// Copyright (c) AlphaSierraPapa for the SharpDevelop Team (for details please see \doc\copyright.txt) // This code is distributed under MIT X11 license (for details please see \doc\license.txt) using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using Mono.Cecil; namespace ICSharpCode.Decompiler.ILAst { public class YieldReturnDecompiler { // For a description on the code generated by the C# compiler for yield return: // http://csharpindepth.com/Articles/Chapter6/IteratorBlockImplementation.aspx // The idea here is: // - Figure out whether the current method is instanciating an enumerator // - Figure out which of the fields is the state field // - Construct an exception table based on states. This allows us to determine, for each state, what the parent try block is. /// /// This exception is thrown when we find something else than we expect from the C# compiler. /// This aborts the analysis and makes the whole transform fail. /// class YieldAnalysisFailedException : Exception {} DecompilerContext context; TypeDefinition enumeratorType; MethodDefinition enumeratorCtor; MethodDefinition disposeMethod; FieldDefinition stateField; FieldDefinition currentField; Dictionary fieldToParameterMap = new Dictionary(); List newBody; #region Run() method public static void Run(DecompilerContext context, ILBlock method) { if (!context.Settings.YieldReturn) return; // abort if enumerator decompilation is disabled var yrd = new YieldReturnDecompiler(); yrd.context = context; if (!yrd.MatchEnumeratorCreationPattern(method)) return; yrd.enumeratorType = yrd.enumeratorCtor.DeclaringType; #if DEBUG if (Debugger.IsAttached) { yrd.Run(); } else { #endif try { yrd.Run(); } catch (YieldAnalysisFailedException) { return; } #if DEBUG } #endif method.Body.Clear(); method.EntryGoto = null; method.Body.AddRange(yrd.newBody); // Repeat the inlining/copy propagation optimization because the conversion of field access // to local variables can open up additional inlining possibilities. ILInlining inlining = new ILInlining(method); inlining.InlineAllVariables(); inlining.CopyPropagation(); } void Run() { AnalyzeCtor(); AnalyzeCurrentProperty(); ResolveIEnumerableIEnumeratorFieldMapping(); ConstructExceptionTable(); AnalyzeMoveNext(); TranslateFieldsToLocalAccess(); } #endregion #region Match the enumerator creation pattern bool MatchEnumeratorCreationPattern(ILBlock method) { if (method.Body.Count == 0) return false; ILExpression newObj; if (method.Body.Count == 1) { // ret(newobj(...)) if (method.Body[0].Match(ILCode.Ret, out newObj)) return MatchEnumeratorCreationNewObj(newObj, out enumeratorCtor); else return false; } // stloc(var_1, newobj(..) ILVariable var1; if (!method.Body[0].Match(ILCode.Stloc, out var1, out newObj)) return false; if (!MatchEnumeratorCreationNewObj(newObj, out enumeratorCtor)) return false; int i; for (i = 1; i < method.Body.Count; i++) { // stfld(..., ldloc(var_1), ldarg(...)) FieldReference storedField; ILExpression ldloc, ldarg; if (!method.Body[i].Match(ILCode.Stfld, out storedField, out ldloc, out ldarg)) break; if (ldloc.Code != ILCode.Ldloc || ldarg.Code != ILCode.Ldarg) return false; storedField = GetFieldDefinition(storedField); if (ldloc.Operand != var1 || storedField == null) return false; fieldToParameterMap[(FieldDefinition)storedField] = (ParameterDefinition)ldarg.Operand; } ILVariable var2; ILExpression ldlocForStloc2; if (i < method.Body.Count && method.Body[i].Match(ILCode.Stloc, out var2, out ldlocForStloc2)) { // stloc(var_2, ldloc(var_1)) if (ldlocForStloc2.Code != ILCode.Ldloc || ldlocForStloc2.Operand != var1) return false; i++; } else { // the compiler might skip the above instruction in release builds; in that case, it