// Copyright (c) 2014 Daniel Grunwald // // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE // FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using ICSharpCode.Decompiler.CSharp.Resolver; using ICSharpCode.Decompiler.CSharp.Syntax; using ICSharpCode.Decompiler.CSharp.Transforms; using ICSharpCode.Decompiler.CSharp.TypeSystem; using ICSharpCode.Decompiler.IL; using ICSharpCode.Decompiler.Semantics; using ICSharpCode.Decompiler.TypeSystem; using ICSharpCode.Decompiler.TypeSystem.Implementation; using ICSharpCode.Decompiler.Util; using ExpressionType = System.Linq.Expressions.ExpressionType; using PrimitiveType = ICSharpCode.Decompiler.CSharp.Syntax.PrimitiveType; using System.Threading; namespace ICSharpCode.Decompiler.CSharp { /// /// Translates from ILAst to C# expressions. /// /// /// Every translated expression must have: /// * an ILInstruction annotation /// * a ResolveResult annotation /// Post-condition for Translate() calls: /// * The type of the ResolveResult must match the StackType of the corresponding ILInstruction, /// except that the width of integer types does not need to match (I4, I and I8 count as the same stack type here) /// * Evaluating the resulting C# expression shall produce the same side effects as evaluating the ILInstruction. /// * If the IL instruction has ResultType == StackType.Void, the C# expression may evaluate to an arbitrary type and value. /// * Otherwise, evaluating the resulting C# expression shall produce a similar value as evaluating the ILInstruction. /// * If the IL instruction evaluates to an integer stack type (I4, I, or I8), /// the C# type of the resulting expression shall also be an integer (or enum/pointer/char/bool) type. /// * If sizeof(C# type) == sizeof(IL stack type), the values must be the same. /// * If sizeof(C# type) > sizeof(IL stack type), the C# value truncated to the width of the IL stack type must equal the IL value. /// * If sizeof(C# type) < sizeof(IL stack type), the C# value (sign/zero-)extended to the width of the IL stack type /// must equal the IL value. /// Whether sign or zero extension is used depends on the sign of the C# type (as determined by IType.GetSign()). /// * If the IL instruction is a lifted nullable operation, and the underlying operation evaluates to an integer stack type, /// the C# type of the resulting expression shall be Nullable{T}, where T is an integer type (as above). /// The C# value shall be null iff the IL-level value evaluates to null, and otherwise the values shall correspond /// as with non-lifted integer operations. /// * If the IL instruction evaluates to a managed reference (Ref) created by starting tracking of an unmanaged reference, /// the C# instruction may evaluate to any integral/enum/pointer type that when converted to pointer type /// is equivalent to the managed reference. /// * Otherwise, the C# type of the resulting expression shall match the IL stack type, /// and the evaluated values shall be the same. /// class ExpressionBuilder : ILVisitor { readonly IDecompilerTypeSystem typeSystem; readonly ITypeResolveContext decompilationContext; internal readonly ILFunction currentFunction; internal readonly ICompilation compilation; internal readonly CSharpResolver resolver; readonly TypeSystemAstBuilder astBuilder; readonly TypeInference typeInference; internal readonly DecompilerSettings settings; readonly CancellationToken cancellationToken; public ExpressionBuilder(IDecompilerTypeSystem typeSystem, ITypeResolveContext decompilationContext, ILFunction currentFunction, DecompilerSettings settings, CancellationToken cancellationToken) { Debug.Assert(decompilationContext != null); this.typeSystem = typeSystem; this.decompilationContext = decompilationContext; this.currentFunction = currentFunction; this.settings = settings; this.cancellationToken = cancellationToken; this.compilation = decompilationContext.Compilation; this.resolver = new CSharpResolver(new CSharpTypeResolveContext(compilation.MainAssembly, null, decompilationContext.CurrentTypeDefinition, decompilationContext.CurrentMember)); this.astBuilder = new TypeSystemAstBuilder(resolver); this.astBuilder.AlwaysUseShortTypeNames = true; this.astBuilder.AddResolveResultAnnotations = true; this.typeInference = new TypeInference(compilation) { Algorithm = TypeInferenceAlgorithm.Improved }; } public AstType ConvertType(IType type) { var astType = astBuilder.ConvertType(type); Debug.Assert(astType.Annotation() != null); return astType; } public ExpressionWithResolveResult ConvertConstantValue(ResolveResult rr, bool allowImplicitConversion = false) { var expr = astBuilder.ConvertConstantValue(rr); if (!allowImplicitConversion) { if (expr is NullReferenceExpression && rr.Type.Kind != TypeKind.Null) { expr = new CastExpression(ConvertType(rr.Type), expr); } else { switch (rr.Type.GetDefinition()?.KnownTypeCode) { case KnownTypeCode.SByte: case KnownTypeCode.Byte: case KnownTypeCode.Int16: case KnownTypeCode.UInt16: expr = new CastExpression(new PrimitiveType(KnownTypeReference.GetCSharpNameByTypeCode(rr.Type.GetDefinition().KnownTypeCode)), expr); break; } } } var exprRR = expr.Annotation(); if (exprRR == null) { exprRR = rr; expr.AddAnnotation(rr); } return new ExpressionWithResolveResult(expr, exprRR); } public TranslatedExpression Translate(ILInstruction inst, IType typeHint = null) { Debug.Assert(inst != null); cancellationToken.ThrowIfCancellationRequested(); TranslationContext context = new TranslationContext { TypeHint = typeHint ?? SpecialType.UnknownType }; var cexpr = inst.AcceptVisitor(this, context); #if DEBUG if (inst.ResultType != StackType.Void && cexpr.Type.Kind != TypeKind.Unknown && inst.ResultType != StackType.Unknown) { // Validate the Translate post-condition (documented at beginning of this file): if (inst.ResultType.IsIntegerType()) { Debug.Assert(cexpr.Type.GetStackType().IsIntegerType(), "IL instructions of integer type must convert into C# expressions of integer type"); Debug.Assert(cexpr.Type.GetSign() != Sign.None, "Must have a sign specified for zero/sign-extension"); } else if (inst is ILiftableInstruction liftable && liftable.IsLifted) { Debug.Assert(NullableType.IsNullable(cexpr.Type)); IType underlying = NullableType.GetUnderlyingType(cexpr.Type); if (liftable.UnderlyingResultType.IsIntegerType()) { Debug.Assert(underlying.GetStackType().IsIntegerType(), "IL instructions of integer type must convert into C# expressions of integer type"); Debug.Assert(underlying.GetSign() != Sign.None, "Must have a sign specified for zero/sign-extension"); } else { Debug.Assert(underlying.GetStackType() == liftable.UnderlyingResultType); } } else if (inst.ResultType == StackType.Ref) { Debug.Assert(cexpr.Type.GetStackType() == StackType.Ref || cexpr.Type.GetStackType().IsIntegerType()); } else { Debug.Assert(cexpr.Type.GetStackType() == inst.ResultType); } } #endif return cexpr; } public TranslatedExpression TranslateCondition(ILInstruction condition, bool negate = false) { var expr = Translate(condition, compilation.FindType(KnownTypeCode.Boolean)); return expr.ConvertToBoolean(this, negate); } internal ExpressionWithResolveResult ConvertVariable(ILVariable variable) { Expression expr; if (variable.Kind == VariableKind.Parameter && variable.Index < 0) expr = new ThisReferenceExpression(); else expr = new IdentifierExpression(variable.Name); if (variable.Type.Kind == TypeKind.ByReference) { // When loading a by-ref parameter, use 'ref paramName'. // We'll strip away the 'ref' when dereferencing. // Ensure that the IdentifierExpression itself also gets a resolve result, as that might // get used after the 'ref' is stripped away: var elementType = ((ByReferenceType)variable.Type).ElementType; expr.WithRR(new ILVariableResolveResult(variable, elementType)); expr = new DirectionExpression(FieldDirection.Ref, expr); return expr.WithRR(new ByReferenceResolveResult(elementType, isOut: false)); } else { return expr.WithRR(new ILVariableResolveResult(variable, variable.Type)); } } internal bool HidesVariableWithName(string name) { return currentFunction.Ancestors.OfType().SelectMany(f => f.Variables).Any(v => v.Name == name); } ExpressionWithResolveResult ConvertField(IField field, ILInstruction targetInstruction = null) { var target = TranslateTarget(field, targetInstruction, true); bool requireTarget = HidesVariableWithName(field.Name) || (field.IsStatic ? !IsCurrentOrContainingType(field.DeclaringTypeDefinition) : !(target.Expression is ThisReferenceExpression || target.Expression is BaseReferenceExpression)); bool targetCasted = false; var targetResolveResult = requireTarget ? target.ResolveResult : null; bool IsUnambiguousAccess() { if (targetResolveResult == null) { var result = resolver.ResolveSimpleName(field.Name, EmptyList.Instance, isInvocationTarget: false) as MemberResolveResult; return !(result == null || result.IsError || !result.Member.Equals(field)); } else { var lookup = new MemberLookup(resolver.CurrentTypeDefinition, resolver.CurrentTypeDefinition.ParentAssembly); var result = lookup.Lookup(target.ResolveResult, field.Name, EmptyList.Instance, false) as MemberResolveResult; return !(result == null || result.IsError || !result.Member.Equals(field)); } } while (!IsUnambiguousAccess()) { if (!requireTarget) { requireTarget = true; targetResolveResult = target.ResolveResult; } else if (!targetCasted) { targetCasted = true; target = target.ConvertTo(field.DeclaringType, this); targetResolveResult = target.ResolveResult; } else { break; } } if (requireTarget) { return new MemberReferenceExpression(target, field.Name) .WithRR(new MemberResolveResult(target.ResolveResult, field)); } else { return new IdentifierExpression(field.Name) .WithRR(new MemberResolveResult(target.ResolveResult, field)); } } TranslatedExpression IsType(IsInst inst) { var arg = Translate(inst.Argument); return new IsExpression(arg.Expression, ConvertType(inst.Type)) .WithILInstruction(inst) .WithRR(new TypeIsResolveResult(arg.ResolveResult, inst.Type, compilation.FindType(TypeCode.Boolean))); } protected internal override TranslatedExpression VisitIsInst(IsInst inst, TranslationContext context) { var arg = Translate(inst.Argument); arg = UnwrapBoxingConversion(arg); return new AsExpression(arg.Expression, ConvertType(inst.Type)) .WithILInstruction(inst) .WithRR(new ConversionResolveResult(inst.Type, arg.ResolveResult, Conversion.TryCast)); } internal static TranslatedExpression UnwrapBoxingConversion(TranslatedExpression arg) { if (arg.Expression is CastExpression cast && arg.Type.IsKnownType(KnownTypeCode.Object) && arg.ResolveResult is ConversionResolveResult crr && crr.Conversion.IsBoxingConversion) { // When 'as' used with value type or type parameter, // the C# compiler implicitly boxes the input. arg = arg.UnwrapChild(cast.Expression); } return arg; } protected internal override TranslatedExpression VisitNewObj(NewObj inst, TranslationContext context) { return new CallBuilder(this, typeSystem, settings).Build(inst); } protected internal override TranslatedExpression VisitNewArr(NewArr inst, TranslationContext context) { var dimensions = inst.Indices.Count; var args = inst.Indices.Select(arg => TranslateArrayIndex(arg)).ToArray(); var expr = new ArrayCreateExpression { Type = ConvertType(inst.Type) }; if (expr.Type is ComposedType ct) { // change "new (int[,])[10] to new int[10][,]" ct.ArraySpecifiers.MoveTo(expr.AdditionalArraySpecifiers); } expr.Arguments.AddRange(args.Select(arg => arg.Expression)); return expr.WithILInstruction(inst) .WithRR(new ArrayCreateResolveResult(new ArrayType(compilation, inst.Type, dimensions), args.Select(a => a.ResolveResult).ToList(), new