// Copyright (c) 2014 Daniel Grunwald // // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE // FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. using System; using System.Collections; using System.Collections.Generic; using System.Collections.Immutable; using System.Diagnostics; using System.Linq; using System.Reflection.Metadata; using System.Reflection.Metadata.Ecma335; using System.Threading; using ICSharpCode.Decompiler.Disassembler; using ICSharpCode.Decompiler.TypeSystem; using ICSharpCode.Decompiler.Util; using ArrayType = ICSharpCode.Decompiler.TypeSystem.ArrayType; using ByReferenceType = ICSharpCode.Decompiler.TypeSystem.ByReferenceType; using PinnedType = ICSharpCode.Decompiler.TypeSystem.Implementation.PinnedType; namespace ICSharpCode.Decompiler.IL { /// /// Reads IL bytecodes and converts them into ILAst instructions. /// /// /// Instances of this class are not thread-safe. Use separate instances to decompile multiple members in parallel. /// public class ILReader { readonly ICompilation compilation; readonly MetadataModule module; readonly MetadataReader metadata; public bool UseDebugSymbols { get; set; } public DebugInfo.IDebugInfoProvider DebugInfo { get; set; } public List Warnings { get; } = new List(); // List of candidate locations for sequence points. Includes empty il stack locations, any nop instructions, and the instruction following // a call instruction. public List SequencePointCandidates { get; private set; } /// /// Creates a new ILReader instance. /// /// /// The module used to resolve metadata tokens in the type system. /// public ILReader(MetadataModule module) { if (module == null) throw new ArgumentNullException(nameof(module)); this.module = module; this.compilation = module.Compilation; this.metadata = module.metadata; this.SequencePointCandidates = new List(); } GenericContext genericContext; IMethod method; MethodBodyBlock body; StackType methodReturnStackType; BlobReader reader; ImmutableStack currentStack; ILVariable[] parameterVariables; ILVariable[] localVariables; BitSet isBranchTarget; BlockContainer mainContainer; List instructionBuilder; int currentInstructionStart; // Dictionary that stores stacks for each IL instruction Dictionary> stackByOffset; Dictionary variableByExceptionHandler; UnionFind unionFind; List<(ILVariable, ILVariable)> stackMismatchPairs; IEnumerable stackVariables; void Init(MethodDefinitionHandle methodDefinitionHandle, MethodBodyBlock body, GenericContext genericContext) { if (body == null) throw new ArgumentNullException(nameof(body)); if (methodDefinitionHandle.IsNil) throw new ArgumentException("methodDefinitionHandle.IsNil"); this.method = module.GetDefinition(methodDefinitionHandle); if (genericContext.ClassTypeParameters == null && genericContext.MethodTypeParameters == null) { // no generic context specified: use the method's own type parameters genericContext = new GenericContext(method); } else { // generic context specified, so specialize the method for it: this.method = this.method.Specialize(genericContext.ToSubstitution()); } this.genericContext = genericContext; this.body = body; this.reader = body.GetILReader(); this.currentStack = ImmutableStack.Empty; this.unionFind = new UnionFind(); this.stackMismatchPairs = new List<(ILVariable, ILVariable)>(); this.methodReturnStackType = method.ReturnType.GetStackType(); InitParameterVariables(); localVariables = InitLocalVariables(); foreach (var v in localVariables) { v.InitialValueIsInitialized = body.LocalVariablesInitialized; v.UsesInitialValue = true; } this.mainContainer = new BlockContainer(expectedResultType: methodReturnStackType); this.instructionBuilder = new List(); this.isBranchTarget = new BitSet(reader.Length); this.stackByOffset = new Dictionary>(); this.variableByExceptionHandler = new Dictionary(); } EntityHandle ReadAndDecodeMetadataToken() { int token = reader.ReadInt32(); if (token <= 0) { // SRM uses negative tokens as "virtual tokens" and can get confused // if we manually create them. // Row-IDs < 1 are always invalid. throw new BadImageFormatException("Invalid metadata token"); } return MetadataTokens.EntityHandle(token); } IType ReadAndDecodeTypeReference() { var typeReference = ReadAndDecodeMetadataToken(); return module.ResolveType(typeReference, genericContext); } IMethod ReadAndDecodeMethodReference() { var methodReference = ReadAndDecodeMetadataToken(); return module.ResolveMethod(methodReference, genericContext); } IField ReadAndDecodeFieldReference() { var fieldReference = ReadAndDecodeMetadataToken(); var f = module.ResolveEntity(fieldReference, genericContext) as IField; if (f == null) throw new BadImageFormatException("Invalid field token"); return f; } ILVariable[] InitLocalVariables() { if (body.LocalSignature.IsNil) return Empty.Array; ImmutableArray variableTypes; try { variableTypes = module.DecodeLocalSignature(body.LocalSignature, genericContext); } catch (BadImageFormatException ex) { Warnings.Add("Error decoding local variables: " + ex.Message); variableTypes = ImmutableArray.Empty; } var localVariables = new ILVariable[variableTypes.Length]; foreach (var (index, type) in variableTypes.WithIndex()) { localVariables[index] = CreateILVariable(index, type); } return localVariables; } void InitParameterVariables() { int popCount = method.Parameters.Count; if (!method.IsStatic) popCount++; if (method.Parameters.LastOrDefault()?.Type == SpecialType.ArgList) popCount--; parameterVariables = new ILVariable[popCount]; int paramIndex = 0; int offset = 0; if (!method.IsStatic) { offset = 1; IType declaringType = method.DeclaringType; if (declaringType.IsUnbound()) { // If method is a definition (and not specialized), the declaring type is also just a definition, // and needs to be converted into a normally usable type. declaringType = new ParameterizedType(declaringType, declaringType.TypeParameters); } ILVariable ilVar = CreateILVariable(-1, declaringType, "this"); ilVar.IsRefReadOnly = method.ThisIsRefReadOnly; parameterVariables[paramIndex++] = ilVar; } while (paramIndex < parameterVariables.Length) { IParameter parameter = method.Parameters[paramIndex - offset]; ILVariable ilVar = CreateILVariable(paramIndex - offset, parameter.Type, parameter.Name); ilVar.IsRefReadOnly = parameter.IsIn; parameterVariables[paramIndex] = ilVar; paramIndex++; } Debug.Assert(paramIndex == parameterVariables.Length); } ILVariable CreateILVariable(int index, IType type) { VariableKind kind; if (type.SkipModifiers() is PinnedType pinned) { kind = VariableKind.PinnedLocal; type = pinned.ElementType; } else { kind = VariableKind.Local; } ILVariable ilVar = new ILVariable(kind, type, index); if (!UseDebugSymbols || DebugInfo == null || !DebugInfo.TryGetName((MethodDefinitionHandle)method.MetadataToken, index, out string name)) { ilVar.Name = "V_" + index; ilVar.HasGeneratedName = true; } else if (string.IsNullOrWhiteSpace(name)) { ilVar.Name = "V_" + index; ilVar.HasGeneratedName = true; } else { ilVar.Name = name; } return ilVar; } ILVariable CreateILVariable(int index, IType parameterType, string name) { Debug.Assert(!parameterType.IsUnbound()); ITypeDefinition def = parameterType.GetDefinition(); if (def != null && index < 0 && def.IsReferenceType == false) { parameterType = new ByReferenceType(parameterType); } var ilVar = new ILVariable(VariableKind.Parameter, parameterType, index); Debug.Assert(ilVar.StoreCount == 1); // count the initial store when the method is called with an argument if (index < 0) ilVar.Name = "this"; else if (string.IsNullOrEmpty(name)) ilVar.Name = "P_" + index; else ilVar.Name = name; return ilVar; } /// /// Warn when invalid IL is detected. /// ILSpy should be able to handle invalid IL; but this method can be helpful for debugging the ILReader, /// as this method should not get called when processing valid IL. /// void Warn(string message) { Warnings.Add(string.Format("IL_{0:x4}: {1}", currentInstructionStart, message)); } ImmutableStack MergeStacks(ImmutableStack a, ImmutableStack b) { if (CheckStackCompatibleWithoutAdjustments(a, b)) { // We only need to union the input variables, but can // otherwise re-use the existing stack. ImmutableStack output = a; while (!a.IsEmpty && !b.IsEmpty) { Debug.Assert(a.Peek().StackType == b.Peek().StackType); unionFind.Merge(a.Peek(), b.Peek()); a = a.Pop(); b = b.Pop(); } return output; } else if (a.Count() != b.Count()) { // Let's not try to merge mismatched stacks. Warn("Incompatible stack heights: " + a.Count() + " vs " + b.Count()); return a; } else { // The more complex case where the stacks don't match exactly. var output = new List(); while (!a.IsEmpty && !b.IsEmpty) { var varA = a.Peek(); var varB = b.Peek(); if (varA.StackType == varB.StackType) { unionFind.Merge(varA, varB); output.Add(varA); } else { if (!IsValidTypeStackTypeMerge(varA.StackType, varB.StackType)) { Warn("Incompatible stack types: " + varA.StackType + " vs " + varB.StackType); } if (varA.StackType > varB.StackType) { output.Add(varA); // every store to varB should also store to varA stackMismatchPairs.Add((varB, varA)); } else { output.Add(varB); // every store to varA should also store to varB stackMismatchPairs.Add((varA, varB)); } } a = a.Pop(); b = b.Pop(); } // because we built up output by popping from the input stacks, we need to reverse it to get back the original order output.Reverse(); return ImmutableStack.CreateRange(output); } } static bool CheckStackCompatibleWithoutAdjustments(ImmutableStack a, ImmutableStack b) { while (!a.IsEmpty && !b.IsEmpty) { if (a.Peek().StackType != b.Peek().StackType) return false; a = a.Pop(); b = b.Pop(); } return a.IsEmpty && b.IsEmpty; } private bool IsValidTypeStackTypeMerge(StackType stackType1, StackType stackType2) { if (stackType1 == StackType.I && stackType2 == StackType.I4) return true; if (stackType1 == StackType.I4 && stackType2 == StackType.I) return true; if (stackType1 == StackType.F4 && stackType2 == StackType.F8) return true; if (stackType1 == StackType.F8 && stackType2 == StackType.F4) return true; // allow merging unknown type with any other type return stackType1 == StackType.Unknown || stackType2 == StackType.Unknown; } /// /// Stores the given stack for a branch to `offset`. /// /// The stack may be modified if stack adjustments are necessary. (e.g. implicit I4->I conversion) /// void StoreStackForOffset(int offset, ref ImmutableStack stack) { if (stackByOffset.TryGetValue(offset, out var existing)) { stack = MergeStacks(existing, stack); if (stack != existing) stackByOffset[offset] = stack; } else { stackByOffset.Add(offset, stack); } } void ReadInstructions(CancellationToken cancellationToken) { reader.Reset(); ILParser.SetBranchTargets(ref reader, isBranchTarget); reader.Reset(); PrepareBranchTargetsAndStacksForExceptionHandlers(); reader.Reset(); while (reader.RemainingBytes > 0) { cancellationToken.ThrowIfCancellationRequested(); int start = reader.Offset; StoreStackForOffset(start, ref currentStack); currentInstructionStart = start; bool startedWithEmptyStack = currentStack.IsEmpty; ILInstruction decodedInstruction; try { decodedInstruction = DecodeInstruction(); } catch (BadImageFormatException ex) { decodedInstruction = new InvalidBranch(ex.Message); } if (decodedInstruction.ResultType == StackType.Unknown && decodedInstruction.OpCode != OpCode.InvalidBranch && UnpackPush(decodedInstruction).OpCode != OpCode.InvalidExpression) Warn("Unknown result type (might be due to invalid IL or missing references)"); decodedInstruction.CheckInvariant(ILPhase.InILReader); int end = reader.Offset; decodedInstruction.AddILRange(new Interval(start, end)); UnpackPush(decodedInstruction).AddILRange(decodedInstruction); instructionBuilder.Add(decodedInstruction); if (decodedInstruction.HasDirectFlag(InstructionFlags.EndPointUnreachable)) { if (!stackByOffset.TryGetValue(end, out currentStack)) { currentStack = ImmutableStack.Empty; } } if (IsSequencePointInstruction(decodedInstruction) || startedWithEmptyStack) { this.SequencePointCandidates.Add(decodedInstruction.StartILOffset); } } var visitor = new CollectStackVariablesVisitor(unionFind); for (int i = 0; i < instructionBuilder.Count; i++) { instructionBuilder[i] = instructionBuilder[i].AcceptVisitor(visitor); } stackVariables = visitor.variables; InsertStackAdjustments(); } private void PrepareBranchTargetsAndStacksForExceptionHandlers() { // Fill isBranchTarget and branchStackDict based on exception handlers foreach (var eh in body.ExceptionRegions) { ImmutableStack ehStack; if (eh.Kind == ExceptionRegionKind.Catch) { var catchType = module.ResolveType(eh.CatchType, genericContext); var v = new ILVariable(VariableKind.ExceptionStackSlot, catchType, eh.HandlerOffset) { Name = "E_" + eh.HandlerOffset, HasGeneratedName = true }; variableByExceptionHandler.Add(eh, v); ehStack = ImmutableStack.Create(v); } else if (eh.Kind == ExceptionRegionKind.Filter) { var v = new ILVariable(VariableKind.ExceptionStackSlot, compilation.FindType(KnownTypeCode.Object), eh.HandlerOffset) { Name = "E_" + eh.HandlerOffset, HasGeneratedName = true }; variableByExceptionHandler.Add(eh, v); ehStack = ImmutableStack.Create(v); } else { ehStack = ImmutableStack.Empty; } if (eh.FilterOffset != -1) { isBranchTarget[eh.FilterOffset] = true; StoreStackForOffset(eh.FilterOffset, ref ehStack); } if (eh.HandlerOffset != -1) { isBranchTarget[eh.HandlerOffset] = true; StoreStackForOffset(eh.HandlerOffset, ref ehStack); } } } private bool IsSequencePointInstruction(ILInstruction instruction) { if (instruction.OpCode == OpCode.Nop || (instructionBuilder.Count > 0 && instructionBuilder.Last().OpCode is OpCode.Call or OpCode.CallIndirect or OpCode.CallVirt)) { return true; } else { return false; } } void InsertStackAdjustments() { if (stackMismatchPairs.Count == 0) return; var dict = new MultiDictionary(); foreach (var (origA, origB) in stackMismatchPairs) { var a = unionFind.Find(origA); var b = unionFind.Find(origB); Debug.Assert(a.StackType < b.StackType); // For every store to a, insert a converting store to b. if (!dict[a].Contains(b)) dict.Add(a, b); } var newInstructions = new List(); foreach (var inst in instructionBuilder) { newInstructions.Add(inst); if (inst is StLoc store) { foreach (var additionalVar in dict[store.Variable]) { ILInstruction value = new LdLoc(store.Variable); value = new Conv(value, additionalVar.StackType.ToPrimitiveType(), false, Sign.Signed); newInstructions.Add(new StLoc(additionalVar, value) { IsStackAdjustment = true, }.WithILRange(inst)); } } } instructionBuilder = newInstructions; } /// /// Debugging helper: writes the decoded instruction stream interleaved with the inferred evaluation stack layout. /// public void WriteTypedIL(MethodDefinitionHandle method, MethodBodyBlock body, ITextOutput output, GenericContext genericContext = default, CancellationToken cancellationToken = default) { Init(method, body, genericContext); ReadInstructions(cancellationToken); foreach (var inst in instructionBuilder) { if (inst is StLoc stloc && stloc.IsStackAdjustment) { output.Write(" "); inst.WriteTo(output, new ILAstWritingOptions()); output.WriteLine(); continue; } output.Write(" ["); bool isFirstElement = true; foreach (var element in stackByOffset[inst.StartILOffset]) { if (isFirstElement) isFirstElement = false; else output.Write(", "); output.WriteLocalReference(element.Name, element); output.Write(":"); output.Write(element.StackType); } output.Write(']'); output.WriteLine(); if (isBranchTarget[inst.StartILOffset]) output.Write('*'); else output.Write(' '); output.WriteLocalReference("IL_" + inst.StartILOffset.ToString("x4"), inst.StartILOffset, isDefinition: true); output.Write(": "); inst.WriteTo(output, new ILAstWritingOptions()); output.WriteLine(); } new Disassembler.MethodBodyDisassembler(output, cancellationToken) { DetectControlStructure = false } .WriteExceptionHandlers(module.PEFile, method, body); } /// /// Decodes the specified method body and returns an ILFunction. /// public ILFunction ReadIL(MethodDefinitionHandle method, MethodBodyBlock body, GenericContext genericContext = default, ILFunctionKind kind = ILFunctionKind.TopLevelFunction, CancellationToken cancellationToken = default) { cancellationToken.ThrowIfCancellationRequested(); Init(method, body, genericContext); ReadInstructions(cancellationToken); var blockBuilder = new BlockBuilder(body, variableByExceptionHandler, compilation); blockBuilder.CreateBlocks(mainContainer, instructionBuilder, isBranchTarget, cancellationToken); var function = new ILFunction(this.method, body.GetCodeSize(), this.genericContext, mainContainer, kind); function.Variables.AddRange(parameterVariables); function.Variables.AddRange(localVariables); function.Variables.AddRange(stackVariables); function.Variables.AddRange(variableByExceptionHandler.Values); function.Variables.AddRange(blockBuilder.OnErrorDispatcherVariables); function.AddRef(); // mark the root node var removedBlocks = new List(); foreach (var c in function.Descendants.OfType()) { var newOrder = c.TopologicalSort(deleteUnreachableBlocks: true); if (newOrder.Count < c.Blocks.Count) { removedBlocks.AddRange(c.Blocks.Except(newOrder)); } c.Blocks.ReplaceList(newOrder); } if (removedBlocks.Count > 0) { removedBlocks.SortBy(b => b.StartILOffset); function.Warnings.Add("Discarded unreachable code: " + string.Join(", ", removedBlocks.Select(b => $"IL_{b.StartILOffset:x4}"))); } this.SequencePointCandidates.Sort(); function.SequencePointCandidates = this.SequencePointCandidates; function.Warnings.AddRange(Warnings); return function; } static ILInstruction UnpackPush(ILInstruction inst) { ILVariable v; ILInstruction inner; if (inst.MatchStLoc(out v, out inner) && v.Kind == VariableKind.StackSlot) return inner; else return inst; } ILInstruction Neg() { switch (PeekStackType()) { case StackType.I4: return Push(new BinaryNumericInstruction(BinaryNumericOperator.Sub, new LdcI4(0), Pop(), checkForOverflow: false, sign: Sign.None)); case StackType.I: return Push(new BinaryNumericInstruction(BinaryNumericOperator.Sub, new Conv(new LdcI4(0), PrimitiveType.I, false, Sign.None), Pop(), checkForOverflow: false, sign: Sign.None)); case StackType.I8: return Push(new BinaryNumericInstruction(BinaryNumericOperator.Sub, new LdcI8(0), Pop(), checkForOverflow: false, sign: Sign.None)); case StackType.F4: return Push(new BinaryNumericInstruction(BinaryNumericOperator.Sub, new LdcF4(0), Pop(), checkForOverflow: false, sign: Sign.None)); case StackType.F8: return Push(new BinaryNumericInstruction(BinaryNumericOperator.Sub, new LdcF8(0), Pop(), checkForOverflow: false, sign: Sign.None)); default: Warn("Unsupported input type for neg."); goto case StackType.I4; } } ILInstruction DecodeInstruction() { if (reader.RemainingBytes == 0) return new InvalidBranch("Unexpected end of body"); var opCode = ILParser.DecodeOpCode(ref reader); switch (opCode) { case ILOpCode.Constrained: return DecodeConstrainedCall(); case ILOpCode.Readonly: return DecodeReadonly(); case ILOpCode.Tail: return DecodeTailCall(); case ILOpCode.Unaligned: return DecodeUnaligned(); case ILOpCode.Volatile: return DecodeVolatile(); case ILOpCode.Add: return BinaryNumeric(BinaryNumericOperator.Add); case ILOpCode.Add_ovf: return BinaryNumeric(BinaryNumericOperator.Add, true, Sign.Signed); case ILOpCode.Add_ovf_un: return BinaryNumeric(BinaryNumericOperator.Add, true, Sign.Unsigned); case ILOpCode.And: return BinaryNumeric(BinaryNumericOperator.BitAnd); case ILOpCode.Arglist: return Push(new Arglist()); case ILOpCode.Beq: return DecodeComparisonBranch(opCode, ComparisonKind.Equality); case ILOpCode.Beq_s: return DecodeComparisonBranch(opCode, ComparisonKind.Equality); case ILOpCode.Bge: return DecodeComparisonBranch(opCode, ComparisonKind.GreaterThanOrEqual); case ILOpCode.Bge_s: return DecodeComparisonBranch(opCode, ComparisonKind.GreaterThanOrEqual); case ILOpCode.Bge_un: return DecodeComparisonBranch(opCode, ComparisonKind.GreaterThanOrEqual, un: true); case ILOpCode.Bge_un_s: return DecodeComparisonBranch(opCode, ComparisonKind.GreaterThanOrEqual, un: true); case ILOpCode.Bgt: return DecodeComparisonBranch(opCode, ComparisonKind.GreaterThan); case ILOpCode.Bgt_s: return DecodeComparisonBranch(opCode, ComparisonKind.GreaterThan); case ILOpCode.Bgt_un: return DecodeComparisonBranch(opCode, ComparisonKind.GreaterThan, un: true); case ILOpCode.Bgt_un_s: return DecodeComparisonBranch(opCode, ComparisonKind.GreaterThan, un: true); case ILOpCode.Ble: return DecodeComparisonBranch(opCode, ComparisonKind.LessThanOrEqual); case ILOpCode.Ble_s: return DecodeComparisonBranch(opCode, ComparisonKind.LessThanOrEqual); case ILOpCode.Ble_un: return DecodeComparisonBranch(opCode, ComparisonKind.LessThanOrEqual, un: true); case ILOpCode.Ble_un_s: return DecodeComparisonBranch(opCode, ComparisonKind.LessThanOrEqual, un: true); case ILOpCode.Blt: return DecodeComparisonBranch(opCode, ComparisonKind.LessThan); case ILOpCode.Blt_s: return DecodeComparisonBranch(opCode, ComparisonKind.LessThan); case ILOpCode.Blt_un: return DecodeComparisonBranch(opCode, ComparisonKind.LessThan, un: true); case ILOpCode.Blt_un_s: return DecodeComparisonBranch(opCode, ComparisonKind.LessThan, un: true); case ILOpCode.Bne_un: return DecodeComparisonBranch(opCode, ComparisonKind.Inequality, un: true); case ILOpCode.Bne_un_s: return DecodeComparisonBranch(opCode, ComparisonKind.Inequality, un: true); case ILOpCode.Br: return DecodeUnconditionalBranch(opCode); case ILOpCode.Br_s: return DecodeUnconditionalBranch(opCode); case ILOpCode.Break: return new DebugBreak(); case ILOpCode.Brfalse: return DecodeConditionalBranch(opCode, true); case ILOpCode.Brfalse_s: return