using System; using System.Collections.Concurrent; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using System.Threading; using ICSharpCode.Decompiler.ILAst; using ICSharpCode.NRefactory.CSharp; using ICSharpCode.NRefactory.Utils; using Mono.Cecil; using Mono.Cecil.Cil; namespace ICSharpCode.Decompiler.Ast { using Ast = ICSharpCode.NRefactory.CSharp; using Cecil = Mono.Cecil; public class AstMethodBodyBuilder { MethodDefinition methodDef; TypeSystem typeSystem; DecompilerContext context; HashSet localVariablesToDefine = new HashSet(); // local variables that are missing a definition HashSet implicitlyDefinedVariables = new HashSet(); // local variables that are implicitly defined (e.g. catch handler) public static BlockStatement CreateMethodBody(MethodDefinition methodDef, DecompilerContext context) { MethodDefinition oldCurrentMethod = context.CurrentMethod; Debug.Assert(oldCurrentMethod == null || oldCurrentMethod == methodDef); context.CurrentMethod = methodDef; try { AstMethodBodyBuilder builder = new AstMethodBodyBuilder(); builder.methodDef = methodDef; builder.context = context; builder.typeSystem = methodDef.Module.TypeSystem; if (Debugger.IsAttached) { return builder.CreateMethodBody(); } else { try { return builder.CreateMethodBody(); } catch (OperationCanceledException) { throw; } catch (Exception ex) { throw new ICSharpCode.Decompiler.DecompilerException(methodDef, ex); } } } finally { context.CurrentMethod = oldCurrentMethod; } } public BlockStatement CreateMethodBody() { if (methodDef.Body == null) return null; context.CancellationToken.ThrowIfCancellationRequested(); ILBlock ilMethod = new ILBlock(); ILAstBuilder astBuilder = new ILAstBuilder(); ilMethod.Body = astBuilder.Build(methodDef, true); context.CancellationToken.ThrowIfCancellationRequested(); ILAstOptimizer bodyGraph = new ILAstOptimizer(); bodyGraph.Optimize(context, ilMethod); context.CancellationToken.ThrowIfCancellationRequested(); var allVariables = ilMethod.GetSelfAndChildrenRecursive().Select(e => e.Operand as ILVariable).Where(v => v != null && !v.IsGenerated).Distinct(); NameVariables.AssignNamesToVariables(methodDef.Parameters.Select(p => p.Name), allVariables, ilMethod); context.CancellationToken.ThrowIfCancellationRequested(); Ast.BlockStatement astBlock = TransformBlock(ilMethod); CommentStatement.ReplaceAll(astBlock); // convert CommentStatements to Comments foreach (ILVariable v in localVariablesToDefine.Except(implicitlyDefinedVariables)) { DeclareVariableInSmallestScope.DeclareVariable(astBlock, AstBuilder.ConvertType(v.Type), v.Name); } return astBlock; } Ast.BlockStatement TransformBlock(ILBlock block) { Ast.BlockStatement astBlock = new BlockStatement(); if (block != null) { foreach(ILNode node in block.GetChildren()) { astBlock.AddRange(TransformNode(node)); } } return astBlock; } IEnumerable TransformNode(ILNode node) { if (node is ILLabel) { yield return new Ast.LabelStatement { Label = ((ILLabel)node).Name }; } else if (node is ILExpression) { List ilRanges = ((ILExpression)node).GetILRanges(); AstNode codeExpr = TransformExpression((ILExpression)node); if (codeExpr != null) { codeExpr = codeExpr.WithAnnotation(ilRanges); if (codeExpr is Ast.Expression) { yield return new Ast.ExpressionStatement { Expression = (Ast.Expression)codeExpr }; } else if (codeExpr is Ast.Statement) { yield return (Ast.Statement)codeExpr; } else { throw new Exception(); } } } else if (node is ILWhileLoop) { ILWhileLoop ilLoop = (ILWhileLoop)node; WhileStatement whileStmt = new WhileStatement() { Condition = ilLoop.Condition != null ? (Expression)TransformExpression(ilLoop.Condition) : new PrimitiveExpression(true), EmbeddedStatement = TransformBlock(ilLoop.BodyBlock) }; yield return whileStmt; } else if (node is ILCondition) { ILCondition conditionalNode = (ILCondition)node; bool hasFalseBlock = conditionalNode.FalseBlock.EntryGoto != null || conditionalNode.FalseBlock.Body.Count > 0; yield return new Ast.IfElseStatement { Condition = (Expression)TransformExpression(conditionalNode.Condition), TrueStatement = TransformBlock(conditionalNode.TrueBlock), FalseStatement = hasFalseBlock ? TransformBlock(conditionalNode.FalseBlock) : null }; } else if (node is ILSwitch) { ILSwitch ilSwitch = (ILSwitch)node; SwitchStatement switchStmt = new SwitchStatement() { Expression = (Expression)TransformExpression(ilSwitch.Condition) }; foreach (var caseBlock in ilSwitch.CaseBlocks) { SwitchSection section = new SwitchSection(); if (caseBlock.Values != null) { section.CaseLabels.AddRange(caseBlock.Values.Select(i => new CaseLabel() { Expression = AstBuilder.MakePrimitive(i, ilSwitch.Condition.InferredType) })); } else { section.CaseLabels.Add(new CaseLabel()); } section.Statements.Add(TransformBlock(caseBlock)); switchStmt.SwitchSections.Add(section); } yield return switchStmt; } else if (node is ILTryCatchBlock) { ILTryCatchBlock