ResolveResult[0])); } protected internal override TranslatedExpression VisitLocAlloc(LocAlloc inst, TranslationContext context) { TranslatedExpression countExpression; PointerType pointerType; if (inst.Argument.MatchBinaryNumericInstruction(BinaryNumericOperator.Mul, out var left, out var right) && right.UnwrapConv(ConversionKind.SignExtend).UnwrapConv(ConversionKind.ZeroExtend).MatchSizeOf(out var elementType)) { // Determine the element type from the sizeof countExpression = Translate(left.UnwrapConv(ConversionKind.ZeroExtend)); pointerType = new PointerType(elementType); } else { // Determine the element type from the expected pointer type in this context pointerType = context.TypeHint as PointerType; if (pointerType != null && GetPointerArithmeticOffset( inst.Argument, Translate(inst.Argument), pointerType, checkForOverflow: true, unwrapZeroExtension: true ) is TranslatedExpression offset) { countExpression = offset; elementType = pointerType.ElementType; } else { elementType = compilation.FindType(KnownTypeCode.Byte); pointerType = new PointerType(elementType); countExpression = Translate(inst.Argument); } } countExpression = countExpression.ConvertTo(compilation.FindType(KnownTypeCode.Int32), this); return new StackAllocExpression { Type = ConvertType(elementType), CountExpression = countExpression }.WithILInstruction(inst).WithRR(new ResolveResult(new PointerType(elementType))); } protected internal override TranslatedExpression VisitLdcI4(LdcI4 inst, TranslationContext context) { string literalValue = null; if (ShouldDisplayAsHex(inst.Value, inst.Parent)) { literalValue = $"0x{inst.Value:X}"; } var expr = new PrimitiveExpression(inst.Value, literalValue) .WithILInstruction(inst) .WithRR(new ConstantResolveResult(compilation.FindType(KnownTypeCode.Int32), inst.Value)); return AdjustConstantExpressionToType(expr, context.TypeHint); } protected internal override TranslatedExpression VisitLdcI8(LdcI8 inst, TranslationContext context) { string literalValue = null; if (ShouldDisplayAsHex(inst.Value, inst.Parent)) { literalValue = $"0x{inst.Value:X}"; } return new PrimitiveExpression(inst.Value, literalValue) .WithILInstruction(inst) .WithRR(new ConstantResolveResult(compilation.FindType(KnownTypeCode.Int64), inst.Value)); } private bool ShouldDisplayAsHex(long value, ILInstruction parent) { if (parent is Conv conv) parent = conv.Parent; if (value <= 9) return false; switch (parent) { case BinaryNumericInstruction bni: if (bni.Operator == BinaryNumericOperator.BitAnd || bni.Operator == BinaryNumericOperator.BitOr || bni.Operator == BinaryNumericOperator.BitXor) return true; break; } return false; } protected internal override TranslatedExpression VisitLdcF4(LdcF4 inst, TranslationContext context) { return new PrimitiveExpression(inst.Value) .WithILInstruction(inst) .WithRR(new ConstantResolveResult(compilation.FindType(KnownTypeCode.Single), inst.Value)); } protected internal override TranslatedExpression VisitLdcF8(LdcF8 inst, TranslationContext context) { return new PrimitiveExpression(inst.Value) .WithILInstruction(inst) .WithRR(new ConstantResolveResult(compilation.FindType(KnownTypeCode.Double), inst.Value)); } protected internal override TranslatedExpression VisitLdcDecimal(LdcDecimal inst, TranslationContext context) { var expr = astBuilder.ConvertConstantValue(compilation.FindType(KnownTypeCode.Decimal), inst.Value); return new TranslatedExpression(expr.WithILInstruction(inst)); } protected internal override TranslatedExpression VisitLdStr(LdStr inst, TranslationContext context) { return new PrimitiveExpression(inst.Value) .WithILInstruction(inst) .WithRR(new ConstantResolveResult(compilation.FindType(KnownTypeCode.String), inst.Value)); } protected internal override TranslatedExpression VisitLdNull(LdNull inst, TranslationContext context) { return GetDefaultValueExpression(SpecialType.NullType).WithILInstruction(inst); } protected internal override TranslatedExpression VisitDefaultValue(DefaultValue inst, TranslationContext context) { return GetDefaultValueExpression(inst.Type).WithILInstruction(inst); } internal ExpressionWithResolveResult GetDefaultValueExpression(IType type) { Expression expr; IType constantType; if (type.IsReferenceType == true || type.IsKnownType(KnownTypeCode.NullableOfT)) { expr = new NullReferenceExpression(); constantType = SpecialType.NullType; } else { expr = new DefaultValueExpression(ConvertType(type)); constantType = type; } return expr.WithRR(new ConstantResolveResult(constantType, null)); } protected internal override TranslatedExpression VisitSizeOf(SizeOf inst, TranslationContext context) { return new SizeOfExpression(ConvertType(inst.Type)) .WithILInstruction(inst) .WithRR(new SizeOfResolveResult(compilation.FindType(KnownTypeCode.Int32), inst.Type, null)); } protected internal override TranslatedExpression VisitLdTypeToken(LdTypeToken inst, TranslationContext context) { return new MemberReferenceExpression(new TypeOfExpression(ConvertType(inst.Type)), "TypeHandle") .WithILInstruction(inst) .WithRR(new TypeOfResolveResult(compilation.FindType(new TopLevelTypeName("System", "RuntimeTypeHandle")), inst.Type)); } protected internal override TranslatedExpression VisitBitNot(BitNot inst, TranslationContext context) { var argument = Translate(inst.Argument); var argUType = NullableType.GetUnderlyingType(argument.Type); if (argUType.GetStackType().GetSize() < inst.UnderlyingResultType.GetSize() || argUType.Kind == TypeKind.Enum && argUType.IsSmallIntegerType() || argUType.GetStackType() == StackType.I || argUType.IsKnownType(KnownTypeCode.Boolean) || argUType.IsKnownType(KnownTypeCode.Char)) { // Argument is undersized (even after implicit integral promotion to I4) // -> we need to perform sign/zero-extension before the BitNot. // Same if the argument is an enum based on a small integer type // (those don't undergo numeric promotion in C# the way non-enum small integer types do). // Same if the type is one that does not support ~ (IntPtr, bool and char). StackType targetStackType = inst.UnderlyingResultType; if (targetStackType == StackType.I) { // IntPtr doesn't support operator ~. // Note that it's OK to use a type that's larger than necessary. targetStackType = StackType.I8; } IType targetType = compilation.FindType(targetStackType.ToKnownTypeCode(argUType.GetSign())); if (inst.IsLifted) { targetType = NullableType.Create(compilation, targetType); } argument = argument.ConvertTo(targetType, this); } return new UnaryOperatorExpression(UnaryOperatorType.BitNot, argument) .WithRR(resolver.ResolveUnaryOperator(UnaryOperatorType.BitNot, argument.ResolveResult)) .WithILInstruction(inst); } internal ExpressionWithResolveResult LogicNot(TranslatedExpression expr) { return new UnaryOperatorExpression(UnaryOperatorType.Not, expr.Expression) .WithRR(new OperatorResolveResult(compilation.FindType(KnownTypeCode.Boolean), ExpressionType.Not, expr.ResolveResult)); } readonly HashSet loadedVariablesSet = new HashSet(); protected internal override TranslatedExpression VisitLdLoc(LdLoc inst, TranslationContext context) { if (inst.Variable.Kind == VariableKind.StackSlot && inst.Variable.IsSingleDefinition) { loadedVariablesSet.Add(inst.Variable); } return ConvertVariable(inst.Variable).WithILInstruction(inst); } protected internal override TranslatedExpression VisitLdLoca(LdLoca inst, TranslationContext context) { var expr = ConvertVariable(inst.Variable).WithILInstruction(inst); // Note that we put the instruction on the IdentifierExpression instead of the DirectionExpression, // because the DirectionExpression might get removed by dereferencing instructions such as LdObj return new DirectionExpression(FieldDirection.Ref, expr.Expression) .WithoutILInstruction() .WithRR(new ByReferenceResolveResult(expr.ResolveResult, isOut: false)); } protected internal override TranslatedExpression VisitStLoc(StLoc inst, TranslationContext context) { var translatedValue = Translate(inst.Value, typeHint: inst.Variable.Type); if (inst.Variable.Kind == VariableKind.StackSlot && !loadedVariablesSet.Contains(inst.Variable)) { // Stack slots in the ILAst have inaccurate types (e.g. System.Object for StackType.O) // so we should replace them with more accurate types where possible: if ((inst.Variable.IsSingleDefinition || IsOtherValueType(translatedValue.Type) || inst.Variable.StackType == StackType.Ref) && inst.Variable.StackType == translatedValue.Type.GetStackType() && translatedValue.Type.Kind != TypeKind.Null) { inst.Variable.Type = translatedValue.Type; } else if (inst.Value.MatchDefaultValue(out var type) && IsOtherValueType(type)) { inst.Variable.Type = type; } } return Assignment(ConvertVariable(inst.Variable).WithoutILInstruction(), translatedValue).WithILInstruction(inst); bool IsOtherValueType(IType type) { return type.IsReferenceType == false && type.GetStackType() == StackType.O; } } protected internal override TranslatedExpression VisitComp(Comp inst, TranslationContext context) { if (inst.LiftingKind == ComparisonLiftingKind.ThreeValuedLogic) { if (inst.Kind == ComparisonKind.Equality && inst.Right.MatchLdcI4(0)) { // lifted logic.not var targetType = NullableType.Create(compilation, compilation.FindType(KnownTypeCode.Boolean)); var arg = Translate(inst.Left, targetType).ConvertTo(targetType, this); return new UnaryOperatorExpression(UnaryOperatorType.Not, arg.Expression) .WithRR(new OperatorResolveResult(targetType, ExpressionType.Not, arg.ResolveResult)) .WithILInstruction(inst); } return ErrorExpression("Nullable comparisons with three-valued-logic not supported in C#"); } if (inst.Kind.IsEqualityOrInequality()) { bool negateOutput; var result = TranslateCeq(inst, out negateOutput); if (negateOutput) return LogicNot(result).WithILInstruction(inst); else return result; } else { return TranslateComp(inst); } } /// /// Translates the equality comparison between left and right. /// TranslatedExpression TranslateCeq(Comp inst, out bool negateOutput) { Debug.Assert(inst.Kind.IsEqualityOrInequality()); // Translate '(e as T) == null' to '!