DecodeConditionalBranch(opCode, true); case ILOpCode.Brtrue: return DecodeConditionalBranch(opCode, false); case ILOpCode.Brtrue_s: return DecodeConditionalBranch(opCode, false); case ILOpCode.Call: return DecodeCall(OpCode.Call); case ILOpCode.Callvirt: return DecodeCall(OpCode.CallVirt); case ILOpCode.Calli: return DecodeCallIndirect(); case ILOpCode.Ceq: return Push(Comparison(ComparisonKind.Equality)); case ILOpCode.Cgt: return Push(Comparison(ComparisonKind.GreaterThan)); case ILOpCode.Cgt_un: return Push(Comparison(ComparisonKind.GreaterThan, un: true)); case ILOpCode.Clt: return Push(Comparison(ComparisonKind.LessThan)); case ILOpCode.Clt_un: return Push(Comparison(ComparisonKind.LessThan, un: true)); case ILOpCode.Ckfinite: return new Ckfinite(Peek()); case ILOpCode.Conv_i1: return Push(new Conv(Pop(), PrimitiveType.I1, false, Sign.None)); case ILOpCode.Conv_i2: return Push(new Conv(Pop(), PrimitiveType.I2, false, Sign.None)); case ILOpCode.Conv_i4: return Push(new Conv(Pop(), PrimitiveType.I4, false, Sign.None)); case ILOpCode.Conv_i8: return Push(new Conv(Pop(), PrimitiveType.I8, false, Sign.None)); case ILOpCode.Conv_r4: return Push(new Conv(Pop(), PrimitiveType.R4, false, Sign.Signed)); case ILOpCode.Conv_r8: return Push(new Conv(Pop(), PrimitiveType.R8, false, Sign.Signed)); case ILOpCode.Conv_u1: return Push(new Conv(Pop(), PrimitiveType.U1, false, Sign.None)); case ILOpCode.Conv_u2: return Push(new Conv(Pop(), PrimitiveType.U2, false, Sign.None)); case ILOpCode.Conv_u4: return Push(new Conv(Pop(), PrimitiveType.U4, false, Sign.None)); case ILOpCode.Conv_u8: return Push(new Conv(Pop(), PrimitiveType.U8, false, Sign.None)); case ILOpCode.Conv_i: return Push(new Conv(Pop(), PrimitiveType.I, false, Sign.None)); case ILOpCode.Conv_u: return Push(new Conv(Pop(), PrimitiveType.U, false, Sign.None)); case ILOpCode.Conv_r_un: return Push(new Conv(Pop(), PrimitiveType.R, false, Sign.Unsigned)); case ILOpCode.Conv_ovf_i1: return Push(new Conv(Pop(), PrimitiveType.I1, true, Sign.Signed)); case ILOpCode.Conv_ovf_i2: return Push(new Conv(Pop(), PrimitiveType.I2, true, Sign.Signed)); case ILOpCode.Conv_ovf_i4: return Push(new Conv(Pop(), PrimitiveType.I4, true, Sign.Signed)); case ILOpCode.Conv_ovf_i8: return Push(new Conv(Pop(), PrimitiveType.I8, true, Sign.Signed)); case ILOpCode.Conv_ovf_u1: return Push(new Conv(Pop(), PrimitiveType.U1, true, Sign.Signed)); case ILOpCode.Conv_ovf_u2: return Push(new Conv(Pop(), PrimitiveType.U2, true, Sign.Signed)); case ILOpCode.Conv_ovf_u4: return Push(new Conv(Pop(), PrimitiveType.U4, true, Sign.Signed)); case ILOpCode.Conv_ovf_u8: return Push(new Conv(Pop(), PrimitiveType.U8, true, Sign.Signed)); case ILOpCode.Conv_ovf_i: return Push(new Conv(Pop(), PrimitiveType.I, true, Sign.Signed)); case ILOpCode.Conv_ovf_u: return Push(new Conv(Pop(), PrimitiveType.U, true, Sign.Signed)); case ILOpCode.Conv_ovf_i1_un: return Push(new Conv(Pop(), PrimitiveType.I1, true, Sign.Unsigned)); case ILOpCode.Conv_ovf_i2_un: return Push(new Conv(Pop(), PrimitiveType.I2, true, Sign.Unsigned)); case ILOpCode.Conv_ovf_i4_un: return Push(new Conv(Pop(), PrimitiveType.I4, true, Sign.Unsigned)); case ILOpCode.Conv_ovf_i8_un: return Push(new Conv(Pop(), PrimitiveType.I8, true, Sign.Unsigned)); case ILOpCode.Conv_ovf_u1_un: return Push(new Conv(Pop(), PrimitiveType.U1, true, Sign.Unsigned)); case ILOpCode.Conv_ovf_u2_un: return Push(new Conv(Pop(), PrimitiveType.U2, true, Sign.Unsigned)); case ILOpCode.Conv_ovf_u4_un: return Push(new Conv(Pop(), PrimitiveType.U4, true, Sign.Unsigned)); case ILOpCode.Conv_ovf_u8_un: return Push(new Conv(Pop(), PrimitiveType.U8, true, Sign.Unsigned)); case ILOpCode.Conv_ovf_i_un: return Push(new Conv(Pop(), PrimitiveType.I, true, Sign.Unsigned)); case ILOpCode.Conv_ovf_u_un: return Push(new Conv(Pop(), PrimitiveType.U, true, Sign.Unsigned)); case ILOpCode.Cpblk: return new Cpblk(size: Pop(StackType.I4), sourceAddress: PopPointer(), destAddress: PopPointer()); case ILOpCode.Div: return BinaryNumeric(BinaryNumericOperator.Div, false, Sign.Signed); case ILOpCode.Div_un: return BinaryNumeric(BinaryNumericOperator.Div, false, Sign.Unsigned); case ILOpCode.Dup: return Push(Peek()); case ILOpCode.Endfilter: return new Leave(null, Pop()); case ILOpCode.Endfinally: return new Leave(null); case ILOpCode.Initblk: return new Initblk(size: Pop(StackType.I4), value: Pop(StackType.I4), address: PopPointer()); case ILOpCode.Jmp: return DecodeJmp(); case ILOpCode.Ldarg: case ILOpCode.Ldarg_s: return Push(Ldarg(ILParser.DecodeIndex(ref reader, opCode))); case ILOpCode.Ldarg_0: return Push(Ldarg(0)); case ILOpCode.Ldarg_1: return Push(Ldarg(1)); case ILOpCode.Ldarg_2: return Push(Ldarg(2)); case ILOpCode.Ldarg_3: return Push(Ldarg(3)); case ILOpCode.Ldarga: case ILOpCode.Ldarga_s: return Push(Ldarga(ILParser.DecodeIndex(ref reader, opCode))); case ILOpCode.Ldc_i4: return Push(new LdcI4(reader.ReadInt32())); case ILOpCode.Ldc_i8: return Push(new LdcI8(reader.ReadInt64())); case ILOpCode.Ldc_r4: return Push(new LdcF4(reader.ReadSingle())); case ILOpCode.Ldc_r8: return Push(new LdcF8(reader.ReadDouble())); case ILOpCode.Ldc_i4_m1: return Push(new LdcI4(-1)); case ILOpCode.Ldc_i4_0: return Push(new LdcI4(0)); case ILOpCode.Ldc_i4_1: return Push(new LdcI4(1)); case ILOpCode.Ldc_i4_2: return Push(new LdcI4(2)); case ILOpCode.Ldc_i4_3: return Push(new LdcI4(3)); case ILOpCode.Ldc_i4_4: return Push(new LdcI4(4)); case ILOpCode.Ldc_i4_5: return Push(new LdcI4(5)); case ILOpCode.Ldc_i4_6: return Push(new LdcI4(6)); case ILOpCode.Ldc_i4_7: return Push(new LdcI4(7)); case ILOpCode.Ldc_i4_8: return Push(new LdcI4(8)); case ILOpCode.Ldc_i4_s: return Push(new LdcI4(reader.ReadSByte())); case ILOpCode.Ldnull: return Push(new LdNull()); case ILOpCode.Ldstr: return Push(DecodeLdstr()); case ILOpCode.Ldftn: return Push(new LdFtn(ReadAndDecodeMethodReference())); case ILOpCode.Ldind_i1: return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.SByte))); case ILOpCode.Ldind_i2: return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.Int16))); case ILOpCode.Ldind_i4: return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.Int32))); case ILOpCode.Ldind_i8: return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.Int64))); case ILOpCode.Ldind_u1: return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.Byte))); case ILOpCode.Ldind_u2: return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.UInt16))); case ILOpCode.Ldind_u4: return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.UInt32))); case ILOpCode.Ldind_r4: return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.Single))); case ILOpCode.Ldind_r8: return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.Double))); case ILOpCode.Ldind_i: return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.IntPtr))); case ILOpCode.Ldind_ref: return Push(new LdObj(PopPointer(), compilation.FindType(KnownTypeCode.Object))); case ILOpCode.Ldloc: case ILOpCode.Ldloc_s: return Push(Ldloc(ILParser.DecodeIndex(ref reader, opCode))); case ILOpCode.Ldloc_0: return Push(Ldloc(0)); case ILOpCode.Ldloc_1: return Push(Ldloc(1)); case ILOpCode.Ldloc_2: return Push(Ldloc(2)); case ILOpCode.Ldloc_3: return Push(Ldloc(3)); case ILOpCode.Ldloca: case