decompiler.CSharp.Syntax.PatternMatching; using ICSharpCode.Decompiler.CSharp.Resolver; namespace ICSharpCode.Decompiler.CSharp { class StatementBuilder : ILVisitor { internal readonly ExpressionBuilder exprBuilder; readonly ILFunction currentFunction; readonly IDecompilerTypeSystem typeSystem; readonly DecompilerSettings settings; readonly CancellationToken cancellationToken; public StatementBuilder(IDecompilerTypeSystem typeSystem, ITypeResolveContext decompilationContext, ILFunction currentFunction, DecompilerSettings settings, CancellationToken cancellationToken) { Debug.Assert(typeSystem != null && decompilationContext != null); this.exprBuilder = new ExpressionBuilder(typeSystem, decompilationContext, currentFunction, settings, cancellationToken); this.currentFunction = currentFunction; this.typeSystem = typeSystem; this.settings = settings; this.cancellationToken = cancellationToken; } public Statement Convert(ILInstruction inst) { cancellationToken.ThrowIfCancellationRequested(); return inst.AcceptVisitor(this); } public BlockStatement ConvertAsBlock(ILInstruction inst) { Statement stmt = Convert(inst); return stmt as BlockStatement ?? new BlockStatement { stmt }; } protected override Statement Default(ILInstruction inst) { return new ExpressionStatement(exprBuilder.Translate(inst)); } protected internal override Statement VisitIsInst(IsInst inst) { // isinst on top-level (unused result) can be translated in general // (even for value types) by using "is" instead of "as" // This can happen when the result of "expr is T" is unused // and the C# compiler optimizes away the null check portion of the "is" operator. var arg = exprBuilder.Translate(inst.Argument); arg = ExpressionBuilder.UnwrapBoxingConversion(arg); return new ExpressionStatement( new IsExpression( arg, exprBuilder.ConvertType(inst.Type) ) .WithRR(new ResolveResult(exprBuilder.compilation.FindType(KnownTypeCode.Boolean))) .WithILInstruction(inst) ); } protected internal override Statement VisitStLoc(StLoc inst) { var expr = exprBuilder.Translate(inst); // strip top-level ref on ref re-assignment if (expr.Expression is DirectionExpression dirExpr) { expr = expr.UnwrapChild(dirExpr.Expression); } return new ExpressionStatement(expr); } protected internal override Statement VisitNop(Nop inst) { var stmt = new EmptyStatement(); if (inst.Comment != null) { stmt.AddChild(new Comment(inst.Comment), Roles.Comment); } return stmt; } protected internal override Statement VisitIfInstruction(IfInstruction inst) { var condition = exprBuilder.TranslateCondition(inst.Condition); var trueStatement = Convert(inst.TrueInst); var falseStatement = inst.FalseInst.OpCode == OpCode.Nop ? null : Convert(inst.FalseInst); return new IfElseStatement(condition, trueStatement, falseStatement); } IEnumerable CreateTypedCaseLabel(long i, IType type, List<(string Key, int Value)> map = null) { object value; // unpack nullable type, if necessary: // we need to do this in all cases, because there are nullable bools and enum types as well. type = NullableType.GetUnderlyingType(type); if (type.IsKnownType(KnownTypeCode.Boolean)) { value = i != 0; } else if (type.IsKnownType(KnownTypeCode.String) && map != null) { var keys = map.Where(entry => entry.Value == i).Select(entry => entry.Key); foreach (var key in keys) yield return new ConstantResolveResult(type, key); yield break; } else if (type.Kind == TypeKind.Enum) { var enumType = type.GetDefinition().EnumUnderlyingType; TypeCode typeCode = ReflectionHelper.GetTypeCode(enumType); if (typeCode != TypeCode.Empty) { value = CSharpPrimitiveCast.Cast(typeCode, i, false); } else { value = i; } } else { TypeCode typeCode = ReflectionHelper.GetTypeCode(type); if (typeCode != TypeCode.Empty) { value = CSharpPrimitiveCast.Cast(typeCode, i, false); } else { value = i; } } yield return new ConstantResolveResult(type, value); } protected internal override Statement VisitSwitchInstruction(SwitchInstruction inst) { return TranslateSwitch(null, inst); } SwitchStatement TranslateSwitch(BlockContainer switchContainer, SwitchInstruction inst) { var oldBreakTarget = breakTarget; breakTarget = switchContainer; // 'break' within a switch would only leave the switch var oldCaseLabelMapping = caseLabelMapping; caseLabelMapping = new Dictionary(); TranslatedExpression value; var strToInt = inst.Value as StringToInt; if (strToInt != null) { value = exprBuilder.Translate(strToInt.Argument); } else { value = exprBuilder.Translate(inst.Value); } // Pick the section with the most labels as default section. IL.SwitchSection defaultSection = inst.Sections.First(); foreach (var section in inst.Sections) { if (section.Labels.Count() > defaultSection.Labels.Count()) { defaultSection = section; } } var stmt = new SwitchStatement() { Expression = value }; Dictionary translationDictionary = new Dictionary(); // initialize C# switch