// Copyright (c) 2014 Daniel Grunwald
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System;
using System.Diagnostics;
using ICSharpCode.Decompiler.IL.Transforms;
using System.Threading;
namespace ICSharpCode.Decompiler.IL.ControlFlow
{
///
/// Detect suitable exit points for BlockContainers.
///
/// An "exit point" is an instruction that causes control flow
/// to leave the container (a branch or leave instruction).
///
/// If an "exit point" instruction is placed immediately following a
/// block container, each equivalent exit point within the container
/// can be replaced with a "leave container" instruction.
///
/// This transform performs this replacement: any exit points
/// equivalent to the exit point following the container are
/// replaced with a leave instruction.
/// Additionally, if the container is not yet followed by an exit point,
/// but has room to introduce such an exit point (i.e. iff the container's
/// end point is currently unreachable), we pick one of the non-return
/// exit points within the container, move it to the position following the
/// container, and replace all instances within the container with a leave
/// instruction.
///
/// This makes it easier for the following transforms to construct
/// control flow that falls out of blocks instead of using goto/break statements.
///
public class DetectExitPoints : ILVisitor, IILTransform
{
static readonly Nop ExitNotYetDetermined = new Nop();
static readonly Nop NoExit = new Nop();
bool canIntroduceExitForReturn;
public DetectExitPoints(bool canIntroduceExitForReturn)
{
this.canIntroduceExitForReturn = canIntroduceExitForReturn;
}
///
/// Gets the next instruction after is executed.
/// Returns NoExit when the next instruction cannot be identified;
/// returns null when the end of a Block is reached (so that we could insert an arbitrary instruction)
///
internal static ILInstruction GetExit(ILInstruction inst)
{
SlotInfo slot = inst.SlotInfo;
if (slot == Block.InstructionSlot) {
Block block = (Block)inst.Parent;
return block.Instructions.ElementAtOrDefault(inst.ChildIndex + 1) ?? ExitNotYetDetermined;
} else if (slot == TryInstruction.TryBlockSlot
|| slot == TryCatchHandler.BodySlot
|| slot == TryCatch.HandlerSlot
|| slot == PinnedRegion.BodySlot)
{
return GetExit(inst.Parent);
}
return NoExit;
}
///
/// Returns true iff exit1 and exit2 are both exit instructions
/// (branch or leave) and both represent the same exit.
///
internal static bool CompatibleExitInstruction(ILInstruction exit1, ILInstruction exit2)
{
if (exit1 == null || exit2 == null || exit1.OpCode != exit2.OpCode)
return false;
switch (exit1.OpCode) {
case OpCode.Branch:
Branch br1 = (Branch)exit1;
Branch br2 = (Branch)exit2;
return br1.TargetBlock == br2.TargetBlock;
case OpCode.Leave:
Leave leave1 = (Leave)exit1;
Leave leave2 = (Leave)exit2;
return leave1.TargetContainer == leave2.TargetContainer && leave1.Value.MatchNop() && leave2.Value.MatchNop();
default:
return false;
}
}
CancellationToken cancellationToken;
BlockContainer currentContainer;
///
/// The instruction that will be executed next after leaving the currentContainer.
/// null means the container is last in its parent block, and thus does not
/// yet have any leave instructions. This means we can move any exit instruction of
/// our choice our of the container and replace it with a leave instruction.
///
ILInstruction currentExit;
public void Run(ILFunction function, ILTransformContext context)
{
cancellationToken = context.CancellationToken;
currentExit = NoExit;
function.AcceptVisitor(this);
}
protected override void Default(ILInstruction inst)
{
foreach (var child in inst.Children)
child.AcceptVisitor(this);
}
protected internal override void VisitBlockContainer(BlockContainer container)
{
var oldExit = currentExit;
var oldContainer = currentContainer;
var thisExit = GetExit(container);
currentExit = thisExit;
currentContainer = container;
base.VisitBlockContainer(container);
if (thisExit == ExitNotYetDetermined && currentExit != ExitNotYetDetermined) {
// This transform determined an exit point.
Debug.Assert(!currentExit.MatchLeave(currentContainer));
ILInstruction inst = container;
// traverse up to the block (we'll always find one because GetExit
// only returns ExitNotYetDetermined if there's a block)
while (inst.Parent.OpCode != OpCode.Block)
inst = inst.Parent;
Block block = (Block)inst.Parent;
block.Instructions.Add(currentExit);
} else {
Debug.Assert(thisExit == currentExit);
}
currentExit = oldExit;
currentContainer = oldContainer;
}
protected internal override void VisitBlock(Block block)
{
cancellationToken.ThrowIfCancellationRequested();
// Don't use foreach loop, because the children might add to the block
for (int i = 0; i < block.Instructions.Count; i++) {
block.Instructions[i].AcceptVisitor(this);
}
}
void HandleExit(ILInstruction inst)
{
if (currentExit == ExitNotYetDetermined && CanIntroduceAsExit(inst)) {
currentExit = inst;
inst.ReplaceWith(new Leave(currentContainer) { ILRange = inst.ILRange });
} else if (CompatibleExitInstruction(inst, currentExit)) {
inst.ReplaceWith(new Leave(currentContainer) { ILRange = inst.ILRange });
}
}
private bool CanIntroduceAsExit(ILInstruction inst)
{
if (currentContainer.LeaveCount > 0) {
// if we're re-running on a block container that already has an exit,
// we can't introduce any additional exits
return false;
}
if (inst is Leave l && l.IsLeavingFunction) {
return canIntroduceExitForReturn;
} else {
return true;
}
}
protected internal override void VisitBranch(Branch inst)
{
if (!inst.TargetBlock.IsDescendantOf(currentContainer)) {
HandleExit(inst);
}
}
protected internal override void VisitLeave(Leave inst)
{
base.VisitLeave(inst);
if (!inst.Value.MatchNop())
return;
HandleExit(inst);
}
}
/*
///
/// Like DetectExitPoints, but only uses existing exit points
/// (by replacing compatible instructions with Leave),
/// without introducing any exit points even if it were possible.
///
class UseExitPoints : IBlockTransform
{
BlockContainer currentContainer;
ILInstruction exitPoint;
public void Run(Block block, BlockTransformContext context)
{
Debug.Assert(block.Parent == context.Container);
currentContainer = context.Container;
exitPoint = DetectExitPoints.GetExit(context.Container);
Visit(block);
}
void Visit(ILInstruction inst)
{
switch (inst.OpCode) {
case OpCode.Leave:
case OpCode.Branch:
if (DetectExitPoints.CompatibleExitInstruction(inst, exitPoint)) {
inst.ReplaceWith(new Leave(currentContainer) { ILRange = inst.ILRange });
}
break;
case OpCode.Block:
// This is a post-order block transform; skip over nested blocks
// as those are already processed.
return;
}
foreach (var c in inst.Children) {
Visit(c);
}
}
}
*/
}