directly returns stloc.Operand var2 = var1; } ILExpression retArg; if (i < method.Body.Count && method.Body[i].Match(ILCode.Ret, out retArg)) { // ret(ldloc(var_2)) if (retArg.Code == ILCode.Ldloc && retArg.Operand == var2) { return true; } } return false; } static FieldDefinition GetFieldDefinition(FieldReference field) { return CecilExtensions.ResolveWithinSameModule(field); } static MethodDefinition GetMethodDefinition(MethodReference method) { return CecilExtensions.ResolveWithinSameModule(method); } bool MatchEnumeratorCreationNewObj(ILExpression expr, out MethodDefinition ctor) { // newobj(CurrentType/...::.ctor, ldc.i4(-2)) ctor = null; if (expr.Code != ILCode.Newobj || expr.Arguments.Count != 1) return false; if (expr.Arguments[0].Code != ILCode.Ldc_I4) return false; int initialState = (int)expr.Arguments[0].Operand; if (!(initialState == -2 || initialState == 0)) return false; ctor = GetMethodDefinition(expr.Operand as MethodReference); if (ctor == null || ctor.DeclaringType.DeclaringType != context.CurrentType) return false; return IsCompilerGeneratorEnumerator(ctor.DeclaringType); } public static bool IsCompilerGeneratorEnumerator(TypeDefinition type) { if (!(type.Name.StartsWith("<", StringComparison.Ordinal) && type.IsCompilerGenerated())) return false; foreach (TypeReference i in type.Interfaces) { if (i.Namespace == "System.Collections" && i.Name == "IEnumerator") return true; } return false; } #endregion #region Figure out what the 'state' field is (analysis of .ctor()) /// /// Looks at the enumerator's ctor and figures out which of the fields holds the state. /// void AnalyzeCtor() { ILBlock method = CreateILAst(enumeratorCtor); ILExpression stfldPattern = new ILExpression(ILCode.Stfld, ILExpression.AnyOperand, LoadFromArgument.This, new LoadFromArgument(0)); foreach (ILNode node in method.Body) { if (stfldPattern.Match(node)) { stateField = GetFieldDefinition(((ILExpression)node).Operand as FieldReference); } } if (stateField == null) throw new YieldAnalysisFailedException(); } /// /// Creates ILAst for the specified method, optimized up to before the 'YieldReturn' step. /// ILBlock CreateILAst(MethodDefinition method) { if (method == null || !method.HasBody) throw new YieldAnalysisFailedException(); ILBlock ilMethod = new ILBlock(); ILAstBuilder astBuilder = new ILAstBuilder(); ilMethod.Body = astBuilder.Build(method, true); ILAstOptimizer optimizer = new ILAstOptimizer(); optimizer.Optimize(context, ilMethod, ILAstOptimizationStep.YieldReturn); return ilMethod; } #endregion #region Figure out what the 'current' field is (analysis of get_Current()) static readonly ILExpression returnFieldFromThisPattern = new ILExpression(ILCode.Ret, null, new ILExpression(ILCode.Ldfld, ILExpression.AnyOperand, LoadFromArgument.This)); /// /// Looks at the enumerator's get_Current method and figures out which of the fields holds the current value. /// void AnalyzeCurrentProperty() { MethodDefinition getCurrentMethod = enumeratorType.Methods.FirstOrDefault( m => m.Name.StartsWith("System.Collections.Generic.IEnumerator", StringComparison.Ordinal) && m.Name.EndsWith(".get_Current", StringComparison.Ordinal)); ILBlock method = CreateILAst(getCurrentMethod); if (method.Body.Count == 1) { // release builds directly return the current field if (returnFieldFromThisPattern.Match(method.Body[0])) { currentField = GetFieldDefinition(((ILExpression)method.Body[0]).Arguments[0].Operand as FieldReference); } } else { StoreToVariable v = new StoreToVariable(new ILExpression(ILCode.Ldfld, ILExpression.AnyOperand, LoadFromArgument.This)); if (v.Match(method.Body[0])) { int i = 1; if (i == method.Body.Count - 1) { if (new ILExpression(ILCode.Ret, null, new