sections. foreach (var section in inst.Sections) { // This is used in the block-label mapping. ConstantResolveResult firstValueResolveResult; var astSection = new Syntax.SwitchSection(); // Create case labels: if (section == defaultSection) { astSection.CaseLabels.Add(new CaseLabel()); firstValueResolveResult = null; } else { var values = section.Labels.Values.SelectMany(i => CreateTypedCaseLabel(i, value.Type, strToInt?.Map)).ToArray(); if (section.HasNullLabel) { astSection.CaseLabels.Add(new CaseLabel(new NullReferenceExpression())); firstValueResolveResult = new ConstantResolveResult(SpecialType.NullType, null); } else { Debug.Assert(values.Length > 0); firstValueResolveResult = values[0]; } astSection.CaseLabels.AddRange(values.Select(label => new CaseLabel(exprBuilder.ConvertConstantValue(label, allowImplicitConversion: true)))); } switch (section.Body) { case Branch br: // we can only inline the block, if all branches are in the switchContainer. if (br.TargetContainer == switchContainer && switchContainer.Descendants.OfType().Where(b => b.TargetBlock == br.TargetBlock).All(b => BlockContainer.FindClosestSwitchContainer(b) == switchContainer)) caseLabelMapping.Add(br.TargetBlock, firstValueResolveResult); break; default: break; } translationDictionary.Add(section, astSection); stmt.SwitchSections.Add(astSection); } foreach (var section in inst.Sections) { var astSection = translationDictionary[section]; switch (section.Body) { case Branch br: // we can only inline the block, if all branches are in the switchContainer. if (br.TargetContainer == switchContainer && switchContainer.Descendants.OfType().Where(b => b.TargetBlock == br.TargetBlock).All(b => BlockContainer.FindClosestSwitchContainer(b) == switchContainer)) ConvertSwitchSectionBody(astSection, br.TargetBlock); else ConvertSwitchSectionBody(astSection, section.Body); break; case Leave leave: if (astSection.CaseLabels.Count == 1 && astSection.CaseLabels.First().Expression.IsNull && leave.TargetContainer == switchContainer) { stmt.SwitchSections.Remove(astSection); break; } goto default; default: ConvertSwitchSectionBody(astSection, section.Body); break; } } if (switchContainer != null && stmt.SwitchSections.Count > 0) { // Translate any remaining blocks: var lastSectionStatements = stmt.SwitchSections.Last().Statements; foreach (var block in switchContainer.Blocks.Skip(1)) { if (caseLabelMapping.ContainsKey(block)) continue; lastSectionStatements.Add(new LabelStatement { Label = block.Label }); foreach (var nestedInst in block.Instructions) { var nestedStmt = Convert(nestedInst); if (nestedStmt is BlockStatement b) { foreach (var nested in b.Statements) lastSectionStatements.Add(nested.Detach()); } else { lastSectionStatements.Add(nestedStmt); } } Debug.Assert(block.FinalInstruction.OpCode == OpCode.Nop); } if (endContainerLabels.TryGetValue(switchContainer, out string label)) { lastSectionStatements.Add(new LabelStatement { Label = label }); lastSectionStatements.Add(new BreakStatement()); } } breakTarget = oldBreakTarget; caseLabelMapping = oldCaseLabelMapping; return stmt; } private void ConvertSwitchSectionBody(Syntax.SwitchSection astSection, ILInstruction bodyInst) { var body = Convert(bodyInst); astSection.Statements.Add(body); if (!bodyInst.HasFlag(InstructionFlags.EndPointUnreachable)) { // we need to insert 'break;' BlockStatement block = body as BlockStatement; if (block != null) { block.Add(new BreakStatement()); } else { astSection.Statements.Add(new BreakStatement()); } } } /// Target block that a 'continue;' statement would jump to Block continueTarget; /// Number of ContinueStatements that were created for the current continueTarget int continueCount; /// Maps blocks to cases. Dictionary caseLabelMapping; protected internal override Statement VisitBranch(Branch inst) { if (inst.TargetBlock == continueTarget) { continueCount++; return new ContinueStatement(); } if (caseLabelMapping != null && caseLabelMapping.TryGetValue(inst.TargetBlock, out var label)) { if (label == null) return new GotoDefaultStatement(); return new GotoCaseStatement() { LabelExpression = exprBuilder.ConvertConstantValue(label, allowImplicitConversion: true) }; } return new GotoStatement(inst.TargetLabel); } /// Target container that a 'break;' statement would break out of BlockContainer breakTarget; /// Dictionary from BlockContainer to label name for 'goto of_container'; readonly Dictionary endContainerLabels = new Dictionary(); protected internal override Statement VisitLeave(Leave inst) { if (inst.TargetContainer == breakTarget) return new BreakStatement(); if (inst.IsLeavingFunction) { if (currentFunction.IsIterator) return new YieldBreakStatement(); else if (!inst.Value.MatchNop()) { IType targetType = currentFunction.IsAsync ? currentFunction.AsyncReturnType : currentFunction.ReturnType; var expr = exprBuilder.Translate(inst.Value, typeHint: targetType) .ConvertTo(targetType, exprBuilder, allowImplicitConversion: true); return new ReturnStatement(expr); } else return new ReturnStatement(); } string label; if (!endContainerLabels.TryGetValue(inst.TargetContainer, out label)) { label = "end_" + inst.TargetLabel; endContainerLabels.Add(inst.TargetContainer, label); } return new GotoStatement(label); } protected internal override Statement VisitThrow(Throw inst) { return new ThrowStatement(exprBuilder.Translate(inst.Argument)); } protected internal override Statement VisitRethrow(Rethrow inst) { return new ThrowStatement(); } protected internal override Statement VisitYieldReturn(YieldReturn inst) { var elementType = currentFunction.ReturnType.GetElementTypeFromIEnumerable(typeSystem, true, out var isGeneric); var expr = exprBuilder.Translate(inst.Value, typeHint: elementType) .ConvertTo(elementType, exprBuilder, allowImplicitConversion: true); return new YieldReturnStatement { Expression = expr }; } TryCatchStatement MakeTryCatch(ILInstruction tryBlock) { var tryBlockConverted = Convert(tryBlock); var tryCatch = tryBlockConverted as TryCatchStatement; if (tryCatch != null && tryCatch.FinallyBlock.IsNull) return tryCatch; // extend existing try-catch tryCatch = new TryCatchStatement(); tryCatch.TryBlock = tryBlockConverted as BlockStatement ?? new BlockStatement { tryBlockConverted }; return tryCatch; } protected internal override Statement VisitTryCatch(TryCatch inst) { var tryCatch = new TryCatchStatement(); tryCatch.TryBlock = ConvertAsBlock(inst.TryBlock); foreach (var handler in inst.Handlers) { var catchClause = new CatchClause(); var v = handler.Variable; catchClause.AddAnnotation(new ILVariableResolveResult(v, v.Type)); if (v != null) { if (v.StoreCount > 1 || v.LoadCount > 0 || v.AddressCount > 0) { catchClause.VariableName = v.Name; catchClause.Type = exprBuilder.ConvertType(v.Type); } else if (!v.Type.IsKnownType(KnownTypeCode.Object)) { catchClause.Type = exprBuilder.ConvertType(v.Type); } } if (!handler.Filter.MatchLdcI4(1)) catchClause.Condition = exprBuilder.TranslateCondition(handler.Filter); catchClause.Body = ConvertAsBlock(handler.Body); tryCatch.CatchClauses.Add(catchClause); } return tryCatch; } protected internal override Statement VisitTryFinally(TryFinally inst) { var tryCatch = MakeTryCatch(inst.TryBlock); tryCatch.FinallyBlock = ConvertAsBlock(inst.FinallyBlock); return tryCatch; } protected internal override Statement VisitTryFault(TryFault inst) { var tryCatch = new TryCatchStatement(); tryCatch.TryBlock = ConvertAsBlock(inst.TryBlock); var faultBlock = ConvertAsBlock(inst.FaultBlock); faultBlock.InsertChildAfter(null, new Comment("try-fault"), Roles.Comment); faultBlock.Add(new ThrowStatement()); tryCatch.CatchClauses.Add(new CatchClause { Body = faultBlock }); return tryCatch; } protected internal override Statement VisitLockInstruction(LockInstruction inst) { return new LockStatement { Expression = exprBuilder.Translate(inst.OnExpression), EmbeddedStatement = ConvertAsBlock(inst.Body) }; } #region foreach construction static readonly InvocationExpression getEnumeratorPattern = new InvocationExpression(new MemberReferenceExpression(new AnyNode("collection").ToExpression(), "GetEnumerator")); static readonly InvocationExpression moveNextConditionPattern = new InvocationExpression(new MemberReferenceExpression(new NamedNode("enumerator", new IdentifierExpression(Pattern.AnyString)), "MoveNext")); protected internal override Statement VisitUsingInstruction(UsingInstruction inst) { var transformed = TransformToForeach(inst, out var resource); if (transformed != null) return transformed; AstNode usingInit = resource; var var = inst.Variable; if (!inst.ResourceExpression.MatchLdNull() && !NullableType.GetUnderlyingType(var.Type).GetAllBaseTypes().Any(b => b.IsKnownType(KnownTypeCode.IDisposable))) { var.Kind = VariableKind.Local; var disposeType = exprBuilder.compilation.FindType(KnownTypeCode.IDisposable); var disposeVariable = currentFunction.RegisterVariable( VariableKind.Local, disposeType, AssignVariableNames.GenerateVariableName(currentFunction, disposeType) ); return new BlockStatement { new ExpressionStatement(new AssignmentExpression(exprBuilder.ConvertVariable(var).Expression, resource.Detach())), new TryCatchStatement { TryBlock = ConvertAsBlock(inst.Body), FinallyBlock = new BlockStatement() { new ExpressionStatement(new AssignmentExpression(exprBuilder.ConvertVariable(disposeVariable).Expression, new AsExpression(exprBuilder.ConvertVariable(var).Expression, exprBuilder.ConvertType(disposeType)))), new IfElseStatement { Condition = new BinaryOperatorExpression(exprBuilder.ConvertVariable(disposeVariable), BinaryOperatorType.InEquality, new NullReferenceExpression()), TrueStatement = new ExpressionStatement(new InvocationExpression(new