ILOpCode.Ldloca_s: return Push(Ldloca(ILParser.DecodeIndex(ref reader, opCode))); case ILOpCode.Leave: return DecodeUnconditionalBranch(opCode, isLeave: true); case ILOpCode.Leave_s: return DecodeUnconditionalBranch(opCode, isLeave: true); case ILOpCode.Localloc: return Push(new LocAlloc(Pop())); case ILOpCode.Mul: return BinaryNumeric(BinaryNumericOperator.Mul, false, Sign.None); case ILOpCode.Mul_ovf: return BinaryNumeric(BinaryNumericOperator.Mul, true, Sign.Signed); case ILOpCode.Mul_ovf_un: return BinaryNumeric(BinaryNumericOperator.Mul, true, Sign.Unsigned); case ILOpCode.Neg: return Neg(); case ILOpCode.Newobj: return DecodeCall(OpCode.NewObj); case ILOpCode.Nop: return new Nop(); case ILOpCode.Not: return Push(new BitNot(Pop())); case ILOpCode.Or: return BinaryNumeric(BinaryNumericOperator.BitOr); case ILOpCode.Pop: Pop(); return new Nop() { Kind = NopKind.Pop }; case ILOpCode.Rem: return BinaryNumeric(BinaryNumericOperator.Rem, false, Sign.Signed); case ILOpCode.Rem_un: return BinaryNumeric(BinaryNumericOperator.Rem, false, Sign.Unsigned); case ILOpCode.Ret: return Return(); case ILOpCode.Shl: return BinaryNumeric(BinaryNumericOperator.ShiftLeft, false, Sign.None); case ILOpCode.Shr: return BinaryNumeric(BinaryNumericOperator.ShiftRight, false, Sign.Signed); case ILOpCode.Shr_un: return BinaryNumeric(BinaryNumericOperator.ShiftRight, false, Sign.Unsigned); case ILOpCode.Starg: case ILOpCode.Starg_s: return Starg(ILParser.DecodeIndex(ref reader, opCode)); case ILOpCode.Stind_i1: return new StObj(value: Pop(StackType.I4), target: PopPointer(), type: compilation.FindType(KnownTypeCode.SByte)); case ILOpCode.Stind_i2: return new StObj(value: Pop(StackType.I4), target: PopPointer(), type: compilation.FindType(KnownTypeCode.Int16)); case ILOpCode.Stind_i4: return new StObj(value: Pop(StackType.I4), target: PopPointer(), type: compilation.FindType(KnownTypeCode.Int32)); case ILOpCode.Stind_i8: return new StObj(value: Pop(StackType.I8), target: PopPointer(), type: compilation.FindType(KnownTypeCode.Int64)); case ILOpCode.Stind_r4: return new StObj(value: Pop(StackType.F4), target: PopPointer(), type: compilation.FindType(KnownTypeCode.Single)); case ILOpCode.Stind_r8: return new StObj(value: Pop(StackType.F8), target: PopPointer(), type: compilation.FindType(KnownTypeCode.Double)); case ILOpCode.Stind_i: return new StObj(value: Pop(StackType.I), target: PopPointer(), type: compilation.FindType(KnownTypeCode.IntPtr)); case ILOpCode.Stind_ref: return new StObj(value: Pop(StackType.O), target: PopPointer(), type: compilation.FindType(KnownTypeCode.Object)); case ILOpCode.Stloc: case ILOpCode.Stloc_s: return Stloc(ILParser.DecodeIndex(ref reader, opCode)); case ILOpCode.Stloc_0: return Stloc(0); case ILOpCode.Stloc_1: return Stloc(1); case ILOpCode.Stloc_2: return Stloc(2); case ILOpCode.Stloc_3: return Stloc(3); case ILOpCode.Sub: return BinaryNumeric(BinaryNumericOperator.Sub, false, Sign.None); case ILOpCode.Sub_ovf: return BinaryNumeric(BinaryNumericOperator.Sub, true, Sign.Signed); case ILOpCode.Sub_ovf_un: return BinaryNumeric(BinaryNumericOperator.Sub, true, Sign.Unsigned); case ILOpCode.Switch: return DecodeSwitch(); case ILOpCode.Xor: return BinaryNumeric(BinaryNumericOperator.BitXor); case ILOpCode.Box: { var type = ReadAndDecodeTypeReference(); return Push(new Box(Pop(type.GetStackType()), type)); } case ILOpCode.Castclass: return Push(new CastClass(Pop(StackType.O), ReadAndDecodeTypeReference())); case ILOpCode.Cpobj: { var type = ReadAndDecodeTypeReference(); var ld = new LdObj(PopPointer(), type); return new StObj(PopPointer(), ld, type); } case ILOpCode.Initobj: return InitObj(PopPointer(), ReadAndDecodeTypeReference()); case ILOpCode.Isinst: return Push(new IsInst(Pop(StackType.O), ReadAndDecodeTypeReference())); case ILOpCode.Ldelem: return LdElem(ReadAndDecodeTypeReference()); case ILOpCode.Ldelem_i1: return LdElem(compilation.FindType(KnownTypeCode.SByte)); case ILOpCode.Ldelem_i2: return LdElem(compilation.FindType(KnownTypeCode.Int16)); case ILOpCode.Ldelem_i4: return LdElem(compilation.FindType(KnownTypeCode.Int32)); case ILOpCode.Ldelem_i8: return LdElem(compilation.FindType(KnownTypeCode.Int64)); case ILOpCode.Ldelem_u1: return LdElem(compilation.FindType(KnownTypeCode.Byte)); case ILOpCode.Ldelem_u2: return LdElem(compilation.FindType(KnownTypeCode.UInt16)); case ILOpCode.Ldelem_u4: return LdElem(compilation.FindType(KnownTypeCode.UInt32)); case ILOpCode.Ldelem_r4: return LdElem(compilation.FindType(KnownTypeCode.Single)); case ILOpCode.Ldelem_r8: return LdElem(compilation.FindType(KnownTypeCode.Double)); case ILOpCode.Ldelem_i: return LdElem(compilation.FindType(KnownTypeCode.IntPtr)); case ILOpCode.Ldelem_ref: return LdElem(compilation.FindType(KnownTypeCode.Object)); case ILOpCode.Ldelema: return Push(new LdElema(indices: Pop(), array: Pop(), type: ReadAndDecodeTypeReference())); case ILOpCode.Ldfld: { var field = ReadAndDecodeFieldReference(); return Push(new LdObj(new LdFlda(PopLdFldTarget(field), field) { DelayExceptions = true }, field.Type)); } case ILOpCode.Ldflda: { var field = ReadAndDecodeFieldReference(); return Push(new LdFlda(PopFieldTarget(field), field)); } case ILOpCode.Stfld: { var field = ReadAndDecodeFieldReference(); return new StObj(value: Pop(field.Type.GetStackType()), target: new LdFlda(PopFieldTarget(field), field) { DelayExceptions = true }, type: field.Type); } case ILOpCode.Ldlen: return Push(new LdLen(StackType.I, Pop(StackType.O))); case ILOpCode.Ldobj: return Push(new LdObj(PopPointer(), ReadAndDecodeTypeReference())); case ILOpCode.Ldsfld: { var field = ReadAndDecodeFieldReference(); return Push(new LdObj(new LdsFlda(field), field.Type)); } case ILOpCode.Ldsflda: return Push(new LdsFlda(ReadAndDecodeFieldReference())); case ILOpCode.Stsfld: { var field = ReadAndDecodeFieldReference(); return new StObj(value: Pop(field.Type.GetStackType()), target: new LdsFlda(field), type: field.Type); } case ILOpCode.Ldtoken: return Push(LdToken(ReadAndDecodeMetadataToken())); case ILOpCode.Ldvirtftn: return Push(new LdVirtFtn(Pop(), ReadAndDecodeMethodReference())); case ILOpCode.Mkrefany: return Push(new MakeRefAny(PopPointer(), ReadAndDecodeTypeReference())); case ILOpCode.Newarr: return Push(new NewArr(ReadAndDecodeTypeReference(), Pop())); case ILOpCode.Refanytype: return Push(new RefAnyType(Pop())); case ILOpCode.Refanyval: return Push(new RefAnyValue(Pop(), ReadAndDecodeTypeReference())); case ILOpCode.Rethrow: return new Rethrow(); case ILOpCode.Sizeof: return Push(new SizeOf(ReadAndDecodeTypeReference())); case ILOpCode.Stelem: return StElem(ReadAndDecodeTypeReference()); case ILOpCode.Stelem_i1: return StElem(compilation.FindType(KnownTypeCode.SByte)); case ILOpCode.Stelem_i2: return StElem(compilation.FindType(KnownTypeCode.Int16)); case ILOpCode.Stelem_i4: return StElem(compilation.FindType(KnownTypeCode.Int32)); case ILOpCode.Stelem_i8: return StElem(compilation.FindType(KnownTypeCode.Int64)); case ILOpCode.Stelem_r4: return StElem(compilation.FindType(KnownTypeCode.Single)); case ILOpCode.Stelem_r8: return StElem(compilation.FindType(KnownTypeCode.Double)); case ILOpCode.Stelem_i: return StElem(compilation.FindType(KnownTypeCode.IntPtr)); case