LoadFromVariable(v)).Match(method.Body[i])) { currentField = GetFieldDefinition(((ILExpression)method.Body[0]).Arguments[0].Operand as FieldReference); } } } } if (currentField == null) throw new YieldAnalysisFailedException(); } #endregion #region Figure out the mapping of IEnumerable fields to IEnumerator fields (analysis of GetEnumerator()) void ResolveIEnumerableIEnumeratorFieldMapping() { MethodDefinition getEnumeratorMethod = enumeratorType.Methods.FirstOrDefault( m => m.Name.StartsWith("System.Collections.Generic.IEnumerable", StringComparison.Ordinal) && m.Name.EndsWith(".GetEnumerator", StringComparison.Ordinal)); if (getEnumeratorMethod == null) return; // no mappings (maybe it's just an IEnumerator implementation?) ILExpression mappingPattern = new ILExpression( ILCode.Stfld, ILExpression.AnyOperand, new AnyILExpression(), new ILExpression(ILCode.Ldfld, ILExpression.AnyOperand, LoadFromArgument.This)); ILBlock method = CreateILAst(getEnumeratorMethod); foreach (ILNode node in method.Body) { if (mappingPattern.Match(node)) { ILExpression stfld = (ILExpression)node; FieldDefinition storedField = GetFieldDefinition(stfld.Operand as FieldReference); FieldDefinition loadedField = GetFieldDefinition(stfld.Arguments[1].Operand as FieldReference); if (storedField != null && loadedField != null) { ParameterDefinition mappedParameter; if (fieldToParameterMap.TryGetValue(loadedField, out mappedParameter)) fieldToParameterMap[storedField] = mappedParameter; } } } } #endregion #region Construction of the exception table (analysis of Dispose()) // We construct the exception table by analyzing the enumerator's Dispose() method. // Assumption: there are no loops/backward jumps // We 'run' the code, with "state" being a symbolic variable // so it can form expressions like "state + x" (when there's a sub instruction) // For each instruction, we maintain a list of value ranges for state for which the instruction is reachable. // This is (int.MinValue, int.MaxValue) for the first instruction. // These ranges are propagated depending on the conditional jumps performed by the code. Dictionary finallyMethodToStateInterval; void ConstructExceptionTable() { disposeMethod = enumeratorType.Methods.FirstOrDefault(m => m.Name == "System.IDisposable.Dispose"); ILBlock ilMethod = CreateILAst(disposeMethod); finallyMethodToStateInterval = new Dictionary(); InitStateRanges(ilMethod.Body[0]); AssignStateRanges(ilMethod.Body, ilMethod.Body.Count, forDispose: true); // Now look at the finally blocks: foreach (var tryFinally in ilMethod.GetSelfAndChildrenRecursive()) { Interval interval = ranges[tryFinally.TryBlock.Body[0]].ToEnclosingInterval(); var finallyBody = tryFinally.FinallyBlock.Body; if (finallyBody.Count != 2) throw new YieldAnalysisFailedException(); ILExpression call = finallyBody[0] as ILExpression; if (call == null || call.Code != ILCode.Call || call.Arguments.Count != 1) throw new YieldAnalysisFailedException(); if (call.Arguments[0].Code != ILCode.Ldarg || ((ParameterDefinition)call.Arguments[0].Operand).Index >= 0) throw new YieldAnalysisFailedException(); if (!finallyBody[1].Match(ILCode.Endfinally)) throw new YieldAnalysisFailedException(); MethodDefinition mdef = GetMethodDefinition(call.Operand as MethodReference); if (mdef == null || finallyMethodToStateInterval.ContainsKey(mdef)) throw new YieldAnalysisFailedException(); finallyMethodToStateInterval.Add(mdef, interval); } ranges = null; } #endregion #region Assign StateRanges / Symbolic Execution (used for analysis of Dispose() and MoveNext()) #region struct Interval / class StateRange struct Interval { public readonly int Start, End; public Interval(int start, int end) { Debug.Assert(start <= end || (start == 0 && end == -1)); this.Start = start; this.End = end; } public override string ToString() { return string.Format("({0} to {1})", Start, End); } } class StateRange { readonly List data = new List(); public StateRange() { } public StateRange(int start, int end) { this.data.Add(new Interval(start, end)); } public bool Contains(int val) { foreach (Interval v in data) { if (v.Start <= val && val <= v.End) return true; } return false; } public void UnionWith(StateRange other) { data.AddRange(other.data); } /// /// Unions this state range with (other intersect (minVal to maxVal)) /// public void UnionWith(StateRange other, int minVal, int maxVal) { foreach (Interval v in other.data) { int start = Math.Max(v.Start, minVal); int end = Math.Min(v.End, maxVal); if (start <= end) data.Add(new Interval(start, end)); } } /// /// Merges overlapping interval ranges. /// public void Simplify() { if (data.Count < 2) return; data.Sort((a, b) => a.Start.CompareTo(b.Start)); Interval prev = data[0]; int prevIndex = 0; for (int i = 1; i < data.Count; i++) { Interval next = data[i]; Debug.Assert(prev.Start <= next.Start); if (next.Start <= prev.End + 1) { // intervals overlapping or touching prev = new Interval(prev.Start, Math.Max(prev.End, next.End)); data[prevIndex] = prev; data[i] = new Interval(0, -1); // mark as deleted } else { prev = next; prevIndex = i; } } data.RemoveAll(i => i.Start > i.End); // remove all entries that were marked as deleted } public override string ToString() { return string.Join(",", data); } public Interval ToEnclosingInterval() { if (data.Count == 0) throw new YieldAnalysisFailedException(); return new Interval(data[0].Start, data[data.Count - 1].End); } } #endregion DefaultDictionary ranges; ILVariable rangeAnalysisStateVariable; /// /// Initializes the state range logic: /// Clears 'ranges' and sets 'ranges[entryPoint]' to the full range (int.MinValue to int.MaxValue) /// void InitStateRanges(ILNode entryPoint) { ranges = new DefaultDictionary(n => new StateRange()); ranges[entryPoint] = new StateRange(int.MinValue, int.MaxValue); rangeAnalysisStateVariable = null; } int AssignStateRanges(List body, int bodyLength, bool forDispose) { if (bodyLength == 0) return 0; for (int i = 0; i < bodyLength; i++) { StateRange nodeRange = ranges[body[i]]; nodeRange.Simplify(); ILLabel label = body[i] as ILLabel; if (label != null) { ranges[body[i + 1]].UnionWith(nodeRange); continue; } ILTryCatchBlock tryFinally = body[i] as ILTryCatchBlock; if (tryFinally != null) { if (!forDispose || tryFinally.CatchBlocks.Count != 0 || tryFinally.FaultBlock != null || tryFinally.FinallyBlock == null) throw new YieldAnalysisFailedException(); ranges[tryFinally.TryBlock].UnionWith(nodeRange); AssignStateRanges(tryFinally.TryBlock.Body, tryFinally.TryBlock.Body.Count, forDispose); continue; } ILExpression expr = body[i] as ILExpression; if (expr == null) throw new YieldAnalysisFailedException(); switch (expr.Code) { case ILCode.Switch: { SymbolicValue val = Eval(expr.Arguments[0]); if (val.Type != SymbolicValueType.State) throw new YieldAnalysisFailedException(); ILLabel[] targetLabels = (ILLabel[])expr.Operand; for (int j = 0; j < targetLabels.Length; j++) { int state = j - val.Constant; ranges[targetLabels[j]].UnionWith(nodeRange, state, state); } StateRange nextRange = ranges[body[i + 1]]; nextRange.UnionWith(nodeRange, int.MinValue, -1 - val.Constant); nextRange.UnionWith(nodeRange, targetLabels.Length - val.Constant, int.MaxValue); break; } case ILCode.Br: case ILCode.Leave: ranges[(ILLabel)expr.Operand].UnionWith(nodeRange); break; case ILCode.Brtrue: { SymbolicValue val = Eval(expr.Arguments[0]); if (val.Type == SymbolicValueType.StateEquals) { ranges[(ILLabel)expr.Operand].UnionWith(nodeRange, val.Constant, val.Constant); StateRange nextRange = ranges[body[i + 1]]; nextRange.UnionWith(nodeRange, int.MinValue, val.Constant - 1); nextRange.UnionWith(nodeRange, val.Constant + 1, int.MaxValue); } else if (val.Type == SymbolicValueType.StateInEquals) { ranges[body[i + 1]].UnionWith(nodeRange, val.Constant, val.Constant); StateRange targetRange = ranges[(ILLabel)expr.Operand]; targetRange.UnionWith(nodeRange, int.MinValue, val.Constant - 1); targetRange.UnionWith(nodeRange, val.Constant + 1, int.MaxValue); } else { throw new YieldAnalysisFailedException(); } break; } case ILCode.Nop: ranges[body[i + 1]].UnionWith(nodeRange); break; case ILCode.Ret: break; case ILCode.Stloc: { SymbolicValue val = Eval(expr.Arguments[0]); if (val.Type == SymbolicValueType.State && val.Constant == 0 && rangeAnalysisStateVariable == null) rangeAnalysisStateVariable = (ILVariable)expr.Operand; else throw new YieldAnalysisFailedException(); goto case ILCode.Nop; } case ILCode.Call: // in some cases (e.g. foreach over array) the C# compiler produces a finally method outside of try-finally blocks if (forDispose) { MethodDefinition mdef = GetMethodDefinition(expr.Operand as MethodReference); if (mdef == null || finallyMethodToStateInterval.ContainsKey(mdef)) throw new YieldAnalysisFailedException(); finallyMethodToStateInterval.Add(mdef, nodeRange.ToEnclosingInterval()); } else { throw new YieldAnalysisFailedException(); } break; default: if (forDispose) throw new YieldAnalysisFailedException(); else return i; } } return bodyLength; } enum SymbolicValueType { /// /// int: Constant (result of ldc.i4) /// IntegerConstant, /// /// int: State + Constant /// State, /// /// This pointer (result of ldarg.0) /// This, /// /// bool: State == Constant /// StateEquals, /// /// bool: State != Constant /// StateInEquals } struct SymbolicValue { public readonly int Constant; public readonly SymbolicValueType Type; public SymbolicValue(SymbolicValueType type, int constant = 0) { this.Type = type; this.Constant = constant; } public override string ToString() { return string.Format("[SymbolicValue {0}: {1}]", this.Type, this.Constant); } } SymbolicValue Eval(ILExpression expr) { SymbolicValue left, right; switch (expr.Code) { case ILCode.Sub: left = Eval(expr.Arguments[0]); right = Eval(expr.Arguments[1]); if (left.Type != SymbolicValueType.State && left.Type != SymbolicValueType.IntegerConstant) throw new YieldAnalysisFailedException(); if (right.Type != SymbolicValueType.IntegerConstant) throw new YieldAnalysisFailedException(); return new SymbolicValue(left.Type, unchecked ( left.Constant - right.Constant )); case ILCode.Ldfld: if (Eval(expr.Arguments[0]).Type != SymbolicValueType.This) throw new YieldAnalysisFailedException(); if (GetFieldDefinition(expr.Operand as FieldReference) != stateField) throw new YieldAnalysisFailedException(); return new SymbolicValue(SymbolicValueType.State); case ILCode.Ldloc: if (expr.Operand == rangeAnalysisStateVariable) return new SymbolicValue(SymbolicValueType.State); else throw new YieldAnalysisFailedException(); case ILCode.Ldarg: if (((ParameterDefinition)expr.Operand).Index < 0) return new SymbolicValue(SymbolicValueType.This); else throw new YieldAnalysisFailedException(); case ILCode.Ldc_I4: return new SymbolicValue(SymbolicValueType.IntegerConstant, (int)expr.Operand); case ILCode.Ceq: left = Eval(expr.Arguments[0]); right = Eval(expr.Arguments[1]); if (left.Type != SymbolicValueType.State || right.Type != SymbolicValueType.IntegerConstant) throw new YieldAnalysisFailedException(); // bool: (state + left.Constant == right.Constant) // bool: (state == right.Constant - left.Constant) return new SymbolicValue(SymbolicValueType.StateEquals, unchecked ( right.Constant - left.Constant )); case ILCode.LogicNot: SymbolicValue val = Eval(expr.Arguments[0]); if (val.Type == SymbolicValueType.StateEquals) return new SymbolicValue(SymbolicValueType.StateInEquals, val.Constant); else if (val.Type == SymbolicValueType.StateInEquals) return new SymbolicValue(SymbolicValueType.StateEquals, val.Constant); else throw new YieldAnalysisFailedException(); default: throw new YieldAnalysisFailedException(); } } #endregion #region Analysis of MoveNext() ILVariable returnVariable; ILLabel returnLabel; ILLabel returnFalseLabel; void AnalyzeMoveNext() { MethodDefinition moveNextMethod = enumeratorType.Methods.FirstOrDefault(m => m.Name == "MoveNext"); ILBlock ilMethod = CreateILAst(moveNextMethod); if (ilMethod.Body.Count == 0) throw new YieldAnalysisFailedException(); ILExpression lastReturnArg; if (!ilMethod.Body.Last().Match(ILCode.Ret, out lastReturnArg)) throw new YieldAnalysisFailedException(); // There are two possibilities: if (lastReturnArg.Code == ILCode.Ldloc) { // a) the compiler uses a variable for returns (in debug builds, or when there are try-finally blocks) returnVariable = (ILVariable)lastReturnArg.Operand; returnLabel = ilMethod.Body.ElementAtOrDefault(ilMethod.Body.Count - 2) as ILLabel; if (returnLabel == null) throw new YieldAnalysisFailedException(); } else { // b) the compiler directly returns constants returnVariable = null; returnLabel = null; // In this case, the last return must return false. if (lastReturnArg.Code != ILCode.Ldc_I4 || (int)lastReturnArg.Operand != 0) throw new YieldAnalysisFailedException(); } ILTryCatchBlock tryFaultBlock = ilMethod.Body[0] as ILTryCatchBlock; List body; int bodyLength; if (tryFaultBlock != null) { // there are try-finally blocks if (returnVariable == null) // in this case, we must use a return variable throw new YieldAnalysisFailedException(); // must be a try-fault block: if (tryFaultBlock.CatchBlocks.Count != 0 || tryFaultBlock.FinallyBlock != null || tryFaultBlock.FaultBlock == null) throw new YieldAnalysisFailedException(); ILBlock faultBlock = tryFaultBlock.FaultBlock; // Ensure the fault block contains the call to Dispose(). if (faultBlock.Body.Count != 2) throw new YieldAnalysisFailedException(); MethodReference disposeMethodRef; ILExpression disposeArg; if (!faultBlock.Body[0].Match(ILCode.Call, out disposeMethodRef, out disposeArg)) throw new YieldAnalysisFailedException(); if (GetMethodDefinition(disposeMethodRef) != disposeMethod || !LoadFromArgument.This.Match(disposeArg)) throw new YieldAnalysisFailedException(); if (!faultBlock.Body[1].Match(ILCode.Endfinally)) throw new YieldAnalysisFailedException(); body = tryFaultBlock.TryBlock.Body; bodyLength = body.Count; } else { // no try-finally blocks body = ilMethod.Body; if (returnVariable == null) bodyLength = body.Count - 1; // all except for the return statement else bodyLength = body.Count - 2; // all except for the return label and statement } // Now verify that the last instruction in the body is 'ret(false)' if (returnVariable != null) { // If we don't have a return variable, we already verified that above. // If we do have one, check for 'stloc(returnVariable, ldc.i4(0))' // Maybe might be a jump to the return label after the stloc: ILExpression leave = body.ElementAtOrDefault(bodyLength - 1) as ILExpression; if (leave != null && (leave.Code == ILCode.Br || leave.Code == ILCode.Leave) && leave.Operand == returnLabel) bodyLength--; ILExpression store0 = body.ElementAtOrDefault(bodyLength - 1) as ILExpression; if (store0 == null || store0.Code != ILCode.Stloc || store0.Operand != returnVariable) throw