MemberReferenceExpression(exprBuilder.ConvertVariable(disposeVariable).Expression, "Dispose"))) } } }, }; } else { if (var.LoadCount > 0 || var.AddressCount > 0) { var type = settings.AnonymousTypes && var.Type.ContainsAnonymousType() ? new SimpleType("var") : exprBuilder.ConvertType(var.Type); var vds = new VariableDeclarationStatement(type, var.Name, resource); vds.Variables.Single().AddAnnotation(new ILVariableResolveResult(var, var.Type)); usingInit = vds; } return new UsingStatement { ResourceAcquisition = usingInit, EmbeddedStatement = ConvertAsBlock(inst.Body) }; } } Statement TransformToForeach(UsingInstruction inst, out Expression resource) { if (!settings.ForEachStatement) { resource = null; return null; } // Check if the using resource matches the GetEnumerator pattern. resource = exprBuilder.Translate(inst.ResourceExpression); var m = getEnumeratorPattern.Match(resource); // The using body must be a BlockContainer. if (!(inst.Body is BlockContainer container) || !m.Success) return null; // The using-variable is the enumerator. var enumeratorVar = inst.Variable; // If there's another BlockContainer nested in this container and it only has one child block, unwrap it. // If there's an extra leave inside the block, extract it into optionalReturnAfterLoop. var loopContainer = UnwrapNestedContainerIfPossible(container, out var optionalReturnAfterLoop); // Detect whether we're dealing with a while loop with multiple embedded statements. if (loopContainer.Kind != ContainerKind.While) return null; if (!loopContainer.MatchConditionBlock(loopContainer.EntryPoint, out var conditionInst, out var body)) return null; // The loop condition must be a call to enumerator.MoveNext() var condition = exprBuilder.TranslateCondition(conditionInst); var m2 = moveNextConditionPattern.Match(condition.Expression); if (!m2.Success) return null; // Check enumerator variable references. var enumeratorVar2 = m2.Get("enumerator").Single().GetILVariable(); if (enumeratorVar2 != enumeratorVar) return null; // Detect which foreach-variable transformation is necessary/possible. var transformation = DetectGetCurrentTransformation(container, body, enumeratorVar, conditionInst, out var singleGetter, out var foreachVariable); if (transformation == RequiredGetCurrentTransformation.NoForeach) return null; // The existing foreach variable, if found, can only be used in the loop container. if (foreachVariable != null && !(foreachVariable.CaptureScope == null || foreachVariable.CaptureScope == loopContainer)) return null; // Extract in-expression var collectionExpr = m.Get("collection").Single(); // Special case: foreach (var item in this) is decompiled as foreach (var item in base) // but a base reference is not valid in this context. if (collectionExpr is BaseReferenceExpression) { collectionExpr = new ThisReferenceExpression().CopyAnnotationsFrom(collectionExpr); } else if (IsDynamicCastToIEnumerable(collectionExpr, out var dynamicExpr)) { collectionExpr = dynamicExpr.Detach(); } // Handle explicit casts: // This is the case if an explicit type different from the collection-item-type was used. // For example: foreach (ClassA item in nonGenericEnumerable) var type = singleGetter.Method.ReturnType; ILInstruction instToReplace = singleGetter; bool useVar = false; switch (instToReplace.Parent) { case CastClass cc: type = cc.Type; instToReplace = cc; break; case UnboxAny ua: type = ua.Type; instToReplace = ua; break; default: if (TupleType.IsTupleCompatible(type, out _)) { // foreach with get_Current returning a tuple type, let's check which type "var" would infer: var foreachRR = exprBuilder.resolver.ResolveForeach(collectionExpr.GetResolveResult()); if (EqualErasedType(type, foreachRR.ElementType)) { type = foreachRR.ElementType; useVar = true; } } break; } // Handle the required foreach-variable transformation: switch (transformation) { case RequiredGetCurrentTransformation.UseExistingVariable: if (foreachVariable.Type.Kind != TypeKind.Dynamic) foreachVariable.Type = type; foreachVariable.Kind = VariableKind.ForeachLocal; foreachVariable.Name = AssignVariableNames.GenerateForeachVariableName(currentFunction, collectionExpr.Annotation(), foreachVariable); break; case RequiredGetCurrentTransformation.IntroduceNewVariable: foreachVariable = currentFunction.RegisterVariable( VariableKind.ForeachLocal, type, AssignVariableNames.GenerateForeachVariableName(currentFunction, collectionExpr.Annotation()) ); instToReplace.ReplaceWith(new LdLoc(foreachVariable)); body.Instructions.Insert(0, new StLoc(foreachVariable, instToReplace)); break; case RequiredGetCurrentTransformation.IntroduceNewVariableAndLocalCopy: foreachVariable = currentFunction.RegisterVariable( VariableKind.ForeachLocal, type, AssignVariableNames.GenerateForeachVariableName(currentFunction, collectionExpr.Annotation()) ); var localCopyVariable = currentFunction.RegisterVariable( VariableKind.Local, type, AssignVariableNames.GenerateVariableName(currentFunction, type) ); instToReplace.Parent.ReplaceWith(new LdLoca(localCopyVariable)); body.Instructions.Insert(0, new StLoc(localCopyVariable, new LdLoc(foreachVariable))); body.Instructions.Insert(0, new StLoc(foreachVariable, instToReplace)); break; } // Convert the modified body to C# AST: var whileLoop = (WhileStatement)ConvertAsBlock(container).First(); BlockStatement foreachBody = (BlockStatement)whileLoop.EmbeddedStatement.Detach(); // Remove the first statement, as it is the foreachVariable = enumerator.Current; statement. Statement firstStatement = foreachBody.Statements.First(); if (firstStatement is LabelStatement) { // skip the entry-point label, if any firstStatement = firstStatement.GetNextStatement(); } Debug.Assert(firstStatement is ExpressionStatement); firstStatement.Remove(); if (settings.AnonymousTypes && type.ContainsAnonymousType()) useVar = true; // Construct the foreach loop. var foreachStmt = new ForeachStatement { VariableType = useVar ? new SimpleType("var") : exprBuilder.ConvertType(foreachVariable.Type), VariableName = foreachVariable.Name, InExpression = collectionExpr.Detach(), EmbeddedStatement = foreachBody }; // Add the variable annotation for highlighting (TokenTextWriter expects it directly on the ForeachStatement). foreachStmt.AddAnnotation(new ILVariableResolveResult(foreachVariable, foreachVariable.Type)); foreachStmt.AddAnnotation(new ForeachAnnotation(inst.ResourceExpression, conditionInst, singleGetter)); // If there was an optional return statement, return it as well. if (optionalReturnAfterLoop != null) { return new BlockStatement { Statements = { foreachStmt, optionalReturnAfterLoop.AcceptVisitor(this) } }; } return foreachStmt; } static bool EqualErasedType(IType a, IType b) { return NormalizeTypeVisitor.TypeErasure.EquivalentTypes(a, b); } private bool IsDynamicCastToIEnumerable(Expression expr, out Expression dynamicExpr) { if (!(expr is CastExpression cast)) { dynamicExpr = null; return false; } dynamicExpr = cast.Expression; if (!(expr.GetResolveResult() is ConversionResolveResult crr)) return false; if (!crr.Type.IsKnownType(KnownTypeCode.IEnumerable)) return false; return crr.Input.Type.Kind == TypeKind.Dynamic; } /// /// Unwraps a nested BlockContainer, if container contains only a single block, /// and that single block contains only a BlockContainer followed by a Leave instruction. /// If the leave instruction is a return that carries a value, the container is unwrapped only /// if the value has no side-effects. /// Otherwise returns the unmodified container. /// /// If the leave is a return and has no side-effects, we can move the return out of the using-block and put it after the loop, otherwise returns null. BlockContainer UnwrapNestedContainerIfPossible(BlockContainer container, out Leave optionalReturnInst) { optionalReturnInst = null; // Check block structure: if (container.Blocks.Count != 1) return container; var nestedBlock = container.Blocks[0]; if (nestedBlock.Instructions.Count != 2 || !(nestedBlock.Instructions[0] is BlockContainer nestedContainer) || !(nestedBlock.Instructions[1] is Leave leave)) return container; // If the leave has no value, just unwrap the BlockContainer. if (leave.MatchLeave(container)) return nestedContainer; // If the leave is a return, we can move the return out of the using-block and put it after the loop // (but only if the value doesn't have side-effects) if (leave.IsLeavingFunction && SemanticHelper.IsPure(leave.Value.Flags)) { optionalReturnInst = leave; return nestedContainer; } return container; } enum RequiredGetCurrentTransformation { /// /// Foreach transformation not possible. /// NoForeach, /// /// Uninline the stloc foreachVar(call get_Current()) and insert it as first statement in the loop body. /// /// ... (stloc foreachVar(call get_Current()) ... /// => /// stloc foreachVar(call get_Current()) /// ... (ldloc foreachVar) ... /// /// UseExistingVariable, /// /// No store was found, thus create a new variable and use it as foreach variable. /// /// ... (call get_Current()) ... /// => /// stloc foreachVar(call get_Current()) /// ... (ldloc foreachVar) ... /// /// IntroduceNewVariable, /// /// No store was found, thus create a new variable and use it as foreach variable. /// Additionally it is necessary to copy the value of the foreach variable to another local /// to allow safe modification of its value. /// /// ... addressof(call get_Current()) ... /// => /// stloc foreachVar(call get_Current()) /// stloc copy(ldloc foreachVar) /// ... (ldloca copy) ... /// /// IntroduceNewVariableAndLocalCopy } /// /// Determines whether is only used once inside for accessing the Current property. /// /// The using body container. This is only used for variable usage checks. /// The loop body. The first statement of this block is