ILOpCode.Stelem_ref: return StElem(compilation.FindType(KnownTypeCode.Object)); case ILOpCode.Stobj: { var type = ReadAndDecodeTypeReference(); return new StObj(value: Pop(type.GetStackType()), target: PopPointer(), type: type); } case ILOpCode.Throw: return new Throw(Pop()); case ILOpCode.Unbox: return Push(new Unbox(Pop(), ReadAndDecodeTypeReference())); case ILOpCode.Unbox_any: return Push(new UnboxAny(Pop(), ReadAndDecodeTypeReference())); default: return new InvalidBranch($"Unknown opcode: 0x{(int)opCode:X2}"); } } StackType PeekStackType() { if (currentStack.IsEmpty) return StackType.Unknown; else return currentStack.Peek().StackType; } class CollectStackVariablesVisitor : ILVisitor { readonly UnionFind unionFind; internal readonly HashSet variables = new HashSet(); public CollectStackVariablesVisitor(UnionFind unionFind) { Debug.Assert(unionFind != null); this.unionFind = unionFind; } protected override ILInstruction Default(ILInstruction inst) { foreach (var child in inst.Children) { var newChild = child.AcceptVisitor(this); if (newChild != child) child.ReplaceWith(newChild); } return inst; } protected internal override ILInstruction VisitLdLoc(LdLoc inst) { base.VisitLdLoc(inst); if (inst.Variable.Kind == VariableKind.StackSlot) { var variable = unionFind.Find(inst.Variable); if (variables.Add(variable)) variable.Name = "S_" + (variables.Count - 1); return new LdLoc(variable).WithILRange(inst); } return inst; } protected internal override ILInstruction VisitStLoc(StLoc inst) { base.VisitStLoc(inst); if (inst.Variable.Kind == VariableKind.StackSlot) { var variable = unionFind.Find(inst.Variable); if (variables.Add(variable)) variable.Name = "S_" + (variables.Count - 1); return new StLoc(variable, inst.Value).WithILRange(inst); } return inst; } } ILInstruction Push(ILInstruction inst) { Debug.Assert(inst.ResultType != StackType.Void); IType type = compilation.FindType(inst.ResultType); var v = new ILVariable(VariableKind.StackSlot, type, inst.ResultType); v.HasGeneratedName = true; currentStack = currentStack.Push(v); return new StLoc(v, inst); } ILInstruction Peek() { if (currentStack.IsEmpty) { return new InvalidExpression("Stack underflow").WithILRange(new Interval(reader.Offset, reader.Offset)); } return new LdLoc(currentStack.Peek()); } ILInstruction Pop() { if (currentStack.IsEmpty) { return new InvalidExpression("Stack underflow").WithILRange(new Interval(reader.Offset, reader.Offset)); } ILVariable v; currentStack = currentStack.Pop(out v); return new LdLoc(v); } ILInstruction Pop(StackType expectedType) { ILInstruction inst = Pop(); return Cast(inst, expectedType, Warnings, reader.Offset); } internal static ILInstruction Cast(ILInstruction inst, StackType expectedType, List warnings, int ilOffset) { if (expectedType != inst.ResultType) { if (inst is InvalidExpression) { ((InvalidExpression)inst).ExpectedResultType = expectedType; } else if (expectedType == StackType.I && inst.ResultType == StackType.I4) { // IL allows implicit I4->I conversions inst = new Conv(inst, PrimitiveType.I, false, Sign.None); } else if (expectedType == StackType.I4 && inst.ResultType == StackType.I) { // C++/CLI also sometimes implicitly converts in the other direction: inst = new Conv(inst, PrimitiveType.I4, false, Sign.None); } else if (expectedType == StackType.Unknown) { inst = new Conv(inst, PrimitiveType.Unknown, false, Sign.None); } else if (inst.ResultType == StackType.Ref) { // Implicitly stop GC tracking; this occurs when passing the result of 'ldloca' or 'ldsflda' // to a method expecting a native pointer. inst = new Conv(inst, PrimitiveType.I, false, Sign.None); switch (expectedType) { case StackType.I4: inst = new Conv(inst, PrimitiveType.I4, false, Sign.None); break; case StackType.I: break; case StackType.I8: inst = new Conv(inst, PrimitiveType.I8, false, Sign.None); break; default: Warn($"Expected {expectedType}, but got {StackType.Ref}"); inst = new Conv(inst, expectedType.ToPrimitiveType(), false, Sign.None); break; } } else if (expectedType == StackType.Ref) { // implicitly start GC tracking / object to interior if (!inst.ResultType.IsIntegerType() && inst.ResultType != StackType.O) { // We also handle the invalid to-ref cases here because the else case // below uses expectedType.ToKnownTypeCode(), which doesn't work for Ref. Warn($"Expected {expectedType}, but got {inst.ResultType}"); } inst = new Conv(inst, PrimitiveType.Ref, false, Sign.None); } else if (expectedType == StackType.F8 && inst.ResultType == StackType.F4) { // IL allows implicit F4->F8 conversions, because in IL F4 and F8 are the same. inst = new Conv(inst, PrimitiveType.R8, false, Sign.Signed); } else if (expectedType == StackType.F4 && inst.ResultType == StackType.F8) { // IL allows implicit F8->F4 conversions, because in IL F4 and F8 are the same. inst = new Conv(inst, PrimitiveType.R4, false, Sign.Signed); } else { Warn($"Expected {expectedType}, but got {inst.ResultType}"); inst = new Conv(inst, expectedType.ToPrimitiveType(), false, Sign.Signed); } } return inst; void Warn(string message) { if (warnings != null) { warnings.Add(string.Format("IL_{0:x4}: {1}", ilOffset, message)); } } } ILInstruction PopPointer() { ILInstruction inst = Pop(); switch (inst.ResultType) { case StackType.I4: case StackType.I8: case StackType.Unknown: return new Conv(inst, PrimitiveType.I, false, Sign.None); case StackType.I: case StackType.Ref: return inst; default: Warn("Expected native int or pointer, but got " + inst.ResultType); return new Conv(inst, PrimitiveType.I, false, Sign.None); } } ILInstruction PopFieldTarget(IField field) { switch (field.DeclaringType.IsReferenceType) { case true: return Pop(StackType.O); case false: return PopPointer(); default: // field in unresolved type var stackType = PeekStackType(); if (stackType == StackType.O || stackType == StackType.Unknown) return Pop(); else return PopPointer(); } } /// /// Like PopFieldTarget, but supports ldfld's special behavior for fields of temporary value types. /// ILInstruction PopLdFldTarget(IField field) { switch (field.DeclaringType.IsReferenceType) { case true: return Pop(StackType.O); case false: // field of value type: ldfld can handle temporaries if (PeekStackType() == StackType.O || PeekStackType() == StackType.Unknown) return new AddressOf(Pop(), field.DeclaringType); else return PopPointer(); default: // field in unresolved type if (PeekStackType() == StackType.O || PeekStackType() == StackType.Unknown) return Pop(); else return PopPointer(); } } private ILInstruction Return() { if (methodReturnStackType == StackType.Void) return new IL.Leave(mainContainer); else return new IL.Leave(mainContainer, Pop(methodReturnStackType)); } private ILInstruction DecodeLdstr() { return new LdStr(ILParser.DecodeUserString(ref reader, metadata)); } private ILInstruction Ldarg(int v) { if (v >= 0 && v < parameterVariables.Length) { return new LdLoc(parameterVariables[v]); } else { return new InvalidExpression($"ldarg {v} (out-of-bounds)"); } } private ILInstruction Ldarga(int v) { if (v >= 0 && v < parameterVariables.Length) { return new LdLoca(parameterVariables[v]); } else { return new InvalidExpression($"ldarga {v} (out-of-bounds)"); } } private ILInstruction Starg(int