new YieldAnalysisFailedException(); if (store0.Arguments[0].Code != ILCode.Ldc_I4 || (int)store0.Arguments[0].Operand != 0) throw new YieldAnalysisFailedException(); bodyLength--; // don't conside the stloc instruction to be part of the body } // verify that the last element in the body is a label pointing to the 'ret(false)' returnFalseLabel = body.ElementAtOrDefault(bodyLength - 1) as ILLabel; if (returnFalseLabel == null) throw new YieldAnalysisFailedException(); InitStateRanges(body[0]); int pos = AssignStateRanges(body, bodyLength, forDispose: false); if (pos > 0 && body[pos - 1] is ILLabel) { pos--; } else { // ensure that the first element at body[pos] is a label: ILLabel newLabel = new ILLabel(); newLabel.Name = "YieldReturnEntryPoint"; ranges[newLabel] = ranges[body[pos]]; // give the label the range of the instruction at body[pos] body.Insert(pos, newLabel); bodyLength++; } List> labels = new List>(); for (int i = pos; i < bodyLength; i++) { ILLabel label = body[i] as ILLabel; if (label != null) { labels.Add(new KeyValuePair(label, ranges[label])); } } ConvertBody(body, pos, bodyLength, labels); } #endregion #region ConvertBody struct SetState { public readonly int NewBodyPos; public readonly int NewState; public SetState(int newBodyPos, int newState) { this.NewBodyPos = newBodyPos; this.NewState = newState; } } void ConvertBody(List body, int startPos, int bodyLength, List> labels) { newBody = new List(); newBody.Add(MakeGoTo(labels, 0)); List stateChanges = new List(); int currentState = -1; // Copy all instructions from the old body to newBody. for (int pos = startPos; pos < bodyLength; pos++) { ILExpression expr = body[pos] as ILExpression; if (expr != null && expr.Code == ILCode.Stfld && LoadFromArgument.This.Match(expr.Arguments[0])) { // Handle stores to 'state' or 'current' if (GetFieldDefinition(expr.Operand as FieldReference) == stateField) { if (expr.Arguments[1].Code != ILCode.Ldc_I4) throw new YieldAnalysisFailedException(); currentState = (int)expr.Arguments[1].Operand; stateChanges.Add(new SetState(newBody.Count, currentState)); } else if (GetFieldDefinition(expr.Operand as FieldReference) == currentField) { newBody.Add(new ILExpression(ILCode.YieldReturn, null, expr.Arguments[1])); } else { newBody.Add(body[pos]); } } else if (returnVariable != null && expr != null && expr.Code == ILCode.Stloc && expr.Operand == returnVariable) { // handle store+branch to the returnVariable ILExpression br = body.ElementAtOrDefault(++pos) as ILExpression; if (br == null || !(br.Code == ILCode.Br || br.Code == ILCode.Leave) || br.Operand != returnLabel || expr.Arguments[0].Code != ILCode.Ldc_I4) throw new YieldAnalysisFailedException(); int val = (int)expr.Arguments[0].Operand; if (val == 0) { newBody.Add(MakeGoTo(returnFalseLabel)); } else if (val == 1) { newBody.Add(MakeGoTo(labels, currentState)); } else { throw new YieldAnalysisFailedException(); } } else if (expr != null && expr.Code == ILCode.Ret) { if (expr.Arguments.Count != 1 || expr.Arguments[0].Code != ILCode.Ldc_I4) throw new YieldAnalysisFailedException(); // handle direct return (e.g. in release builds) int val = (int)expr.Arguments[0].Operand; if (val == 0) { newBody.Add(MakeGoTo(returnFalseLabel)); } else if (val == 1) { newBody.Add(MakeGoTo(labels, currentState)); } else { throw new YieldAnalysisFailedException(); } } else if (expr != null && expr.Code == ILCode.Call && expr.Arguments.Count == 1 && LoadFromArgument.This.Match(expr.Arguments[0])) { MethodDefinition method = GetMethodDefinition(expr.Operand as MethodReference); if (method == null) throw new YieldAnalysisFailedException(); Interval interval; if (method == disposeMethod) { // Explicit call to dispose is used for "yield break;" within the method. ILExpression br = body.ElementAtOrDefault(++pos) as ILExpression; if (br == null || !