analyzed. /// The current enumerator. /// The call MoveNext(ldloc enumerator) pattern. /// Returns the call instruction invoking Current's getter. /// Returns the the foreach variable, if a suitable was found. This variable is only assigned once and its assignment is the first statement in . /// for details. RequiredGetCurrentTransformation DetectGetCurrentTransformation(BlockContainer usingContainer, Block loopBody, ILVariable enumerator, ILInstruction moveNextUsage, out CallInstruction singleGetter, out ILVariable foreachVariable) { singleGetter = null; foreachVariable = null; var loads = (enumerator.LoadInstructions.OfType().Concat(enumerator.AddressInstructions.OfType())).Where(ld => !ld.IsDescendantOf(moveNextUsage)).ToArray(); // enumerator is used in multiple locations or not in conjunction with get_Current // => no foreach if (loads.Length != 1 || !ParentIsCurrentGetter(loads[0])) return RequiredGetCurrentTransformation.NoForeach; singleGetter = (CallInstruction)loads[0].Parent; // singleGetter is not part of the first instruction in body or cannot be uninlined // => no foreach if (!(singleGetter.IsDescendantOf(loopBody.Instructions[0]) && ILInlining.CanUninline(singleGetter, loopBody.Instructions[0]))) return RequiredGetCurrentTransformation.NoForeach; ILInstruction inst = singleGetter; // in some cases, i.e. foreach variable with explicit type different from the collection-item-type, // the result of call get_Current is casted. while (inst.Parent is UnboxAny || inst.Parent is CastClass) inst = inst.Parent; // One variable was found. if (inst.Parent is StLoc stloc) { // Must be a plain assignment expression and variable must only be used in 'body' + only assigned once. if (stloc.Parent == loopBody && VariableIsOnlyUsedInBlock(stloc, usingContainer)) { foreachVariable = stloc.Variable; return RequiredGetCurrentTransformation.UseExistingVariable; } } // In optimized Roslyn code it can happen that the foreach variable is referenced via addressof // We only do this unwrapping if where dealing with a custom struct type. if (CurrentIsStructSetterTarget(inst, singleGetter)) { return RequiredGetCurrentTransformation.IntroduceNewVariableAndLocalCopy; } // No suitable variable was found: we need a new one. return RequiredGetCurrentTransformation.IntroduceNewVariable; } /// /// Determines whether storeInst.Variable is only assigned once and used only inside . /// Loads by reference (ldloca) are only allowed in the context of this pointer in call instructions. /// (This only applies to value types.) /// bool VariableIsOnlyUsedInBlock(StLoc storeInst, BlockContainer usingContainer) { if (storeInst.Variable.LoadInstructions.Any(ld => !ld.IsDescendantOf(usingContainer))) return false; if (storeInst.Variable.AddressInstructions.Any(inst => !AddressUseAllowed(inst))) return false; if (storeInst.Variable.StoreInstructions.OfType().Any(st => st != storeInst)) return false; return true; bool AddressUseAllowed(LdLoca la) { if (!la.IsDescendantOf(usingContainer)) return false; if (ILInlining.IsUsedAsThisPointerInCall(la) && !IsTargetOfSetterCall(la, la.Variable.Type)) return true; var current = la.Parent; while (current is LdFlda next) { current = next.Parent; } return current is LdObj; } } /// /// Returns true if singleGetter is a value type and its address is used as setter target. /// bool CurrentIsStructSetterTarget(ILInstruction inst, CallInstruction singleGetter) { if (!(inst.Parent is AddressOf addr)) return false; return IsTargetOfSetterCall(addr, singleGetter.Method.ReturnType); } bool IsTargetOfSetterCall(ILInstruction inst, IType targetType) { if (inst.ChildIndex != 0) return false; if (targetType.IsReferenceType ?? false) return false; switch (inst.Parent.OpCode) { case OpCode.Call: case OpCode.CallVirt: var targetMethod = ((CallInstruction)inst.Parent).Method; if (!targetMethod.IsAccessor || targetMethod.IsStatic) return false; switch (targetMethod.AccessorOwner) { case IProperty p: return targetMethod.AccessorKind == System.Reflection.MethodSemanticsAttributes.Setter; default: return true; } default: return false; } } bool ParentIsCurrentGetter(ILInstruction inst) { return inst.Parent is CallInstruction cv && cv.Method.IsAccessor && cv.Method.AccessorOwner is IProperty p && p.Getter.Equals(cv.Method); } #endregion protected internal override Statement VisitPinnedRegion(PinnedRegion inst) { var fixedStmt = new FixedStatement(); fixedStmt.Type = exprBuilder.ConvertType(inst.Variable.Type); Expression initExpr; if (inst.Init.OpCode == OpCode.ArrayToPointer) { initExpr = exprBuilder.Translate(((ArrayToPointer)inst.Init).Array); } else { initExpr = exprBuilder.Translate(inst.Init, typeHint: inst.Variable.Type).ConvertTo(inst.Variable.Type, exprBuilder); } fixedStmt.Variables.Add(new VariableInitializer(inst.Variable.Name, initExpr).WithILVariable(inst.Variable)); fixedStmt.EmbeddedStatement = Convert(inst.Body); return fixedStmt; } protected internal override Statement VisitBlock(Block block) { if (block.Kind != BlockKind.ControlFlow) return Default(block); // Block without container BlockStatement blockStatement = new BlockStatement(); foreach (var inst in block.Instructions) { blockStatement.Add(Convert(inst)); } if (block.FinalInstruction.OpCode != OpCode.Nop) blockStatement.Add(Convert(block.FinalInstruction)); return blockStatement; } protected internal override Statement VisitBlockContainer(BlockContainer container) { if (container.Kind != ContainerKind.Normal && container.EntryPoint.IncomingEdgeCount > 1) { var oldContinueTarget = continueTarget; var oldContinueCount = continueCount; var oldBreakTarget = breakTarget; var loop = ConvertLoop(container); loop.AddAnnotation(container); continueTarget = oldContinueTarget; continueCount = oldContinueCount; breakTarget = oldBreakTarget; return loop; } else if (container.EntryPoint.Instructions.Count == 1 && container.EntryPoint.Instructions[0] is SwitchInstruction switchInst) { return TranslateSwitch(container, switchInst); } else { var blockStmt = ConvertBlockContainer(container, false); blockStmt.AddAnnotation(container); return blockStmt; } } Statement ConvertLoop(BlockContainer container) { ILInstruction condition; Block loopBody; BlockStatement blockStatement; continueCount = 0; breakTarget = container; switch (container.Kind) { case ContainerKind.Loop: continueTarget = container.EntryPoint; blockStatement = ConvertBlockContainer(container, true); Debug.Assert(continueCount < container.EntryPoint.IncomingEdgeCount); Debug.Assert(blockStatement.Statements.First() is LabelStatement); if (container.EntryPoint.IncomingEdgeCount == continueCount + 1) { // Remove the entrypoint label if all jumps to the label were replaced with 'continue;' statements blockStatement.Statements.First().Remove(); } if (blockStatement.LastOrDefault() is ContinueStatement continueStmt) continueStmt.Remove(); DeclareLocalFunctions(currentFunction, container, blockStatement); return new WhileStatement(new PrimitiveExpression(true), blockStatement); case ContainerKind.While: continueTarget = container.EntryPoint; if (!container.MatchConditionBlock(continueTarget, out condition, out loopBody)) throw new NotSupportedException("Invalid condition block in while loop."); blockStatement = ConvertAsBlock(loopBody); if (!loopBody.HasFlag(InstructionFlags.EndPointUnreachable)) blockStatement.Add(new BreakStatement()); blockStatement = ConvertBlockContainer(blockStatement, container, container.Blocks.Skip(1).Except(new[] { loopBody }), true); Debug.Assert(continueCount < container.EntryPoint.IncomingEdgeCount); if (continueCount + 1 < container.EntryPoint.IncomingEdgeCount) { // There's an incoming edge to the entry point (=while condition) that wasn't represented as "continue;" // -> emit a real label // We'll also remove any "continue;" in front of the label, as it's redundant. if (blockStatement.LastOrDefault() is ContinueStatement) blockStatement.Last().Remove(); blockStatement.Add(new LabelStatement { Label = container.EntryPoint.Label }); } if (blockStatement.LastOrDefault() is ContinueStatement continueStmt2) continueStmt2.Remove(); DeclareLocalFunctions(currentFunction, container, blockStatement); return new WhileStatement(exprBuilder.TranslateCondition(condition), blockStatement); case ContainerKind.DoWhile: continueTarget = container.Blocks.Last(); if (!container.MatchConditionBlock(continueTarget, out condition, out _)) throw new NotSupportedException("Invalid condition block in do-while loop."); blockStatement = ConvertBlockContainer(new BlockStatement(), container, container.Blocks.SkipLast(1), true); if (container.EntryPoint.IncomingEdgeCount == 2) { // Remove the entry-point label, if there are only two jumps to the entry-point: // from outside the loop and from the condition-block. blockStatement.Statements.First().Remove(); } if (blockStatement.LastOrDefault() is ContinueStatement continueStmt3) continueStmt3.Remove(); if (continueTarget.IncomingEdgeCount > continueCount) { // if there are branches to the condition block, that were not converted // to continue statements, we have to introduce an extra label. blockStatement.Add(new LabelStatement { Label = continueTarget.Label }); } DeclareLocalFunctions(currentFunction, container, blockStatement); if (blockStatement.Statements.Count == 0) { return new WhileStatement { Condition = exprBuilder.TranslateCondition(condition), EmbeddedStatement = blockStatement }; } return new DoWhileStatement { EmbeddedStatement = blockStatement, Condition = exprBuilder.TranslateCondition(condition) }; case ContainerKind.For: continueTarget = container.Blocks.Last(); if (!container.MatchConditionBlock(container.EntryPoint, out condition, out loopBody)) throw new NotSupportedException("Invalid condition block