(e is T)'. // This is necessary for correctness when T is a value type. if (inst.Left.OpCode == OpCode.IsInst && inst.Right.OpCode == OpCode.LdNull) { negateOutput = inst.Kind == ComparisonKind.Equality; return IsType((IsInst)inst.Left); } else if (inst.Right.OpCode == OpCode.IsInst && inst.Left.OpCode == OpCode.LdNull) { negateOutput = inst.Kind == ComparisonKind.Equality; return IsType((IsInst)inst.Right); } var left = Translate(inst.Left); var right = Translate(inst.Right); // Remove redundant bool comparisons if (left.Type.IsKnownType(KnownTypeCode.Boolean)) { if (inst.Right.MatchLdcI4(0)) { // 'b == 0' => '!b' // 'b != 0' => 'b' negateOutput = inst.Kind == ComparisonKind.Equality; return left; } if (inst.Right.MatchLdcI4(1)) { // 'b == 1' => 'b' // 'b != 1' => '!b' negateOutput = inst.Kind == ComparisonKind.Inequality; return left; } } else if (right.Type.IsKnownType(KnownTypeCode.Boolean)) { if (inst.Left.MatchLdcI4(0)) { // '0 == b' => '!b' // '0 != b' => 'b' negateOutput = inst.Kind == ComparisonKind.Equality; return right; } if (inst.Left.MatchLdcI4(1)) { // '1 == b' => 'b' // '1 != b' => '!b' negateOutput = inst.Kind == ComparisonKind.Inequality; return right; } } // Handle comparisons between unsafe pointers and null: if (left.Type.Kind == TypeKind.Pointer && inst.Right.MatchLdcI(0)) { negateOutput = false; right = new NullReferenceExpression().WithRR(new ConstantResolveResult(SpecialType.NullType, null)) .WithILInstruction(inst.Right); return CreateBuiltinBinaryOperator(left, inst.Kind.ToBinaryOperatorType(), right) .WithILInstruction(inst); } else if (right.Type.Kind == TypeKind.Pointer && inst.Left.MatchLdcI(0)) { negateOutput = false; left = new NullReferenceExpression().WithRR(new ConstantResolveResult(SpecialType.NullType, null)) .WithILInstruction(inst.Left); return CreateBuiltinBinaryOperator(left, inst.Kind.ToBinaryOperatorType(), right) .WithILInstruction(inst); } // Special case comparisons with enum and char literals left = AdjustConstantExpressionToType(left, right.Type); right = AdjustConstantExpressionToType(right, left.Type); if (IsSpecialCasedReferenceComparisonWithNull(left, right)) { // When comparing a string/delegate with null, the C# compiler generates a reference comparison. negateOutput = false; return CreateBuiltinBinaryOperator(left, inst.Kind.ToBinaryOperatorType(), right) .WithILInstruction(inst); } OperatorResolveResult rr; if (left.Type.IsKnownType(KnownTypeCode.String) && right.Type.IsKnownType(KnownTypeCode.String)) { rr = null; // it's a string comparison by-value, which is not a reference comparison } else { rr = resolver.ResolveBinaryOperator(inst.Kind.ToBinaryOperatorType(), left.ResolveResult, right.ResolveResult) as OperatorResolveResult; } if (rr == null || rr.IsError || rr.UserDefinedOperatorMethod != null || NullableType.GetUnderlyingType(rr.Operands[0].Type).GetStackType() != inst.InputType) { IType targetType; if (inst.InputType == StackType.O) { targetType = compilation.FindType(KnownTypeCode.Object); } else { var leftUType = NullableType.GetUnderlyingType(left.Type); var rightUType = NullableType.GetUnderlyingType(right.Type); if (leftUType.GetStackType() == inst.InputType && !leftUType.IsSmallIntegerType()) { targetType = leftUType; } else if (rightUType.GetStackType() == inst.InputType && !rightUType.IsSmallIntegerType()) { targetType = rightUType; } else { targetType = compilation.FindType(inst.InputType.ToKnownTypeCode(leftUType.GetSign())); } } if (inst.IsLifted) { targetType = NullableType.Create(compilation, targetType); } if (targetType.Equals(left.Type)) { right = right.ConvertTo(targetType, this); } else { left = left.ConvertTo(targetType, this); } rr = resolver.ResolveBinaryOperator(inst.Kind.ToBinaryOperatorType(), left.ResolveResult, right.ResolveResult) as OperatorResolveResult; if (rr == null || rr.IsError || rr.UserDefinedOperatorMethod != null || NullableType.GetUnderlyingType(rr.Operands[0].Type).GetStackType() != inst.InputType) { // If converting one input wasn't sufficient, convert both: left = left.ConvertTo(targetType, this); right = right.ConvertTo(targetType, this); rr = new OperatorResolveResult( compilation.FindType(KnownTypeCode.Boolean), BinaryOperatorExpression.GetLinqNodeType(inst.Kind.ToBinaryOperatorType(), false), left.ResolveResult, right.ResolveResult); } } negateOutput = false; return new BinaryOperatorExpression(left.Expression, inst.Kind.ToBinaryOperatorType(), right.Expression) .WithILInstruction(inst) .WithRR(rr); } bool IsSpecialCasedReferenceComparisonWithNull(TranslatedExpression lhs, TranslatedExpression rhs) { if (lhs.Type.Kind == TypeKind.Null) ExtensionMethods.Swap(ref lhs, ref rhs); return rhs.Type.Kind == TypeKind.Null && (lhs.Type.Kind == TypeKind.Delegate || lhs.Type.IsKnownType(KnownTypeCode.String)); } ExpressionWithResolveResult CreateBuiltinBinaryOperator( TranslatedExpression left, BinaryOperatorType type, TranslatedExpression right, bool checkForOverflow = false) { return new BinaryOperatorExpression(left.Expression, type, right.Expression) .WithRR(new OperatorResolveResult( compilation.FindType(KnownTypeCode.Boolean), BinaryOperatorExpression.GetLinqNodeType(type, checkForOverflow), left.ResolveResult, right.ResolveResult)); } /// /// Handle Comp instruction, operators other than equality/inequality. /// TranslatedExpression TranslateComp(Comp inst) { var op = inst.Kind.ToBinaryOperatorType(); var left = Translate(inst.Left); var right = Translate(inst.Right); if (left.Type.Kind == TypeKind.Pointer && right.Type.Kind == TypeKind.Pointer) { return CreateBuiltinBinaryOperator(left, op, right) .WithILInstruction(inst); } left = PrepareArithmeticArgument(left, inst.InputType, inst.Sign, inst.IsLifted); right = PrepareArithmeticArgument(right, inst.InputType, inst.Sign, inst.IsLifted); // Special case comparisons with enum and char literals left = AdjustConstantExpressionToType(left, right.Type); right = AdjustConstantExpressionToType(right, left.Type); // attempt comparison without any additional casts var rr = resolver.ResolveBinaryOperator(inst.Kind.ToBinaryOperatorType(), left.ResolveResult, right.ResolveResult) as OperatorResolveResult; if (rr != null && !rr.IsError) { IType compUType = NullableType.GetUnderlyingType(rr.Operands[0].Type); if (compUType.GetSign() == inst.Sign && compUType.GetStackType() == inst.InputType) { return new BinaryOperatorExpression(left.Expression, op, right.Expression) .WithILInstruction(inst) .WithRR(rr); } } // Ensure the inputs have the correct sign: KnownTypeCode inputType = KnownTypeCode.None; switch (inst.InputType) { case StackType.I: // In order to generate valid C# we need to treat (U)IntPtr as (U)Int64 in comparisons. case StackType.I8: inputType = inst.Sign == Sign.Unsigned ? KnownTypeCode.UInt64 : KnownTypeCode.Int64; break; case StackType.I4: inputType = inst.Sign == Sign.Unsigned ? KnownTypeCode.UInt32 : KnownTypeCode.Int32; break; } if (inputType != KnownTypeCode.None) { IType targetType = compilation.FindType(inputType); if (inst.IsLifted) { targetType = NullableType.Create(compilation, targetType); } left = left.ConvertTo(targetType, this); right = right.ConvertTo(targetType, this); } return new BinaryOperatorExpression(left.Expression, op, right.Expression) .WithILInstruction(inst) .WithRR(new OperatorResolveResult(compilation.FindType(TypeCode.Boolean), BinaryOperatorExpression.GetLinqNodeType(op, false), left.ResolveResult, right.ResolveResult)); } protected internal override TranslatedExpression VisitThreeValuedLogicAnd(ThreeValuedLogicAnd inst, TranslationContext context) { return HandleThreeValuedLogic(inst, BinaryOperatorType.BitwiseAnd, ExpressionType.And); } protected internal override TranslatedExpression VisitThreeValuedLogicOr(ThreeValuedLogicOr inst, TranslationContext context) { return HandleThreeValuedLogic(inst, BinaryOperatorType.BitwiseOr, ExpressionType.Or); } TranslatedExpression HandleThreeValuedLogic(BinaryInstruction inst, BinaryOperatorType op, ExpressionType eop) { var left = Translate(inst.Left); var right = Translate(inst.Right); IType boolType = compilation.FindType(KnownTypeCode.Boolean); IType nullableBoolType = NullableType.Create(compilation, boolType); if (NullableType.IsNullable(left.Type)) { left = left.ConvertTo(nullableBoolType, this); if (NullableType.IsNullable(right.Type)) { right = right.ConvertTo(nullableBoolType, this); } else { right = right.ConvertTo(boolType, this); } } else { left = left.ConvertTo(boolType, this); right = right.ConvertTo(nullableBoolType, this); } return new BinaryOperatorExpression(left.Expression, op, right.Expression) .WithRR(new OperatorResolveResult(nullableBoolType, eop, null, true, new[] { left.ResolveResult, right.ResolveResult })) .WithILInstruction(inst); } ExpressionWithResolveResult Assignment(TranslatedExpression left, TranslatedExpression right) { right = right.ConvertTo(left.Type, this, allowImplicitConversion: true); return new AssignmentExpression(left.Expression, right.Expression) .WithRR(new OperatorResolveResult(left.Type, ExpressionType.Assign, left.ResolveResult, right.ResolveResult)); } protected internal override TranslatedExpression VisitBinaryNumericInstruction(BinaryNumericInstruction inst, TranslationContext context) { switch (inst.Operator) { case BinaryNumericOperator.Add: return HandleBinaryNumeric(inst, BinaryOperatorType.Add); case BinaryNumericOperator.Sub: return HandleBinaryNumeric(inst, BinaryOperatorType.Subtract); case BinaryNumericOperator.Mul: return HandleBinaryNumeric(inst, BinaryOperatorType.Multiply); case BinaryNumericOperator.Div: return HandlePointerSubtraction(inst) ?? HandleBinaryNumeric(inst, BinaryOperatorType.Divide); case BinaryNumericOperator.Rem: return HandleBinaryNumeric(inst, BinaryOperatorType.Modulus); case BinaryNumericOperator.BitAnd: return HandleBinaryNumeric(inst, BinaryOperatorType.BitwiseAnd); case BinaryNumericOperator.BitOr: return HandleBinaryNumeric(inst, BinaryOperatorType.BitwiseOr); case BinaryNumericOperator.BitXor: return HandleBinaryNumeric(inst, BinaryOperatorType.ExclusiveOr); case BinaryNumericOperator.ShiftLeft: return HandleShift(inst, BinaryOperatorType.ShiftLeft); case BinaryNumericOperator.ShiftRight: return HandleShift(inst, BinaryOperatorType.ShiftRight); default: throw new ArgumentOutOfRangeException(); } } /// /// Translates pointer arithmetic: /// ptr + int /// int + ptr /// ptr - int /// Returns null if 'inst' is not performing pointer arithmetic. /// This function not handle 'ptr - ptr'! /// TranslatedExpression? HandlePointerArithmetic(BinaryNumericInstruction inst, TranslatedExpression left, TranslatedExpression right) { if (!(inst.Operator == BinaryNumericOperator.Add || inst.Operator == BinaryNumericOperator.Sub)) return null; if (inst.CheckForOverflow || inst.IsLifted) return null; if (!(inst.LeftInputType == StackType.I && inst.RightInputType == StackType.I)) return null; PointerType pointerType; ILInstruction byteOffsetInst; TranslatedExpression byteOffsetExpr; if (left.Type.Kind == TypeKind.Pointer) { byteOffsetInst = inst.Right; byteOffsetExpr = right; pointerType = (PointerType)left.Type; } else if (right.Type.Kind == TypeKind.Pointer) { if (inst.Operator != BinaryNumericOperator.Add) return null; byteOffsetInst = inst.Left; byteOffsetExpr = left; pointerType = (PointerType)right.Type; } else { return null; } TranslatedExpression offsetExpr = GetPointerArithmeticOffset(byteOffsetInst, byteOffsetExpr, pointerType, inst.CheckForOverflow) ?? FallBackToBytePointer(); if (left.Type.Kind == TypeKind.Pointer) { Debug.Assert(inst.Operator == BinaryNumericOperator.Add || inst.Operator == BinaryNumericOperator.Sub); left = left.ConvertTo(pointerType, this); right = offsetExpr; } else { Debug.Assert(inst.Operator == BinaryNumericOperator.Add); Debug.Assert(right.Type.Kind == TypeKind.Pointer); left = offsetExpr; right = right.ConvertTo(pointerType, this); } var operatorType = inst.Operator == BinaryNumericOperator.Add ? BinaryOperatorType.Add : BinaryOperatorType.Subtract; return new BinaryOperatorExpression(left, operatorType, right) .WithILInstruction(inst) .WithRR(new OperatorResolveResult( pointerType, BinaryOperatorExpression.GetLinqNodeType(operatorType, inst.CheckForOverflow), left.ResolveResult, right.ResolveResult)); TranslatedExpression FallBackToBytePointer() { pointerType = new PointerType(compilation.FindType(KnownTypeCode.Byte)); return EnsureIntegerType(byteOffsetExpr); } } TranslatedExpression EnsureIntegerType(TranslatedExpression expr) { if (!expr.Type.IsCSharpPrimitiveIntegerType()) { // pointer arithmetic accepts all primitive integer types, but no enums etc. StackType targetType = expr.Type.GetStackType() == StackType.I4 ? StackType.I4 : StackType.I8; expr = expr.ConvertTo( compilation.FindType(targetType.ToKnownTypeCode(expr.Type.GetSign())), this); } return expr; } TranslatedExpression? GetPointerArithmeticOffset(ILInstruction byteOffsetInst, TranslatedExpression byteOffsetExpr, PointerType pointerType, bool checkForOverflow, bool unwrapZeroExtension = false) { var countOffsetInst = PointerArithmeticOffset.Detect(byteOffsetInst, pointerType, checkForOverflow: checkForOverflow, unwrapZeroExtension: unwrapZeroExtension); if (countOffsetInst == null) { return null; } if (countOffsetInst == byteOffsetInst) { return EnsureIntegerType(byteOffsetExpr); } else { return EnsureIntegerType(Translate(countOffsetInst)); } } /// /// Called for divisions, detect and handles the code pattern: /// div(sub(a, b), sizeof(T)) /// when a,b are of type T*. /// This is what the C# compiler generates for pointer subtraction. /// TranslatedExpression? HandlePointerSubtraction(BinaryNumericInstruction inst) { Debug.Assert(inst.Operator == BinaryNumericOperator.Div); if (inst.CheckForOverflow || inst.LeftInputType != StackType.I) return null; if (!