(br.Code == ILCode.Br || br.Code == ILCode.Leave) || br.Operand != returnFalseLabel) throw new YieldAnalysisFailedException(); newBody.Add(MakeGoTo(returnFalseLabel)); } else if (finallyMethodToStateInterval.TryGetValue(method, out interval)) { // Call to Finally-method int index = stateChanges.FindIndex(ss => ss.NewState >= interval.Start && ss.NewState <= interval.End); if (index < 0) throw new YieldAnalysisFailedException(); ILLabel label = new ILLabel(); label.Name = "JumpOutOfTryFinally" + interval.Start + "_" + interval.End; newBody.Add(new ILExpression(ILCode.Leave, label)); SetState stateChange = stateChanges[index]; // Move all instructions from stateChange.Pos to newBody.Count into a try-block stateChanges.RemoveRange(index, stateChanges.Count - index); // remove all state changes up to the one we found ILTryCatchBlock tryFinally = new ILTryCatchBlock(); tryFinally.TryBlock = new ILBlock(newBody.GetRange(stateChange.NewBodyPos, newBody.Count - stateChange.NewBodyPos)); newBody.RemoveRange(stateChange.NewBodyPos, newBody.Count - stateChange.NewBodyPos); // remove all nodes that we just moved into the try block tryFinally.CatchBlocks = new List(); tryFinally.FinallyBlock = ConvertFinallyBlock(method); newBody.Add(tryFinally); newBody.Add(label); } } else { newBody.Add(body[pos]); } } newBody.Add(new ILExpression(ILCode.YieldBreak, null)); } ILExpression MakeGoTo(ILLabel targetLabel) { if (targetLabel == returnFalseLabel) return new ILExpression(ILCode.YieldBreak, null); else return new ILExpression(ILCode.Br, targetLabel); } ILExpression MakeGoTo(List> labels, int state) { foreach (var pair in labels) { if (pair.Value.Contains(state)) return MakeGoTo(pair.Key); } throw new YieldAnalysisFailedException(); } ILBlock ConvertFinallyBlock(MethodDefinition finallyMethod) { ILBlock block = CreateILAst(finallyMethod); // Get rid of assignment to state FieldReference stfld; List args; if (block.Body.Count > 0 && block.Body[0].Match(ILCode.Stfld, out stfld, out args)) { if (GetFieldDefinition(stfld) == stateField && LoadFromArgument.This.Match(args[0])) block.Body.RemoveAt(0); } // Convert ret to endfinally foreach (ILExpression expr in block.GetSelfAndChildrenRecursive()) { if (expr.Code == ILCode.Ret) expr.Code = ILCode.Endfinally; } return block; } #endregion #region TranslateFieldsToLocalAccess void TranslateFieldsToLocalAccess() { var fieldToLocalMap = new DefaultDictionary(f => new ILVariable { Name = f.Name, Type = f.FieldType }); foreach (ILNode node in newBody) { foreach (ILExpression expr in node.GetSelfAndChildrenRecursive()) { FieldDefinition field = GetFieldDefinition(expr.Operand as FieldReference); if (field != null) { switch (expr.Code) { case ILCode.Ldfld: if (LoadFromArgument.This.Match(expr.Arguments[0])) { if (fieldToParameterMap.ContainsKey(field)) { expr.Code = ILCode.Ldarg; expr.Operand = fieldToParameterMap[field]; } else { expr.Code = ILCode.Ldloc; expr.Operand = fieldToLocalMap[field]; } expr.Arguments.Clear(); } break; case ILCode.Stfld: if (LoadFromArgument.This.Match(expr.Arguments[0])) { if (fieldToParameterMap.ContainsKey(field)) { expr.Code = ILCode.Starg; expr.Operand = fieldToParameterMap[field]; } else { expr.Code = ILCode.Stloc; expr.Operand = fieldToLocalMap[field]; } expr.Arguments.RemoveAt(0); } break; case ILCode.Ldflda: if (fieldToParameterMap.ContainsKey(field)) { expr.Code = ILCode.Ldarga; expr.Operand = fieldToParameterMap[field]; } else { expr.Code = ILCode.Ldloca; expr.Operand = fieldToLocalMap[field]; } expr.Arguments.Clear(); break; } } } } } #endregion } }