in for loop."); blockStatement = ConvertAsBlock(loopBody); if (!loopBody.HasFlag(InstructionFlags.EndPointUnreachable)) blockStatement.Add(new BreakStatement()); if (!container.MatchIncrementBlock(continueTarget)) throw new NotSupportedException("Invalid increment block in for loop."); blockStatement = ConvertBlockContainer(blockStatement, container, container.Blocks.SkipLast(1).Skip(1).Except(new[] { loopBody }), true); var forStmt = new ForStatement() { Condition = exprBuilder.TranslateCondition(condition), EmbeddedStatement = blockStatement }; if (blockStatement.LastOrDefault() is ContinueStatement continueStmt4) continueStmt4.Remove(); for (int i = 0; i < continueTarget.Instructions.Count - 1; i++) { forStmt.Iterators.Add(Convert(continueTarget.Instructions[i])); } if (continueTarget.IncomingEdgeCount > continueCount) blockStatement.Add(new LabelStatement { Label = continueTarget.Label }); DeclareLocalFunctions(currentFunction, container, blockStatement); return forStmt; default: throw new ArgumentOutOfRangeException(); } } BlockStatement ConvertBlockContainer(BlockContainer container, bool isLoop) { var blockStatement = ConvertBlockContainer(new BlockStatement(), container, container.Blocks, isLoop); DeclareLocalFunctions(currentFunction, container, blockStatement); return blockStatement; } void DeclareLocalFunctions(ILFunction currentFunction, BlockContainer container, BlockStatement blockStatement) { foreach (var localFunction in currentFunction.LocalFunctions.OrderBy(f => f.Name)) { if (localFunction.DeclarationScope != container) continue; blockStatement.Add(TranslateFunction(localFunction)); } LocalFunctionDeclarationStatement TranslateFunction(ILFunction function) { var stmt = new LocalFunctionDeclarationStatement(); var tsab = CSharpDecompiler.CreateAstBuilder(null); var nestedBuilder = new StatementBuilder(typeSystem, exprBuilder.decompilationContext, function, settings, cancellationToken); stmt.Name = function.Name; stmt.Parameters.AddRange(exprBuilder.MakeParameters(function.Parameters, function)); stmt.ReturnType = tsab.ConvertType(function.Method.ReturnType); stmt.Body = nestedBuilder.ConvertAsBlock(function.Body); stmt.AddAnnotation(new LocalFunctionReferenceResolveResult(function)); return stmt; } } BlockStatement ConvertBlockContainer(BlockStatement blockStatement, BlockContainer container, IEnumerable blocks, bool isLoop) { foreach (var block in blocks) { if (block.IncomingEdgeCount > 1 || block != container.EntryPoint) { // If there are any incoming branches to this block, add a label: blockStatement.Add(new LabelStatement { Label = block.Label }); } foreach (var inst in block.Instructions) { if (!isLoop && inst is Leave leave && IsFinalLeave(leave)) { // skip the final 'leave' instruction and just fall out of the BlockStatement blockStatement.AddAnnotation(new ImplicitReturnAnnotation(leave)); continue; } var stmt = Convert(inst); if (stmt is BlockStatement b) { foreach (var nested in b.Statements) blockStatement.Add(nested.Detach()); } else { blockStatement.Add(stmt); } } if (block.FinalInstruction.OpCode != OpCode.Nop) { blockStatement.Add(Convert(block.FinalInstruction)); } } string label; if (endContainerLabels.TryGetValue(container, out label)) { if (isLoop && !(blockStatement.LastOrDefault() is ContinueStatement)) { blockStatement.Add(new ContinueStatement()); } blockStatement.Add(new LabelStatement { Label = label }); if (isLoop) { blockStatement.Add(new BreakStatement()); } } return blockStatement; } static bool IsFinalLeave(Leave leave) { if (!leave.Value.MatchNop()) return false; Block block = (Block)leave.Parent; if (leave.ChildIndex != block.Instructions.Count - 1 || block.FinalInstruction.OpCode != OpCode.Nop) return false; BlockContainer container = (BlockContainer)block.Parent; return block.ChildIndex == container.Blocks.Count - 1 && container == leave.TargetContainer; } protected internal override Statement VisitInitblk(Initblk inst) { var stmt = new ExpressionStatement( exprBuilder.CallUnsafeIntrinsic( inst.UnalignedPrefix != 0 ? "InitBlockUnaligned" : "InitBlock", new Expression[] { exprBuilder.Translate(inst.Address), exprBuilder.Translate(inst.Value), exprBuilder.Translate(inst.Size) }, exprBuilder.compilation.FindType(KnownTypeCode.Void), inst ) ); stmt.InsertChildAfter(null, new Comment(" IL initblk instruction"), Roles.Comment); return stmt; } protected internal override Statement VisitCpblk(Cpblk inst) { var stmt = new ExpressionStatement( exprBuilder.CallUnsafeIntrinsic( inst.UnalignedPrefix != 0 ? "CopyBlockUnaligned" : "CopyBlock", new Expression[] { exprBuilder.Translate(inst.DestAddress), exprBuilder.Translate(inst.SourceAddress), exprBuilder.Translate(inst.Size) }, exprBuilder.compilation.FindType(KnownTypeCode.Void), inst ) ); stmt.InsertChildAfter(null, new Comment(" IL cpblk instruction"), Roles.Comment); return stmt; } } }