(inst.Left is BinaryNumericInstruction sub && sub.Operator == BinaryNumericOperator.Sub)) return null; if (sub.CheckForOverflow) return null; // First, attempt to parse the 'sizeof' on the RHS IType elementType; if (inst.Right.MatchLdcI(out long elementSize)) { elementType = null; // OK, might be pointer subtraction if the element size matches } else if (inst.Right.UnwrapConv(ConversionKind.SignExtend).MatchSizeOf(out elementType)) { // OK, might be pointer subtraction if the element type matches } else { return null; } var left = Translate(sub.Left); var right = Translate(sub.Right); IType pointerType; if (IsMatchingPointerType(left.Type)) { pointerType = left.Type; } else if (IsMatchingPointerType(right.Type)) { pointerType = right.Type; } else if (elementSize == 1 && left.Type.Kind == TypeKind.Pointer && right.Type.Kind == TypeKind.Pointer) { // two pointers (neither matching), we're dividing by 1 (debug builds only), // -> subtract two byte pointers pointerType = new PointerType(compilation.FindType(KnownTypeCode.Byte)); } else { // neither is a matching pointer type // -> not a pointer subtraction after all return null; } // We got a pointer subtraction. left = left.ConvertTo(pointerType, this); right = right.ConvertTo(pointerType, this); var rr = new OperatorResolveResult( compilation.FindType(KnownTypeCode.Int64), ExpressionType.Subtract, left.ResolveResult, right.ResolveResult ); var result = new BinaryOperatorExpression( left.Expression, BinaryOperatorType.Subtract, right.Expression ).WithILInstruction(new[] { inst, sub }) .WithRR(rr); return result; bool IsMatchingPointerType(IType type) { if (type is PointerType pt) { if (elementType != null) return elementType.Equals(pt.ElementType); else if (elementSize > 0) return PointerArithmeticOffset.ComputeSizeOf(pt.ElementType) == elementSize; } return false; } } TranslatedExpression HandleBinaryNumeric(BinaryNumericInstruction inst, BinaryOperatorType op) { var resolverWithOverflowCheck = resolver.WithCheckForOverflow(inst.CheckForOverflow); var left = Translate(inst.Left); var right = Translate(inst.Right); if (left.Type.Kind == TypeKind.Pointer || right.Type.Kind == TypeKind.Pointer) { var ptrResult = HandlePointerArithmetic(inst, left, right); if (ptrResult != null) return ptrResult.Value; } left = PrepareArithmeticArgument(left, inst.LeftInputType, inst.Sign, inst.IsLifted); right = PrepareArithmeticArgument(right, inst.RightInputType, inst.Sign, inst.IsLifted); if (op == BinaryOperatorType.Subtract && inst.Left.MatchLdcI(0)) { IType rightUType = NullableType.GetUnderlyingType(right.Type); if (rightUType.IsKnownType(KnownTypeCode.Int32) || rightUType.IsKnownType(KnownTypeCode.Int64) || rightUType.IsCSharpSmallIntegerType()) { // unary minus is supported on signed int and long, and on the small integer types (since they promote to int) var uoe = new UnaryOperatorExpression(UnaryOperatorType.Minus, right.Expression); uoe.AddAnnotation(inst.CheckForOverflow ? AddCheckedBlocks.CheckedAnnotation : AddCheckedBlocks.UncheckedAnnotation); var resultType = rightUType.IsKnownType(KnownTypeCode.Int64) ? rightUType : compilation.FindType(KnownTypeCode.Int32); if (inst.IsLifted) resultType = NullableType.Create(compilation, resultType); return uoe.WithILInstruction(inst).WithRR(new OperatorResolveResult( resultType, inst.CheckForOverflow ? ExpressionType.NegateChecked : ExpressionType.Negate, right.ResolveResult)); } } if (op.IsBitwise() && (left.Type.Kind == TypeKind.Enum || right.Type.Kind == TypeKind.Enum)) { left = AdjustConstantExpressionToType(left, right.Type); right = AdjustConstantExpressionToType(right, left.Type); } var rr = resolverWithOverflowCheck.ResolveBinaryOperator(op, left.ResolveResult, right.ResolveResult); if (rr.IsError || NullableType.GetUnderlyingType(rr.Type).GetStackType() != inst.UnderlyingResultType || !IsCompatibleWithSign(left.Type, inst.Sign) || !IsCompatibleWithSign(right.Type, inst.Sign)) { // Left and right operands are incompatible, so convert them to a common type StackType targetStackType = inst.UnderlyingResultType == StackType.I ? StackType.I8 : inst.UnderlyingResultType; IType targetType = compilation.FindType(targetStackType.ToKnownTypeCode(inst.Sign)); left = left.ConvertTo(NullableType.IsNullable(left.Type) ? NullableType.Create(compilation, targetType) : targetType, this); right = right.ConvertTo(NullableType.IsNullable(right.Type) ? NullableType.Create(compilation, targetType) : targetType, this); rr = resolverWithOverflowCheck.ResolveBinaryOperator(op, left.ResolveResult, right.ResolveResult); } var resultExpr = new BinaryOperatorExpression(left.Expression, op, right.Expression) .WithILInstruction(inst) .WithRR(rr); if (BinaryOperatorMightCheckForOverflow(op)) resultExpr.Expression.AddAnnotation(inst.CheckForOverflow ? AddCheckedBlocks.CheckedAnnotation : AddCheckedBlocks.UncheckedAnnotation); return resultExpr; } /// /// Handle oversized arguments needing truncation; and avoid IntPtr/pointers in arguments. /// TranslatedExpression PrepareArithmeticArgument(TranslatedExpression arg, StackType argStackType, Sign sign, bool isLifted) { if (isLifted && !NullableType.IsNullable(arg.Type)) { isLifted = false; // don't cast to nullable if this input wasn't already nullable } IType argUType = isLifted ? NullableType.GetUnderlyingType(arg.Type) : arg.Type; if (argStackType.IsIntegerType() && argStackType.GetSize() < argUType.GetSize()) { // If the argument is oversized (needs truncation to match stack size of its ILInstruction), // perform the truncation now. IType targetType = compilation.FindType(argStackType.ToKnownTypeCode(sign)); argUType = targetType; if (isLifted) targetType = NullableType.Create(compilation, targetType); arg = arg.ConvertTo(targetType, this); } if (argUType.GetStackType() == StackType.I) { // None of the operators we might want to apply are supported by IntPtr/UIntPtr. // Also, pointer arithmetic has different semantics (works in number of elements, not bytes). // So any inputs of size StackType.I must be converted to long/ulong. IType targetType = compilation.FindType(StackType.I8.ToKnownTypeCode(sign)); if (isLifted) targetType = NullableType.Create(compilation, targetType); arg = arg.ConvertTo(targetType, this); } return arg; } /// /// Gets whether has the specified . /// If is None, always returns true. /// static bool IsCompatibleWithSign(IType type, Sign sign) { return sign == Sign.None || NullableType.GetUnderlyingType(type).GetSign() == sign; } static bool BinaryOperatorMightCheckForOverflow(BinaryOperatorType op) { switch (op) { case BinaryOperatorType.BitwiseAnd: case BinaryOperatorType.BitwiseOr: case BinaryOperatorType.ExclusiveOr: case BinaryOperatorType.ShiftLeft: case BinaryOperatorType.ShiftRight: return false; default: return true; } } TranslatedExpression HandleShift(BinaryNumericInstruction inst, BinaryOperatorType op) { var left = Translate(inst.Left); var right = Translate(inst.Right); Sign sign = inst.Sign; var leftUType = NullableType.GetUnderlyingType(left.Type); if (leftUType.IsCSharpSmallIntegerType() && sign != Sign.Unsigned && inst.UnderlyingResultType == StackType.I4) { // With small integer types, C# will promote to int and perform signed shifts. // We thus don't need any casts in this case. } else { // Insert cast to target type. if (sign == Sign.None) { // if we don't need a specific sign, prefer keeping that of the input: sign = leftUType.GetSign(); } IType targetType; if (inst.UnderlyingResultType == StackType.I4) { targetType = compilation.FindType(sign == Sign.Unsigned ? KnownTypeCode.UInt32 : KnownTypeCode.Int32); } else { targetType = compilation.FindType(sign == Sign.Unsigned ? KnownTypeCode.UInt64 : KnownTypeCode.Int64); } if (NullableType.IsNullable(left.Type)) { targetType = NullableType.Create(compilation, targetType); } left = left.ConvertTo(targetType, this); } // Shift operators in C# always expect type 'int' on the right-hand-side if (NullableType.IsNullable(right.Type)) { right = right.ConvertTo(NullableType.Create(compilation, compilation.FindType(KnownTypeCode.Int32)), this); } else { right = right.ConvertTo(compilation.FindType(KnownTypeCode.Int32), this); } return new BinaryOperatorExpression(left.Expression, op, right.Expression) .WithILInstruction(inst) .WithRR(resolver.ResolveBinaryOperator(op, left.ResolveResult, right.ResolveResult)); } protected internal override TranslatedExpression VisitCompoundAssignmentInstruction(CompoundAssignmentInstruction inst, TranslationContext context) { switch (inst.Operator) { case BinaryNumericOperator.Add: return HandleCompoundAssignment(inst, AssignmentOperatorType.Add); case BinaryNumericOperator.Sub: return HandleCompoundAssignment(inst, AssignmentOperatorType.Subtract); case BinaryNumericOperator.Mul: return HandleCompoundAssignment(inst, AssignmentOperatorType.Multiply); case BinaryNumericOperator.Div: return HandleCompoundAssignment(inst, AssignmentOperatorType.Divide); case BinaryNumericOperator.Rem: return HandleCompoundAssignment(inst, AssignmentOperatorType.Modulus); case BinaryNumericOperator.BitAnd: return HandleCompoundAssignment(inst, AssignmentOperatorType.BitwiseAnd); case BinaryNumericOperator.BitOr: return HandleCompoundAssignment(inst, AssignmentOperatorType.BitwiseOr); case BinaryNumericOperator.BitXor: return HandleCompoundAssignment(inst, AssignmentOperatorType.ExclusiveOr); case BinaryNumericOperator.ShiftLeft: return HandleCompoundShift(inst, AssignmentOperatorType.ShiftLeft); case BinaryNumericOperator.ShiftRight: return HandleCompoundShift(inst, AssignmentOperatorType.ShiftRight); default: throw new ArgumentOutOfRangeException(); } } TranslatedExpression HandleCompoundAssignment(CompoundAssignmentInstruction inst, AssignmentOperatorType op) { var target = Translate(inst.Target); var value = Translate(inst.Value); value = PrepareArithmeticArgument(value, inst.RightInputType, inst.Sign, inst.IsLifted); TranslatedExpression resultExpr; if (inst.CompoundAssignmentType == CompoundAssignmentType.EvaluatesToOldValue) { Debug.Assert(op == AssignmentOperatorType.Add || op == AssignmentOperatorType.Subtract); Debug.Assert(value.ResolveResult.IsCompileTimeConstant && 1.Equals(value.ResolveResult.ConstantValue)); UnaryOperatorType unary; ExpressionType exprType; if (op == AssignmentOperatorType.Add) { unary = UnaryOperatorType.PostIncrement; exprType = ExpressionType.PostIncrementAssign; } else { unary = UnaryOperatorType.PostDecrement; exprType = ExpressionType.PostDecrementAssign; } resultExpr = new UnaryOperatorExpression(unary, target) .WithILInstruction(inst) .WithRR(new OperatorResolveResult(target.Type, exprType, target.ResolveResult)); } else { switch (op) { case AssignmentOperatorType.Add: case AssignmentOperatorType.Subtract: if (target.Type.Kind == TypeKind.Pointer) { var pao = GetPointerArithmeticOffset(inst.Value, value, (PointerType)target.Type, inst.CheckForOverflow); if (pao != null) { value = pao.Value; } else { value.Expression.AddChild(new Comment("ILSpy Error: GetPointerArithmeticOffset() failed", CommentType.MultiLine), Roles.Comment); } } else { IType targetType = NullableType.GetUnderlyingType(target.Type).GetEnumUnderlyingType(); if (NullableType.IsNullable(value.Type)) { targetType = NullableType.Create(compilation, targetType); } value = value.ConvertTo(targetType, this, inst.CheckForOverflow, allowImplicitConversion: true); } break; case AssignmentOperatorType.Multiply: case AssignmentOperatorType.Divide: case AssignmentOperatorType.Modulus: case AssignmentOperatorType.BitwiseAnd: case AssignmentOperatorType.BitwiseOr: case AssignmentOperatorType.ExclusiveOr: { IType targetType = NullableType.GetUnderlyingType(target.Type); if (NullableType.IsNullable(value.Type)) { targetType = NullableType.Create(compilation, targetType); } value = value.ConvertTo(targetType, this, inst.CheckForOverflow, allowImplicitConversion: true); break; } } resultExpr = new AssignmentExpression(target.Expression, op, value.Expression) .WithILInstruction(inst) .WithRR(new OperatorResolveResult(target.Type, AssignmentExpression.GetLinqNodeType(op, inst.CheckForOverflow), target.ResolveResult, value.ResolveResult)); } if (AssignmentOperatorMightCheckForOverflow(op)) resultExpr.Expression.AddAnnotation(inst.CheckForOverflow ? AddCheckedBlocks.CheckedAnnotation : AddCheckedBlocks.UncheckedAnnotation); return resultExpr; } TranslatedExpression HandleCompoundShift(CompoundAssignmentInstruction inst, AssignmentOperatorType op) { Debug.Assert(inst.CompoundAssignmentType == CompoundAssignmentType.EvaluatesToNewValue); var target = Translate(inst.Target); var value = Translate(inst.Value); // Shift operators in C# always expect type 'int' on the right-hand-side if (NullableType.IsNullable(value.Type)) { value = value.ConvertTo(NullableType.Create(compilation, compilation.FindType(KnownTypeCode.Int32)), this); } else { value = value.ConvertTo(compilation.FindType(KnownTypeCode.Int32), this); } return new AssignmentExpression(target.Expression, op, value.Expression) .WithILInstruction(inst) .WithRR(resolver.ResolveAssignment(op, target.ResolveResult, value.ResolveResult)); } static bool AssignmentOperatorMightCheckForOverflow(AssignmentOperatorType op) { switch (op) { case AssignmentOperatorType.BitwiseAnd: case AssignmentOperatorType.BitwiseOr: case AssignmentOperatorType.ExclusiveOr: case AssignmentOperatorType.ShiftLeft: case AssignmentOperatorType.ShiftRight: return false; default: return true; } } protected internal override TranslatedExpression VisitConv(Conv inst, TranslationContext context) { var arg = Translate(inst.Argument); IType inputType = NullableType.GetUnderlyingType(arg.Type); StackType inputStackType = inst.InputType; // Note: we're dealing with two conversions here: // a) the implicit conversion from `inputType` to `inputStackType` // (due to the ExpressionBuilder post-condition being flexible with regards to the integer type width) // If this is a widening conversion, I'm calling the argument C# type "oversized". // If this is a narrowing conversion, I'm calling the argument C# type "undersized". // b) the actual conversion instruction from `inputStackType` to `inst.TargetType` // Also, we need to be very careful with regards to the conversions we emit: // In C#, zero vs. sign-extension depends on the input type, // but in the ILAst conv instruction it depends on the output type. // However, in the conv.ovf instructions, the .NET runtime behavior seems to depend on the input type, // in violation of the ECMA-335 spec! IType GetType(KnownTypeCode typeCode) { IType type = compilation.FindType(typeCode); if (inst.IsLifted) type = NullableType.Create(compilation, type); return type; } if (inst.CheckForOverflow || inst.Kind == ConversionKind.IntToFloat) { // We need to first convert the argument to the expected sign. // We also need to perform any input narrowing conversion so that it doesn't get mixed up with the overflow check. Debug.Assert(inst.InputSign != Sign.None); if (inputType.GetSize() > inputStackType.GetSize() || inputType.GetSign() != inst.InputSign) { arg = arg.ConvertTo(GetType(inputStackType.ToKnownTypeCode(inst.InputSign)), this); } // Because casts with overflow check match C# semantics (zero/sign-extension depends on source type), // we can just directly cast to the target type. return arg.ConvertTo(GetType(inst.TargetType.ToKnownTypeCode()), this, inst.CheckForOverflow) .WithILInstruction(inst); } switch (inst.Kind) { case ConversionKind.StartGCTracking: // A "start gc tracking" conversion is inserted in the ILAst whenever // some instruction expects a managed pointer, but we pass an unmanaged pointer. // We'll leave the C#-level conversion (from T* to ref T) to the consumer that expects the managed pointer. return arg; case ConversionKind.StopGCTracking: if (inputType.Kind == TypeKind.ByReference) { // cast to corresponding pointer type: var pointerType = new PointerType(((ByReferenceType)inputType).ElementType); return arg.ConvertTo(pointerType, this).WithILInstruction(inst); } else { // ConversionKind.StopGCTracking should only be used with managed references, // but it's possible that we're supposed to stop tracking something we just started to track. return arg; } case ConversionKind.SignExtend: // We just need to ensure the input type before the conversion is signed. // Also, if the argument was translated into an oversized C# type, // we need to perform the truncatation to the input stack type. if (inputType.GetSign() != Sign.Signed || ValueMightBeOversized(arg.ResolveResult, inputStackType)) { // Note that an undersized C# type is handled just fine: // If it is unsigned we'll zero-extend it to the width of the inputStackType here, // and it is signed we just combine the two sign-extensions into a single sign-extending conversion. arg = arg.ConvertTo(GetType(inputStackType.ToKnownTypeCode(Sign.Signed)), this); } // Then, we can just return the argument as-is: the ExpressionBuilder post-condition allows us // to force our parent instruction to handle the actual sign-extension conversion. // (our caller may have more information to pick a better fitting target type) return arg.WithILInstruction(inst); case ConversionKind.ZeroExtend: // If overflow check cannot fail, handle this just like sign extension (except for swapped signs) if (inputType.GetSign() != Sign.Unsigned || inputType.GetSize() > inputStackType.GetSize()) { arg = arg.ConvertTo(GetType(inputStackType.ToKnownTypeCode(Sign.Unsigned)), this); } return arg.WithILInstruction(inst); case ConversionKind.Nop: // no need to generate any C# code for a nop conversion return arg.WithILInstruction(inst); case ConversionKind.Truncate: // Note: there are three sizes involved here: // A = inputType.GetSize() // B = inputStackType.GetSize() // C = inst.TargetType.GetSize(). // We know that C < B (otherwise this wouldn't be the truncation case). // 1) If C < B < A, we just combine the two truncations into one. // 2) If C < B = A, there's no input conversion, just the truncation // 3) If C <= A < B, all the extended bits get removed again by the truncation. // 4) If A < C < B, some extended bits remain even after truncation. // In cases 1-3, the overall conversion is a truncation or no-op. // In case 4, the overall conversion is a zero/sign extension, but to a smaller // size than the original conversion. if (inst.TargetType.IsSmallIntegerType()) { // If the target type is a small integer type, IL will implicitly sign- or zero-extend // the result after the truncation back to StackType.I4. // (which means there's actually 3 conversions involved!) // Note that we must handle truncation to small integer types ourselves: // our caller only sees the StackType.I4 and doesn't know to truncate to the small type. if (inputType.GetSize() <= inst.TargetType.GetSize() && inputType.GetSign() == inst.TargetType.GetSign()) { // There's no actual truncation involved, and the result of the Conv instruction is extended // the same way as the original instruction // -> we can return arg directly return arg.WithILInstruction(inst); } else { // We need to actually truncate; *or* we need to change the sign for the remaining extension to I4. goto default; // Emit simple cast to inst.TargetType } } else { Debug.Assert(inst.TargetType.GetSize() == inst.UnderlyingResultType.GetSize()); // For non-small integer types, we can let the whole unchecked truncation // get handled by our caller (using the ExpressionBuilder post-condition). // Case 4 (left-over extension from implicit conversion) can also be handled by our caller. return arg.WithILInstruction(inst); } default: { // We need to convert to inst.TargetType, or to an equivalent type. IType targetType; if (inst.TargetType == NullableType.GetUnderlyingType(context.TypeHint).ToPrimitiveType() && NullableType.IsNullable(context.TypeHint) == inst.IsLifted) { targetType = context.TypeHint; } else { targetType = GetType(inst.TargetType.ToKnownTypeCode()); } return arg.ConvertTo(targetType, this, inst.CheckForOverflow) .WithILInstruction(inst); } } } /// /// Gets whether the ResolveResult computes a value that might be oversized for the specified stack type. /// bool ValueMightBeOversized(ResolveResult rr, StackType stackType) { IType inputType = NullableType.GetUnderlyingType(rr.Type); if (inputType.GetSize() <= stackType.GetSize()) { // The input type is smaller or equal to the stack type, // it can't be an oversized value. return false; } if (rr is OperatorResolveResult orr) { if (stackType == StackType.I && orr.OperatorType == ExpressionType.Subtract && orr.Operands.Count == 2 && orr.Operands[0].Type.Kind == TypeKind.Pointer && orr.Operands[1].Type.Kind == TypeKind.Pointer) { // Even though a pointer subtraction produces a value of type long in C#, // the value will always fit in a native int. return false; } } // We don't have any information about the value, so it might be oversized. return true; } protected internal override TranslatedExpression VisitCall(Call inst, TranslationContext context) { return WrapInRef(new CallBuilder(this, typeSystem, settings).Build(inst), inst.Method.ReturnType); } protected internal override TranslatedExpression VisitCallVirt(CallVirt inst, TranslationContext context) { return WrapInRef(new CallBuilder(this, typeSystem, settings).Build(inst), inst.Method.ReturnType); } TranslatedExpression WrapInRef(TranslatedExpression expr, IType type) { if (type.Kind == TypeKind.ByReference) { return new DirectionExpression(FieldDirection.Ref, expr.Expression) .WithoutILInstruction() .WithRR(new ByReferenceResolveResult(expr.ResolveResult, isOut: false)); } return expr; } internal bool IsCurrentOrContainingType(ITypeDefinition type) { var currentTypeDefinition = decompilationContext.CurrentTypeDefinition; while (currentTypeDefinition != null) { if (type == currentTypeDefinition) return true; currentTypeDefinition = currentTypeDefinition.DeclaringTypeDefinition; } return false; } internal ExpressionWithResolveResult TranslateFunction(IType delegateType, ILFunction function) { var method = function.Method?.MemberDefinition as IMethod; // Create AnonymousMethodExpression and prepare parameters AnonymousMethodExpression ame = new AnonymousMethodExpression(); ame.IsAsync = function.IsAsync; ame.Parameters.AddRange(MakeParameters(function.Parameters, function)); ame.HasParameterList = ame.Parameters.Count > 0; var targetTS = method == null ? typeSystem : typeSystem.GetSpecializingTypeSystem(method.Substitution); StatementBuilder builder = new StatementBuilder(targetTS, this.decompilationContext, function, settings, cancellationToken); var body = builder.ConvertAsBlock(function.Body); Comment prev = null; foreach (string warning in function.Warnings) { body.InsertChildAfter(prev, prev = new Comment(warning), Roles.Comment); } bool isLambda = false; if (ame.Parameters.Any(p => p.Type.IsNull)) { // if there is an anonymous type involved, we are forced to use a lambda expression. isLambda = true; } else if (ame.Parameters.All(p => p.ParameterModifier == ParameterModifier.None)) { // otherwise use lambda only if an expression lambda is possible isLambda = (body.Statements.Count == 1 && body.Statements.Single() is ReturnStatement); } // Remove the parameter list from an AnonymousMethodExpression if the parameters are not used in the method body var parameterReferencingIdentifiers = from ident in body.Descendants.OfType() let v = ident.GetILVariable() where v != null && v.Function == function && v.Kind == VariableKind.Parameter select ident; if (!isLambda && !parameterReferencingIdentifiers.Any()) { ame.Parameters.Clear(); ame.HasParameterList = false; } Expression replacement; IType inferredReturnType; if (isLambda) { LambdaExpression lambda = new LambdaExpression(); lambda.IsAsync = ame.IsAsync; lambda.CopyAnnotationsFrom(ame); ame.Parameters.MoveTo(lambda.Parameters); if (body.Statements.Count == 1 && body.Statements.Single() is ReturnStatement returnStmt) { lambda.Body = returnStmt.Expression.Detach(); inferredReturnType = lambda.Body.GetResolveResult().Type; } else { lambda.Body = body; inferredReturnType = InferReturnType(body); } replacement = lambda; } else { ame.Body = body; inferredReturnType = InferReturnType(body); replacement = ame; } if (ame.IsAsync) { inferredReturnType = GetTaskType(inferredReturnType); } var rr = new DecompiledLambdaResolveResult( function, delegateType, inferredReturnType, hasParameterList: isLambda || ame.HasParameterList, isAnonymousMethod: !isLambda, isImplicitlyTyped: ame.Parameters.Any(p => p.Type.IsNull)); TranslatedExpression translatedLambda = replacement.WithILInstruction(function).WithRR(rr); return new CastExpression(ConvertType(delegateType), translatedLambda) .WithRR(new ConversionResolveResult(delegateType, rr, LambdaConversion.Instance)); } protected internal override TranslatedExpression VisitILFunction(ILFunction function, TranslationContext context) { return TranslateFunction(function.DelegateType, function) .WithILInstruction(function); } IType InferReturnType(BlockStatement body) { var returnExpressions = new List(); CollectReturnExpressions(body); var ti = new TypeInference(compilation, resolver.conversions); return ti.GetBestCommonType(returnExpressions, out _); // Failure to infer a return type does not make the lambda invalid, // so we can ignore the 'success' value void CollectReturnExpressions(AstNode node) { if (node is ReturnStatement ret) { if (!ret.Expression.IsNull) { returnExpressions.Add(ret.Expression.GetResolveResult()); } } else if (node is LambdaExpression || node is AnonymousMethodExpression) { // do not recurse into nested lambdas return; } foreach (var child in node.Children) { CollectReturnExpressions(child); } } } IType GetTaskType(IType resultType) { if (resultType.Kind == TypeKind.Unknown) return SpecialType.UnknownType; if (resultType.Kind == TypeKind.Void) return compilation.FindType(KnownTypeCode.Task); ITypeDefinition def = compilation.FindType(KnownTypeCode.TaskOfT).GetDefinition(); if (def != null) return new ParameterizedType(def, new[] { resultType }); else return SpecialType.UnknownType; } IEnumerable MakeParameters(IReadOnlyList parameters, ILFunction function) { var variables = function.Variables.Where(v => v.Kind == VariableKind.Parameter).ToDictionary(v => v.Index); int i = 0; foreach (var parameter in parameters) { var pd = astBuilder.ConvertParameter(parameter); if (settings.AnonymousTypes && parameter.Type.ContainsAnonymousType()) pd.Type = null; ILVariable v; if (variables.TryGetValue(i, out v)) pd.AddAnnotation(new ILVariableResolveResult(v, parameters[i].Type)); yield return pd; i++; } } internal TranslatedExpression TranslateTarget(IMember member, ILInstruction target, bool nonVirtualInvocation, IType constrainedTo = null) { // If references are missing member.IsStatic might not be set correctly. // Additionally check target for null, in order to avoid a crash. if (!member.IsStatic && target != null) { if (nonVirtualInvocation && target.MatchLdThis() && member.DeclaringTypeDefinition != resolver.CurrentTypeDefinition) { return new BaseReferenceExpression() .WithILInstruction(target) .WithRR(new ThisResolveResult(member.DeclaringType, nonVirtualInvocation)); } else { var translatedTarget = Translate(target, constrainedTo ?? member.DeclaringType); if (CallInstruction.ExpectedTypeForThisPointer(constrainedTo ?? member.DeclaringType) == StackType.Ref && translatedTarget.Type.GetStackType().IsIntegerType()) { // when accessing members on value types, ensure we use a reference and not a pointer translatedTarget = translatedTarget.ConvertTo(new ByReferenceType(constrainedTo ?? member.DeclaringType), this); } if (translatedTarget.Expression is DirectionExpression) { // (ref x).member => x.member translatedTarget = translatedTarget.UnwrapChild(((DirectionExpression)translatedTarget).Expression); } else if (translatedTarget.Expression is UnaryOperatorExpression uoe && uoe.Operator == UnaryOperatorType.NullConditional && uoe.Expression is DirectionExpression) { // (ref x)?.member => x?.member translatedTarget = translatedTarget.UnwrapChild(((DirectionExpression)uoe.Expression).Expression); // note: we need to create a new ResolveResult for the null-conditional operator, // using the underlying type of the input expression without the DirectionExpression translatedTarget = new UnaryOperatorExpression(UnaryOperatorType.NullConditional, translatedTarget) .WithRR(new ResolveResult(NullableType.GetUnderlyingType(translatedTarget.Type))) .WithoutILInstruction(); } return translatedTarget; } } else { return new TypeReferenceExpression(ConvertType(member.DeclaringType)) .WithoutILInstruction() .WithRR(new TypeResolveResult(member.DeclaringType)); } } protected internal override TranslatedExpression VisitLdObj(LdObj inst, TranslationContext context) { var target = Translate(inst.Target); if (TypeUtils.IsCompatibleTypeForMemoryAccess(target.Type, inst.Type)) { TranslatedExpression result; if (target.Expression is DirectionExpression dirExpr) { // we can dereference the managed reference by stripping away the 'ref' result = target.UnwrapChild(dirExpr.Expression); result.Expression.AddAnnotation(inst); // add LdObj in addition to the existing ILInstruction annotation } else if (target.Type is PointerType pointerType) { if (target.Expression is UnaryOperatorExpression uoe && uoe.Operator == UnaryOperatorType.AddressOf) { // We can dereference the pointer by stripping away the '&' result = target.UnwrapChild(uoe.Expression); result.Expression.AddAnnotation(inst); // add LdObj in addition to the existing ILInstruction annotation } else { // Dereference the existing pointer result = new UnaryOperatorExpression(UnaryOperatorType.Dereference, target.Expression) .WithILInstruction(inst) .WithRR(new ResolveResult(pointerType.ElementType)); } } else { // reference type behind non-DirectionExpression? // this case should be impossible, but we can use a pointer cast // just to make sure target = target.ConvertTo(new PointerType(inst.Type), this); return new UnaryOperatorExpression(UnaryOperatorType.Dereference, target.Expression) .WithILInstruction(inst) .WithRR(new ResolveResult(inst.Type)); } // we don't convert result to inst.Type, because the LdObj type // might be inaccurate (it's often System.Object for all reference types), // and our parent node should already insert casts where necessary if (target.Type.IsSmallIntegerType() && inst.Type.IsSmallIntegerType() && target.Type.GetSign() != inst.Type.GetSign()) return result.ConvertTo(inst.Type, this); return result; } else { // We need to cast the pointer type: target = target.ConvertTo(new PointerType(inst.Type), this); return new UnaryOperatorExpression(UnaryOperatorType.Dereference, target.Expression) .WithILInstruction(inst) .WithRR(new ResolveResult(inst.Type)); } } protected internal override TranslatedExpression VisitStObj(StObj inst, TranslationContext context) { var target = Translate(inst.Target); TranslatedExpression result; if (target.Expression is DirectionExpression && TypeUtils.IsCompatibleTypeForMemoryAccess(target.Type, inst.Type)) { // we can deference the managed reference by stripping away the 'ref' result = target.UnwrapChild(((DirectionExpression)target.Expression).Expression); } else { // Cast pointer type if necessary: if (!TypeUtils.IsCompatibleTypeForMemoryAccess(target.Type, inst.Type)) { target = target.ConvertTo(new PointerType(inst.Type), this); } if (target.Expression is UnaryOperatorExpression uoe && uoe.Operator == UnaryOperatorType.AddressOf) { // *&ptr -> ptr result = target.UnwrapChild(uoe.Expression); } else { result = new UnaryOperatorExpression(UnaryOperatorType.Dereference, target.Expression) .WithoutILInstruction() .WithRR(new ResolveResult(((TypeWithElementType)target.Type).ElementType)); } } var value = Translate(inst.Value, typeHint: result.Type); return Assignment(result, value).WithILInstruction(inst); } protected internal override TranslatedExpression VisitLdLen(LdLen inst, TranslationContext context) { TranslatedExpression arrayExpr = Translate(inst.Array); if (arrayExpr.Type.Kind != TypeKind.Array) { arrayExpr = arrayExpr.ConvertTo(compilation.FindType(KnownTypeCode.Array), this); } if (inst.ResultType == StackType.I4) { return new MemberReferenceExpression(arrayExpr.Expression, "Length") .WithILInstruction(inst) .WithRR(new ResolveResult(compilation.FindType(KnownTypeCode.Int32))); } else { return new MemberReferenceExpression(arrayExpr.Expression, "LongLength") .WithILInstruction(inst) .WithRR(new ResolveResult(compilation.FindType(KnownTypeCode.Int64))); } } protected internal override TranslatedExpression VisitLdFlda(LdFlda inst, TranslationContext context) { if (settings.FixedBuffers && inst.Field.Name == "FixedElementField" && inst.Target is LdFlda nestedLdFlda && CSharpDecompiler.IsFixedField(nestedLdFlda.Field, out var elementType, out _)) { Expression fieldAccess = ConvertField(nestedLdFlda.Field, nestedLdFlda.Target); fieldAccess.RemoveAnnotations(); var result = fieldAccess.WithRR(new ResolveResult(new PointerType(elementType))) .WithILInstruction(inst); if (inst.ResultType == StackType.Ref) { // convert pointer back to ref return result.ConvertTo(new ByReferenceType(elementType), this); } else { return result; } } var expr = ConvertField(inst.Field, inst.Target).WithILInstruction(inst); if (inst.ResultType == StackType.I) { // ldflda producing native pointer return new UnaryOperatorExpression(UnaryOperatorType.AddressOf, expr) .WithoutILInstruction().WithRR(new ResolveResult(new PointerType(expr.Type))); } else { // ldflda producing managed pointer return new DirectionExpression(FieldDirection.Ref, expr) .WithoutILInstruction().WithRR(new ByReferenceResolveResult(expr.Type, isOut: false)); } } protected internal override TranslatedExpression VisitLdsFlda(LdsFlda inst, TranslationContext context) { var expr = ConvertField(inst.Field).WithILInstruction(inst); return new DirectionExpression(FieldDirection.Ref, expr) .WithoutILInstruction().WithRR(new ByReferenceResolveResult(expr.Type, isOut: false)); } protected internal override TranslatedExpression VisitLdElema(LdElema inst, TranslationContext context) { TranslatedExpression arrayExpr = Translate(inst.Array); var arrayType = arrayExpr.Type as ArrayType; if (arrayType == null) { arrayType = new ArrayType(compilation, inst.Type, inst.Indices.Count); arrayExpr = arrayExpr.ConvertTo(arrayType, this); } TranslatedExpression expr = new IndexerExpression( arrayExpr, inst.Indices.Select(i => TranslateArrayIndex(i).Expression) ).WithILInstruction(inst).WithRR(new ResolveResult(arrayType.ElementType)); return new DirectionExpression(FieldDirection.Ref, expr) .WithoutILInstruction().WithRR(new ByReferenceResolveResult(expr.Type, isOut: false)); } TranslatedExpression TranslateArrayIndex(ILInstruction i) { var input = Translate(i); KnownTypeCode targetType; if (i.ResultType == StackType.I4) { if (input.Type.IsSmallIntegerType() && input.Type.Kind != TypeKind.Enum) { return input; // we don't need a cast, just let small integers be promoted to int } targetType = input.Type.GetSign() == Sign.Unsigned ? KnownTypeCode.UInt32 : KnownTypeCode.Int32; } else { targetType = input.Type.GetSign() == Sign.Unsigned ? KnownTypeCode.UInt64 : KnownTypeCode.Int64; } return input.ConvertTo(compilation.FindType(targetType), this); } protected internal override TranslatedExpression VisitUnboxAny(UnboxAny inst, TranslationContext context) { var arg = Translate(inst.Argument); if (arg.Type.Equals(inst.Type) && inst.Argument.OpCode == OpCode.IsInst) { // isinst followed by unbox.any of the same type is used for as-casts to generic types return arg.WithILInstruction(inst); } if (arg.Type.IsReferenceType != true) { // ensure we treat the input as a reference type arg = arg.ConvertTo(compilation.FindType(KnownTypeCode.Object), this); } IType targetType = inst.Type; if (targetType.Kind == TypeKind.TypeParameter) { var rr = resolver.ResolveCast(targetType, arg.ResolveResult); if (rr.IsError) { // C# 6.2.7 Explicit conversions involving type parameters: // if we can't directly convert to a type parameter, // try via its effective base class. arg = arg.ConvertTo(((ITypeParameter)targetType).EffectiveBaseClass, this); } } return new CastExpression(ConvertType(targetType), arg.Expression) .WithILInstruction(inst) .WithRR(new ConversionResolveResult(targetType, arg.ResolveResult, Conversion.UnboxingConversion)); } protected internal override TranslatedExpression VisitUnbox(Unbox inst, TranslationContext context) { var arg = Translate(inst.Argument); var castExpression = new CastExpression(ConvertType(inst.Type), arg.Expression) .WithRR(new ConversionResolveResult(inst.Type, arg.ResolveResult, Conversion.UnboxingConversion)); return new DirectionExpression(FieldDirection.Ref, castExpression) .WithILInstruction(inst) .WithRR(new ByReferenceResolveResult(castExpression.ResolveResult, isOut: false)); } protected internal override TranslatedExpression VisitBox(Box inst, TranslationContext context) { var obj = compilation.FindType(KnownTypeCode.Object); var arg = Translate(inst.Argument, typeHint: inst.Type).ConvertTo(inst.Type, this); return new CastExpression(ConvertType(obj), arg.Expression) .WithILInstruction(inst) .WithRR(new ConversionResolveResult(obj, arg.ResolveResult, Conversion.BoxingConversion)); } protected internal override TranslatedExpression VisitCastClass(CastClass inst, TranslationContext context) { return Translate(inst.Argument).ConvertTo(inst.Type, this); } protected internal override TranslatedExpression VisitExpressionTreeCast(ExpressionTreeCast inst, TranslationContext context) { return Translate(inst.Argument).ConvertTo(inst.Type, this, inst.IsChecked); } protected internal override TranslatedExpression VisitArglist(Arglist inst, TranslationContext context) { return new UndocumentedExpression { UndocumentedExpressionType = UndocumentedExpressionType.ArgListAccess } .WithILInstruction(inst) .WithRR(new TypeResolveResult(compilation.FindType(new TopLevelTypeName("System", "RuntimeArgumentHandle")))); } protected internal override TranslatedExpression VisitMakeRefAny(MakeRefAny inst, TranslationContext context) { var arg = Translate(inst.Argument).Expression; if (arg is DirectionExpression) { arg = ((DirectionExpression)arg).Expression; } return new UndocumentedExpression { UndocumentedExpressionType = UndocumentedExpressionType.MakeRef, Arguments = { arg.Detach() } } .WithILInstruction(inst) .WithRR(new TypeResolveResult(compilation.FindType(new TopLevelTypeName("System", "TypedReference")))); } protected internal override TranslatedExpression VisitRefAnyType(RefAnyType inst, TranslationContext context) { return new MemberReferenceExpression(new UndocumentedExpression { UndocumentedExpressionType = UndocumentedExpressionType.RefType, Arguments = { Translate(inst.Argument).Expression.Detach() } }, "TypeHandle") .WithILInstruction(inst) .WithRR(new TypeResolveResult(compilation.FindType(new TopLevelTypeName("System", "RuntimeTypeHandle")))); } protected internal override TranslatedExpression VisitRefAnyValue(RefAnyValue inst, TranslationContext context) { var expr = new UndocumentedExpression { UndocumentedExpressionType = UndocumentedExpressionType.RefValue, Arguments = { Translate(inst.Argument).Expression, new TypeReferenceExpression(ConvertType(inst.Type)) } }.WithRR(new ResolveResult(inst.Type)); return new DirectionExpression(FieldDirection.Ref, expr.WithILInstruction(inst)).WithoutILInstruction() .WithRR(new ByReferenceResolveResult(inst.Type, false)); } protected internal override TranslatedExpression VisitBlock(Block block, TranslationContext context) { switch (block.Kind) { case BlockKind.ArrayInitializer: return TranslateArrayInitializer(block); case BlockKind.CollectionInitializer: case BlockKind.ObjectInitializer: return TranslateObjectAndCollectionInitializer(block); case BlockKind.PostfixOperator: return TranslatePostfixOperator(block); case BlockKind.CallInlineAssign: return TranslateSetterCallAssignment(block); default: return ErrorExpression("Unknown block type: " + block.Kind); } } private TranslatedExpression TranslateSetterCallAssignment(Block block) { if (!block.MatchInlineAssignBlock(out var call, out var value)) { // should never happen unless the ILAst is invalid return ErrorExpression("Error: MatchInlineAssignBlock() returned false"); } var arguments = call.Arguments.ToList(); arguments[arguments.Count - 1] = value; return new CallBuilder(this, typeSystem, settings) .Build(call.OpCode, call.Method, arguments) .WithILInstruction(call); } TranslatedExpression TranslateObjectAndCollectionInitializer(Block block) { var stloc = block.Instructions.FirstOrDefault() as StLoc; var final = block.FinalInstruction as LdLoc; if (stloc == null || final == null || stloc.Variable != final.Variable || stloc.Variable.Kind != VariableKind.InitializerTarget) throw new ArgumentException("given Block is invalid!"); InitializedObjectResolveResult initObjRR; TranslatedExpression expr; switch (stloc.Value) { case NewObj newObjInst: initObjRR = new InitializedObjectResolveResult(newObjInst.Method.DeclaringType); expr = new CallBuilder(this, typeSystem, settings).Build(newObjInst); break; case DefaultValue defaultVal: initObjRR = new InitializedObjectResolveResult(defaultVal.Type); expr = new ObjectCreateExpression(ConvertType(defaultVal.Type)) .WithILInstruction(defaultVal) .WithRR(new TypeResolveResult(defaultVal.Type)); break; default: throw new ArgumentException("given Block is invalid!"); } var elementsStack = new Stack>(); var elements = new List(block.Instructions.Count); elementsStack.Push(elements); List currentPath = null; var indexVariables = new Dictionary(); foreach (var inst in block.Instructions.Skip(1)) { if (inst is StLoc indexStore) { indexVariables.Add(indexStore.Variable, indexStore.Value); continue; } var info = IL.Transforms.AccessPathElement.GetAccessPath(inst, initObjRR.Type); if (info.Kind == IL.Transforms.AccessPathKind.Invalid) continue; if (currentPath == null) { currentPath = info.Path; } else { int minLen = Math.Min(currentPath.Count, info.Path.Count); int firstDifferenceIndex = 0; while (firstDifferenceIndex < minLen && info.Path[firstDifferenceIndex] == currentPath[firstDifferenceIndex]) firstDifferenceIndex++; while (elementsStack.Count - 1 > firstDifferenceIndex) { var methodElement = currentPath[elementsStack.Count - 1]; var pathElement = currentPath[elementsStack.Count - 2]; var values = elementsStack.Pop(); elementsStack.Peek().Add(MakeInitializerAssignment(methodElement.Member, pathElement, values, indexVariables)); } currentPath = info.Path; } while (elementsStack.Count < currentPath.Count) elementsStack.Push(new List()); var lastElement = currentPath.Last(); var memberRR = new MemberResolveResult(initObjRR, lastElement.Member); switch (info.Kind) { case IL.Transforms.AccessPathKind.Adder: elementsStack.Peek().Add(MakeInitializerElements(info.Values, ((IMethod)lastElement.Member).Parameters)); break; case IL.Transforms.AccessPathKind.Setter: if (lastElement.Indices?.Length > 0) { var indexer = new IndexerExpression(null, lastElement.Indices.SelectArray(i => Translate(i is LdLoc ld ? indexVariables[ld.Variable] : i).Expression)) .WithILInstruction(inst).WithRR(memberRR); elementsStack.Peek().Add(Assignment(indexer, Translate(info.Values.Single(), typeHint: indexer.Type))); } else { var assignment = new NamedExpression(lastElement.Member.Name, Translate(info.Values.Single(), typeHint: memberRR.Type)) .WithILInstruction(inst).WithRR(memberRR); elementsStack.Peek().Add(assignment); } break; } } while (elementsStack.Count > 1) { var methodElement = currentPath[elementsStack.Count - 1]; var pathElement = currentPath[elementsStack.Count - 2]; var values = elementsStack.Pop(); elementsStack.Peek().Add(MakeInitializerAssignment(methodElement.Member, pathElement, values, indexVariables)); } var oce = (ObjectCreateExpression)expr.Expression; oce.Initializer = new ArrayInitializerExpression(elements); return expr.WithILInstruction(block); } Expression MakeInitializerAssignment(IMember method, IL.Transforms.AccessPathElement member, List values, Dictionary indexVariables) { Expression value; if (values.Count == 1 && !(values[0] is AssignmentExpression || values[0] is NamedExpression) && !