v) { if (v >= 0 && v < parameterVariables.Length) { return new StLoc(parameterVariables[v], Pop(parameterVariables[v].StackType)); } else { Pop(); return new InvalidExpression($"starg {v} (out-of-bounds)"); } } private ILInstruction Ldloc(int v) { if (v >= 0 && v < localVariables.Length) { return new LdLoc(localVariables[v]); } else { return new InvalidExpression($"ldloc {v} (out-of-bounds)"); } } private ILInstruction Ldloca(int v) { if (v >= 0 && v < localVariables.Length) { return new LdLoca(localVariables[v]); } else { return new InvalidExpression($"ldloca {v} (out-of-bounds)"); } } private ILInstruction Stloc(int v) { if (v >= 0 && v < localVariables.Length) { return new StLoc(localVariables[v], Pop(localVariables[v].StackType)) { ILStackWasEmpty = currentStack.IsEmpty }; } else { Pop(); return new InvalidExpression($"stloc {v} (out-of-bounds)"); } } private ILInstruction LdElem(IType type) { return Push(new LdObj(new LdElema(indices: Pop(), array: Pop(), type: type) { DelayExceptions = true }, type)); } private ILInstruction StElem(IType type) { var value = Pop(type.GetStackType()); var index = Pop(); var array = Pop(); return new StObj(new LdElema(type, array, index) { DelayExceptions = true }, value, type); } ILInstruction InitObj(ILInstruction target, IType type) { var value = new DefaultValue(type); value.ILStackWasEmpty = currentStack.IsEmpty; return new StObj(target, value, type); } IType constrainedPrefix; private ILInstruction DecodeConstrainedCall() { constrainedPrefix = ReadAndDecodeTypeReference(); var inst = DecodeInstruction(); var call = UnpackPush(inst) as CallInstruction; if (call != null) Debug.Assert(call.ConstrainedTo == constrainedPrefix); else Warn("Ignored invalid 'constrained' prefix"); constrainedPrefix = null; return inst; } private ILInstruction DecodeTailCall() { var inst = DecodeInstruction(); var call = UnpackPush(inst) as CallInstruction; if (call != null) call.IsTail = true; else Warn("Ignored invalid 'tail' prefix"); return inst; } private ILInstruction DecodeUnaligned() { byte alignment = reader.ReadByte(); var inst = DecodeInstruction(); var sup = UnpackPush(inst) as ISupportsUnalignedPrefix; if (sup != null) sup.UnalignedPrefix = alignment; else Warn("Ignored invalid 'unaligned' prefix"); return inst; } private ILInstruction DecodeVolatile() { var inst = DecodeInstruction(); var svp = UnpackPush(inst) as ISupportsVolatilePrefix; if (svp != null) svp.IsVolatile = true; else Warn("Ignored invalid 'volatile' prefix"); return inst; } private ILInstruction DecodeReadonly() { var inst = DecodeInstruction(); var ldelema = UnpackPush(inst) as LdElema; if (ldelema != null) ldelema.IsReadOnly = true; else Warn("Ignored invalid 'readonly' prefix"); return inst; } ILInstruction DecodeCall(OpCode opCode) { var method = ReadAndDecodeMethodReference(); int firstArgument = (opCode != OpCode.NewObj && !method.IsStatic) ? 1 : 0; var arguments = new ILInstruction[firstArgument + method.Parameters.Count]; for (int i = method.Parameters.Count - 1; i >= 0; i--) { arguments[firstArgument + i] = Pop(method.Parameters[i].Type.GetStackType()); } if (firstArgument == 1) { arguments[0] = Pop(CallInstruction.ExpectedTypeForThisPointer(constrainedPrefix ?? method.DeclaringType)); } switch (method.DeclaringType.Kind) { case TypeKind.Array: { var elementType = ((ArrayType)method.DeclaringType).ElementType; if (opCode == OpCode.NewObj) return Push(new NewArr(elementType, arguments)); if (method.Name == "Set") { var target = arguments[0]; var value = arguments.Last(); var indices = arguments.Skip(1).Take(arguments.Length - 2).ToArray(); return new StObj(new LdElema(elementType, target, indices) { DelayExceptions = true }, value, elementType); } if (method.Name == "Get") { var target = arguments[0]; var indices = arguments.Skip(1).ToArray(); return Push(new LdObj(new LdElema(elementType, target, indices) { DelayExceptions = true }, elementType)); } if (method.Name == "Address") { var target = arguments[0]; var indices = arguments.Skip(1).ToArray(); return Push(new LdElema(elementType, target, indices)); } Warn("Unknown method called on array type: " + method.Name); goto default; } case TypeKind.Struct when method.IsConstructor && !method.IsStatic && opCode == OpCode.Call && method.ReturnType.Kind == TypeKind.Void: { // "call Struct.ctor(target, ...)" doesn't exist in C#, // the next best equivalent is an assignment `*target = new Struct(...);`. // So we represent this call as "stobj Struct(target, newobj Struct.ctor(...))". // This needs to happen early (not as a transform) because the StObj.TargetSlot has // restricted inlining (doesn't accept ldflda when exceptions aren't delayed). var newobj = new NewObj(method); newobj.ILStackWasEmpty = currentStack.IsEmpty; newobj.ConstrainedTo = constrainedPrefix; newobj.Arguments.AddRange(arguments.Skip(1)); return new StObj(arguments[0], newobj, method.DeclaringType); } default: var call = CallInstruction.Create(opCode, method); call.ILStackWasEmpty = currentStack.IsEmpty; call.ConstrainedTo = constrainedPrefix; call.Arguments.AddRange(arguments); if (call.ResultType != StackType.Void) return Push(call); return call; } } ILInstruction DecodeCallIndirect() { var signatureHandle = (StandaloneSignatureHandle)ReadAndDecodeMetadataToken(); var (header, fpt) = module.DecodeMethodSignature(signatureHandle, genericContext); var functionPointer = Pop(StackType.I); int firstArgument = header.IsInstance ? 1 : 0; var arguments = new ILInstruction[firstArgument + fpt.ParameterTypes.Length]; for (int i = fpt.ParameterTypes.Length - 1; i >= 0; i--) { arguments[firstArgument + i] = Pop(fpt.ParameterTypes[i].GetStackType()); } if (firstArgument == 1) { arguments[0] = Pop(); } var call = new CallIndirect( header.IsInstance, header.HasExplicitThis, fpt, functionPointer, arguments ); if (call.ResultType != StackType.Void) return Push(call); else return call; } ILInstruction Comparison(ComparisonKind kind, bool un = false) { var right = Pop(); var left = Pop(); if ((left.ResultType == StackType.O || left.ResultType == StackType.Ref) && right.ResultType.IsIntegerType()) { // C++/CLI sometimes compares object references with integers. // Also happens with Ref==I in Unsafe.IsNullRef(). if (right.ResultType == StackType.I4) { // ensure we compare at least native integer size right = new Conv(right, PrimitiveType.I, false, Sign.None); } left = new Conv(left, right.ResultType.ToPrimitiveType(), false, Sign.None); } else if ((right.ResultType == StackType.O || right.ResultType == StackType.Ref) && left.ResultType.IsIntegerType()) { if (left.ResultType == StackType.I4) { left = new Conv(left, PrimitiveType.I, false, Sign.None); } right = new Conv(right, left.ResultType.ToPrimitiveType(), false, Sign.None); } // make implicit integer conversions explicit: MakeExplicitConversion(sourceType: StackType.I4, targetType: StackType.I, conversionType: PrimitiveType.I); MakeExplicitConversion(sourceType: StackType.I4, targetType: StackType.I8, conversionType: PrimitiveType.I8); MakeExplicitConversion(sourceType: StackType.I, targetType: StackType.I8, conversionType: PrimitiveType.I8); // Based on Table 4: Binary Comparison or Branch Operation if (left.ResultType.IsFloatType() && right.ResultType.IsFloatType()) { if (left.ResultType != right.ResultType) { // make the implicit F4->F8 conversion explicit: MakeExplicitConversion(StackType.F4, StackType.F8, PrimitiveType.R8); } if (un) { // for floats, 'un' means 'unordered' return Comp.LogicNot(new Comp(kind.Negate(), Sign.None, left, right)); } else { return new Comp(kind, Sign.None, left, right); } } else if (left.ResultType.IsIntegerType() && right.ResultType.IsIntegerType() && !kind.IsEqualityOrInequality()) { // integer comparison where the sign matters Debug.Assert(right.ResultType.IsIntegerType()); return new Comp(kind, un ? Sign.Unsigned : Sign.Signed, left, right); } else if (left.ResultType == right.ResultType) { // integer equality, object reference or managed reference comparison return new Comp(kind, Sign.None, left, right); } else { Warn($"Invalid comparison between {left.ResultType} and {right.ResultType}"); if (left.ResultType < right.ResultType) { left = new Conv(left, right.ResultType.ToPrimitiveType(), false, Sign.Signed); } else { right = new Conv(right, left.ResultType.ToPrimitiveType(), false, Sign.Signed); } return new Comp(kind, Sign.None, left, right); } void MakeExplicitConversion(StackType sourceType, StackType targetType, PrimitiveType conversionType) { if (left.ResultType == sourceType && right.ResultType == targetType) { left = new Conv(left, conversionType, false, Sign.None); } else if (left.ResultType == targetType && right.ResultType == sourceType) { right = new Conv(right, conversionType, false, Sign.None); } } } bool IsInvalidBranch(int target) => target < 0 || target >= reader.Length; ILInstruction DecodeComparisonBranch(ILOpCode opCode, ComparisonKind kind, bool un = false) { int start = reader.Offset - 1; // opCode is always one byte in this case int target = ILParser.DecodeBranchTarget(ref reader, opCode); var condition = Comparison(kind, un); condition.AddILRange(new Interval(start, reader.Offset)); if (!IsInvalidBranch(target)) { MarkBranchTarget(target); return new IfInstruction(condition, new Branch(target)); } else { return new IfInstruction(condition, new InvalidBranch("Invalid branch target")); } } ILInstruction DecodeConditionalBranch(ILOpCode opCode, bool negate) { int target = ILParser.DecodeBranchTarget(ref reader, opCode); ILInstruction condition = Pop(); switch (condition.ResultType) { case StackType.O: // introduce explicit comparison with null condition = new Comp( negate ? ComparisonKind.Equality : ComparisonKind.Inequality, Sign.None, condition, new LdNull()); break; case StackType.I: // introduce explicit comparison with 0 condition = new Comp( negate ? ComparisonKind.Equality : ComparisonKind.Inequality, Sign.None, condition, new Conv(new LdcI4(0), PrimitiveType.I, false, Sign.None)); break; case StackType.I8: // introduce explicit comparison with 0 condition = new Comp( negate ? ComparisonKind.Equality : ComparisonKind.Inequality, Sign.None, condition, new LdcI8(0)); break; case StackType.Ref: // introduce explicit comparison with null ref condition = new Comp( negate ? ComparisonKind.Equality : ComparisonKind.Inequality, Sign.None, new Conv(condition, PrimitiveType.I, false, Sign.None), new Conv(new LdcI4(0), PrimitiveType.I, false, Sign.None)); break; case StackType.I4: if (negate) { condition = Comp.LogicNot(condition); } break; default: condition = new Conv(condition, PrimitiveType.I4, false, Sign.None); if (negate) { condition = Comp.LogicNot(condition); } break; } if (!IsInvalidBranch(target)) { MarkBranchTarget(target); return new IfInstruction(condition, new Branch(target)); } else { return new IfInstruction(condition, new InvalidBranch("Invalid branch target")); } } ILInstruction DecodeUnconditionalBranch(ILOpCode opCode, bool isLeave = false) { int target = ILParser.DecodeBranchTarget(ref reader, opCode); if (isLeave) { currentStack = currentStack.Clear(); } if (!IsInvalidBranch(target)) { MarkBranchTarget(target); return new Branch(target); } else { return new InvalidBranch("Invalid branch target"); } } void MarkBranchTarget(int targetILOffset) { Debug.Assert(isBranchTarget[targetILOffset]); StoreStackForOffset(targetILOffset, ref currentStack); } ILInstruction DecodeSwitch() { var targets = ILParser.DecodeSwitchTargets(ref reader); var instr = new SwitchInstruction(Pop(StackType.I4)); for (int i = 0; i < targets.Length; i++) { var section = new SwitchSection(); section.Labels = new LongSet(i); int target = targets[i]; if (!IsInvalidBranch(target)) { MarkBranchTarget(target); section.Body = new Branch(target); } else { section.Body = new InvalidBranch("Invalid branch target"); } instr.Sections.Add(section); } var defaultSection = new SwitchSection(); defaultSection.Labels = new LongSet(new LongInterval(0, targets.Length)).Invert(); defaultSection.Body = new Nop(); instr.Sections.Add(defaultSection); return instr; } ILInstruction BinaryNumeric(BinaryNumericOperator @operator, bool checkForOverflow = false, Sign sign = Sign.None) { var right = Pop(); var left = Pop(); if (@operator != BinaryNumericOperator.Add && @operator != BinaryNumericOperator.Sub) { // we are treating all Refs as I, make the conversion explicit if (left.ResultType == StackType.Ref) { left = new Conv(left, PrimitiveType.I, false, Sign.None); } if (right.ResultType == StackType.Ref) { right = new Conv(right, PrimitiveType.I, false, Sign.None); } } if (@operator != BinaryNumericOperator.ShiftLeft && @operator != BinaryNumericOperator.ShiftRight) { // make the implicit I4->I conversion explicit: MakeExplicitConversion(sourceType: StackType.I4, targetType: StackType.I, conversionType: PrimitiveType.I); // I4->I8 conversion: MakeExplicitConversion(sourceType: StackType.I4, targetType: StackType.I8, conversionType: PrimitiveType.I8); // I->I8 conversion: MakeExplicitConversion(sourceType: StackType.I, targetType: StackType.I8, conversionType: PrimitiveType.I8); // F4->F8 conversion: MakeExplicitConversion(sourceType: StackType.F4, targetType: StackType.F8, conversionType: PrimitiveType.R8); } return Push(new BinaryNumericInstruction(@operator, left, right, checkForOverflow, sign)); void MakeExplicitConversion(StackType sourceType, StackType targetType, PrimitiveType conversionType) { if (left.ResultType == sourceType && right.ResultType == targetType) { left = new Conv(left, conversionType, false, Sign.None); } else if (left.ResultType == targetType && right.ResultType == sourceType) { right = new Conv(right, conversionType, false, Sign.None); } } } ILInstruction DecodeJmp() { IMethod method = ReadAndDecodeMethodReference(); // Translate jmp into tail call: Call call = new Call(method); call.IsTail = true; call.ILStackWasEmpty = true; if (!method.IsStatic) { call.Arguments.Add(Ldarg(0)); } foreach (var p in method.Parameters) { call.Arguments.Add(Ldarg(call.Arguments.Count)); } return new Leave(mainContainer, call); } ILInstruction LdToken(EntityHandle token) { if (token.Kind.IsTypeKind()) return new LdTypeToken(module.ResolveType(token, genericContext)); if (token.Kind.IsMemberKind()) { var entity = module.ResolveEntity(token, genericContext); if (entity is IMember member) return new LdMemberToken(member); } throw new BadImageFormatException("Invalid metadata token for ldtoken instruction."); } } }