(method.SymbolKind == SymbolKind.Method && method.Name == "Add")) { value = values[0]; } else { value = new ArrayInitializerExpression(values); } if (member.Indices?.Length > 0) { var index = new IndexerExpression(null, member.Indices.SelectArray(i => Translate(i is LdLoc ld ? indexVariables[ld.Variable] : i).Expression)); return new AssignmentExpression(index, value); } else { return new NamedExpression(member.Member.Name, value); } } Expression MakeInitializerElements(List values, IReadOnlyList parameters) { if (values.Count == 1) { return Translate(values[0], typeHint: parameters[0].Type).ConvertTo(parameters[0].Type, this); } var expressions = new Expression[values.Count]; for (int i = 0; i < values.Count; i++) { expressions[i] = Translate(values[i], typeHint: parameters[i].Type).ConvertTo(parameters[i].Type, this); } return new ArrayInitializerExpression(expressions); } readonly static ArraySpecifier[] NoSpecifiers = new ArraySpecifier[0]; TranslatedExpression TranslateArrayInitializer(Block block) { var stloc = block.Instructions.FirstOrDefault() as StLoc; var final = block.FinalInstruction as LdLoc; IType type; if (stloc == null || final == null || !stloc.Value.MatchNewArr(out type) || stloc.Variable != final.Variable || stloc.Variable.Kind != VariableKind.InitializerTarget) throw new ArgumentException("given Block is invalid!"); var newArr = (NewArr)stloc.Value; var translatedDimensions = newArr.Indices.Select(i => Translate(i)).ToArray(); if (!translatedDimensions.All(dim => dim.ResolveResult.IsCompileTimeConstant)) throw new ArgumentException("given Block is invalid!"); int dimensions = newArr.Indices.Count; int[] dimensionSizes = translatedDimensions.Select(dim => (int)dim.ResolveResult.ConstantValue).ToArray(); var container = new Stack(); var root = new ArrayInitializerExpression(); container.Push(root); var elementResolveResults = new List(); for (int i = 1; i < block.Instructions.Count; i++) { ILInstruction target, value, array; IType t; ILVariable v; if (!block.Instructions[i].MatchStObj(out target, out value, out t) || !type.Equals(t)) throw new ArgumentException("given Block is invalid!"); if (!target.MatchLdElema(out t, out array) || !type.Equals(t)) throw new ArgumentException("given Block is invalid!"); if (!array.MatchLdLoc(out v) || v != final.Variable) throw new ArgumentException("given Block is invalid!"); while (container.Count < dimensions) { var aie = new ArrayInitializerExpression(); container.Peek().Elements.Add(aie); container.Push(aie); } var val = Translate(value, typeHint: type).ConvertTo(type, this, allowImplicitConversion: true); container.Peek().Elements.Add(val); elementResolveResults.Add(val.ResolveResult); while (container.Count > 0 && container.Peek().Elements.Count == dimensionSizes[container.Count - 1]) { container.Pop(); } } ArraySpecifier[] additionalSpecifiers; AstType typeExpression; if (settings.AnonymousTypes && type.ContainsAnonymousType()) { typeExpression = null; additionalSpecifiers = new[] { new ArraySpecifier() }; } else { typeExpression = ConvertType(type); if (typeExpression is ComposedType compType && compType.ArraySpecifiers.Count > 0) { additionalSpecifiers = compType.ArraySpecifiers.Select(a => (ArraySpecifier)a.Clone()).ToArray(); compType.ArraySpecifiers.Clear(); } else { additionalSpecifiers = NoSpecifiers; } } var expr = new ArrayCreateExpression { Type = typeExpression, Initializer = root }; expr.AdditionalArraySpecifiers.AddRange(additionalSpecifiers); if (!(bool)type.ContainsAnonymousType()) expr.Arguments.AddRange(newArr.Indices.Select(i => Translate(i).Expression)); return expr.WithILInstruction(block) .WithRR(new ArrayCreateResolveResult(new ArrayType(compilation, type, dimensions), newArr.Indices.Select(i => Translate(i).ResolveResult).ToArray(), elementResolveResults)); } TranslatedExpression TranslatePostfixOperator(Block block) { var targetInst = (block.Instructions.ElementAtOrDefault(0) as StLoc)?.Value; var inst = (block.Instructions.ElementAtOrDefault(1) as StLoc)?.Value as BinaryNumericInstruction; if (targetInst == null || inst == null || (inst.Operator != BinaryNumericOperator.Add && inst.Operator != BinaryNumericOperator.Sub)) throw new ArgumentException("given Block is invalid!"); var op = inst.Operator == BinaryNumericOperator.Add ? UnaryOperatorType.PostIncrement : UnaryOperatorType.PostDecrement; var target = Translate(targetInst); return new UnaryOperatorExpression(op, target) .WithILInstruction(block) .WithRR(resolver.WithCheckForOverflow(inst.CheckForOverflow).ResolveUnaryOperator(op, target.ResolveResult)); } /// /// If expr is a constant integer expression, and its value fits into type, /// convert the expression into the target type. /// Otherwise, returns the expression unmodified. /// TranslatedExpression AdjustConstantExpressionToType(TranslatedExpression expr, IType type) { if (!expr.ResolveResult.IsCompileTimeConstant) { return expr; } type = NullableType.GetUnderlyingType(type); if (type.IsKnownType(KnownTypeCode.Boolean) && (object.Equals(expr.ResolveResult.ConstantValue, 0) || object.Equals(expr.ResolveResult.ConstantValue, 1))) { return expr.ConvertToBoolean(this); } else if (type.Kind == TypeKind.Enum || type.IsKnownType(KnownTypeCode.Char)) { var castRR = resolver.WithCheckForOverflow(true).ResolveCast(type, expr.ResolveResult); if (castRR.IsCompileTimeConstant && !castRR.IsError) { return ConvertConstantValue(castRR).WithILInstruction(expr.ILInstructions); } } return expr; } protected internal override TranslatedExpression VisitNullCoalescingInstruction(NullCoalescingInstruction inst, TranslationContext context) { var value = Translate(inst.ValueInst); var fallback = Translate(inst.FallbackInst); fallback = AdjustConstantExpressionToType(fallback, value.Type); var rr = resolver.ResolveBinaryOperator(BinaryOperatorType.NullCoalescing, value.ResolveResult, fallback.ResolveResult); if (rr.IsError) { IType targetType; if (!value.Type.Equals(SpecialType.NullType) && !fallback.Type.Equals(SpecialType.NullType) && !value.Type.Equals(fallback.Type)) { targetType = compilation.FindType(inst.UnderlyingResultType.ToKnownTypeCode()); } else { targetType = value.Type.Equals(SpecialType.NullType) ? fallback.Type : value.Type; } if (inst.Kind != NullCoalescingKind.Ref) { value = value.ConvertTo(NullableType.Create(compilation, targetType), this); } else { value = value.ConvertTo(targetType, this); } if (inst.Kind == NullCoalescingKind.Nullable) { value = value.ConvertTo(NullableType.Create(compilation, targetType), this); } else { fallback = fallback.ConvertTo(targetType, this); } rr = new ResolveResult(targetType); } return new BinaryOperatorExpression(value, BinaryOperatorType.NullCoalescing, fallback) .WithILInstruction(inst) .WithRR(rr); } protected internal override TranslatedExpression VisitIfInstruction(IfInstruction inst, TranslationContext context) { var condition = TranslateCondition(inst.Condition); var trueBranch = Translate(inst.TrueInst, typeHint: context.TypeHint); var falseBranch = Translate(inst.FalseInst, typeHint: context.TypeHint); BinaryOperatorType op = BinaryOperatorType.Any; TranslatedExpression rhs = default(TranslatedExpression); if (inst.MatchLogicAnd(out var lhsInst, out var rhsInst)) { op = BinaryOperatorType.ConditionalAnd; Debug.Assert(rhsInst == inst.TrueInst); rhs = trueBranch; } else if (inst.MatchLogicOr(out lhsInst, out rhsInst)) { op = BinaryOperatorType.ConditionalOr; Debug.Assert(rhsInst == inst.FalseInst); rhs = falseBranch; } // ILAst LogicAnd/LogicOr can return a different value than 0 or 1 // if the rhs is evaluated. // We can only correctly translate it to C# if the rhs is of type boolean: if (op != BinaryOperatorType.Any && (rhs.Type.IsKnownType(KnownTypeCode.Boolean) || IfInstruction.IsInConditionSlot(inst))) { rhs = rhs.ConvertToBoolean(this); return new BinaryOperatorExpression(condition, op, rhs) .WithILInstruction(inst) .WithRR(new ResolveResult(compilation.FindType(KnownTypeCode.Boolean))); } trueBranch = AdjustConstantExpressionToType(trueBranch, falseBranch.Type); falseBranch = AdjustConstantExpressionToType(falseBranch, trueBranch.Type); var rr = resolver.ResolveConditional(condition.ResolveResult, trueBranch.ResolveResult, falseBranch.ResolveResult); if (rr.IsError) { IType targetType; if (!trueBranch.Type.Equals(SpecialType.NullType) && !falseBranch.Type.Equals(SpecialType.NullType) && !trueBranch.Type.Equals(falseBranch.Type)) { targetType = typeInference.GetBestCommonType(new[] { trueBranch.ResolveResult, falseBranch.ResolveResult }, out bool success); if (!success || targetType.GetStackType() != inst.ResultType) { // Figure out the target type based on inst.ResultType. if (inst.ResultType == StackType.Ref) { // targetType should be a ref-type if (trueBranch.Type.Kind == TypeKind.ByReference) { targetType = trueBranch.Type; } else if (falseBranch.Type.Kind == TypeKind.ByReference) { targetType = falseBranch.Type; } else { // fall back to 'ref byte' if we can't determine a referenced type otherwise targetType = new ByReferenceType(compilation.FindType(KnownTypeCode.Byte)); } } else { targetType = compilation.FindType(inst.ResultType.ToKnownTypeCode()); } } } else { targetType = trueBranch.Type.Equals(SpecialType.NullType) ? falseBranch.Type : trueBranch.Type; } trueBranch = trueBranch.ConvertTo(targetType, this); falseBranch = falseBranch.ConvertTo(targetType, this); rr = new ResolveResult(targetType); } if (rr.Type.Kind == TypeKind.ByReference) { // C# conditional ref looks like this: // ref (arr != null ? ref trueBranch : ref falseBranch); var conditionalResolveResult = new ResolveResult(((ByReferenceType)rr.Type).ElementType); return new DirectionExpression(FieldDirection.Ref, new ConditionalExpression(condition.Expression, trueBranch.Expression, falseBranch.Expression) .WithILInstruction(inst) .WithRR(conditionalResolveResult) ).WithoutILInstruction().WithRR(new ByReferenceResolveResult(conditionalResolveResult, isOut: false)); } else { return new ConditionalExpression(condition.Expression, trueBranch.Expression, falseBranch.Expression) .WithILInstruction(inst) .WithRR(rr); } } protected internal override TranslatedExpression VisitAddressOf(AddressOf inst, TranslationContext context) { // HACK: this is only correct if the argument is an R-value; otherwise we're missing the copy to the temporary var value = Translate(inst.Value); return new DirectionExpression(FieldDirection.Ref, value) .WithILInstruction(inst) .WithRR(new ByReferenceResolveResult(value.ResolveResult, false)); } protected internal override TranslatedExpression VisitAwait(Await inst, TranslationContext context) { IType expectedType = null; if (inst.GetAwaiterMethod != null) { if (inst.GetAwaiterMethod.IsStatic) { expectedType = inst.GetAwaiterMethod.Parameters.FirstOrDefault()?.Type; } else { expectedType = inst.GetAwaiterMethod.DeclaringType; } } var value = Translate(inst.Value, typeHint: expectedType); if (value.Expression is DirectionExpression) { // we can deference the managed reference by stripping away the 'ref' value = value.UnwrapChild(((DirectionExpression)value.Expression).Expression); } if (expectedType != null) { value = value.ConvertTo(expectedType, this, allowImplicitConversion: true); } return new UnaryOperatorExpression(UnaryOperatorType.Await, value.Expression) .WithILInstruction(inst) .WithRR(new ResolveResult(inst.GetResultMethod?.ReturnType ?? SpecialType.UnknownType)); } protected internal override TranslatedExpression VisitNullableRewrap(NullableRewrap inst, TranslationContext context) { var arg = Translate(inst.Argument); IType type = arg.Type; if (NullableType.IsNonNullableValueType(type)) { type = NullableType.Create(compilation, type); } return new UnaryOperatorExpression(UnaryOperatorType.NullConditionalRewrap, arg) .WithILInstruction(inst) .WithRR(new ResolveResult(type)); } protected internal override TranslatedExpression VisitNullableUnwrap(NullableUnwrap inst, TranslationContext context) { var arg = Translate(inst.Argument); if (inst.RefInput && !inst.RefOutput && arg.Expression is DirectionExpression dir) { arg = arg.UnwrapChild(dir.Expression); } return new UnaryOperatorExpression(UnaryOperatorType.NullConditional, arg) .WithILInstruction(inst) .WithRR(new ResolveResult(NullableType.GetUnderlyingType(arg.Type))); } protected internal override TranslatedExpression VisitInvalidBranch(InvalidBranch inst, TranslationContext context) { string message = "Error"; if (inst.ILRange.Start != 0) { message += $" near IL_{inst.ILRange.Start:x4}"; } if (!string.IsNullOrEmpty(inst.Message)) { message += ": " + inst.Message; } return ErrorExpression(message); } protected internal override TranslatedExpression VisitInvalidExpression(InvalidExpression inst, TranslationContext context) { string message = "Error"; if (inst.ILRange.Start != 0) { message += $" near IL_{inst.ILRange.Start:x4}"; } if (!string.IsNullOrEmpty(inst.Message)) { message += ": " + inst.Message; } return ErrorExpression(message); } protected override TranslatedExpression Default(ILInstruction inst, TranslationContext context) { return ErrorExpression("OpCode not supported: " + inst.OpCode); } static TranslatedExpression ErrorExpression(string message) { var e = new ErrorExpression(); e.AddChild(new Comment(message, CommentType.MultiLine), Roles.Comment); return e.WithoutILInstruction().WithRR(ErrorResolveResult.UnknownError); } } }