tryCatchNode = ((ILTryCatchBlock)node); var tryCatchStmt = new Ast.TryCatchStatement(); tryCatchStmt.TryBlock = TransformBlock(tryCatchNode.TryBlock); foreach (var catchClause in tryCatchNode.CatchBlocks) { if (catchClause.ExceptionVariable != null) implicitlyDefinedVariables.Add(catchClause.ExceptionVariable); tryCatchStmt.CatchClauses.Add( new Ast.CatchClause { Type = AstBuilder.ConvertType(catchClause.ExceptionType), VariableName = catchClause.ExceptionVariable == null ? null : catchClause.ExceptionVariable.Name, Body = TransformBlock(catchClause) }); } if (tryCatchNode.FinallyBlock != null) tryCatchStmt.FinallyBlock = TransformBlock(tryCatchNode.FinallyBlock); if (tryCatchNode.FaultBlock != null) { CatchClause cc = new CatchClause(); cc.Body = TransformBlock(tryCatchNode.FaultBlock); cc.Body.Add(new ThrowStatement()); // rethrow tryCatchStmt.CatchClauses.Add(cc); } yield return tryCatchStmt; } else if (node is ILBlock) { yield return TransformBlock((ILBlock)node); } else if (node is ILComment) { yield return new CommentStatement(((ILComment)node).Text).WithAnnotation(((ILComment)node).ILRanges); } else { throw new Exception("Unknown node type"); } } AstNode TransformExpression(ILExpression expr) { AstNode node = TransformByteCode(expr); Expression astExpr = node as Expression; if (astExpr != null) return Convert(astExpr, expr.InferredType, expr.ExpectedType); else return node; } AstNode TransformByteCode(ILExpression byteCode) { object operand = byteCode.Operand; AstType operandAsTypeRef = AstBuilder.ConvertType(operand as Cecil.TypeReference); List args = new List(); foreach(ILExpression arg in byteCode.Arguments) { args.Add((Ast.Expression)TransformExpression(arg)); } Ast.Expression arg1 = args.Count >= 1 ? args[0] : null; Ast.Expression arg2 = args.Count >= 2 ? args[1] : null; Ast.Expression arg3 = args.Count >= 3 ? args[2] : null; switch(byteCode.Code) { #region Arithmetic case ILCode.Add: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Add, arg2); case ILCode.Add_Ovf: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Add, arg2); case ILCode.Add_Ovf_Un: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Add, arg2); case ILCode.Div: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Divide, arg2); case ILCode.Div_Un: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Divide, arg2); case ILCode.Mul: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Multiply, arg2); case ILCode.Mul_Ovf: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Multiply, arg2); case ILCode.Mul_Ovf_Un: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Multiply, arg2); case ILCode.Rem: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Modulus, arg2); case ILCode.Rem_Un: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Modulus, arg2); case ILCode.Sub: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Subtract, arg2); case ILCode.Sub_Ovf: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Subtract, arg2); case ILCode.Sub_Ovf_Un: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Subtract, arg2); case ILCode.And: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.BitwiseAnd, arg2); case ILCode.Or: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.BitwiseOr, arg2); case ILCode.Xor: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.ExclusiveOr, arg2); case ILCode.Shl: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.ShiftLeft, arg2); case ILCode.Shr: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.ShiftRight, arg2); case ILCode.Shr_Un: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.ShiftRight, arg2); case ILCode.Neg: return new Ast.UnaryOperatorExpression(UnaryOperatorType.Minus, arg1); case ILCode.Not: return new Ast.UnaryOperatorExpression(UnaryOperatorType.BitNot, arg1); #endregion #region Arrays case ILCode.Newarr: case ILCode.InitArray: { var ace = new Ast.ArrayCreateExpression(); ace.Type = operandAsTypeRef; ComposedType ct = operandAsTypeRef as ComposedType; if (ct != null) { // change "new (int[,])[10] to new int[10][,]" ct.ArraySpecifiers.MoveTo(ace.AdditionalArraySpecifiers); } if (byteCode.Code == ILCode.InitArray) { ace.Initializer = new ArrayInitializerExpression(); ace.Initializer.Elements.AddRange(args); } else { ace.Arguments.Add(arg1); } return ace; } case ILCode.Ldlen: return arg1.Member("Length"); case ILCode.Ldelem_I: case ILCode.Ldelem_I1: case ILCode.Ldelem_I2: case ILCode.Ldelem_I4: case ILCode.Ldelem_I8: case ILCode.Ldelem_U1: case ILCode.Ldelem_U2: case ILCode.Ldelem_U4: case ILCode.Ldelem_R4: case ILCode.Ldelem_R8: case ILCode.Ldelem_Ref: case ILCode.Ldelem_Any: return arg1.Indexer(arg2); case ILCode.Ldelema: return MakeRef(arg1.Indexer(arg2)); case ILCode.Stelem_I: case ILCode.Stelem_I1: case ILCode.Stelem_I2: case ILCode.Stelem_I4: case ILCode.Stelem_I8: case ILCode.Stelem_R4: case ILCode.Stelem_R8: case ILCode.Stelem_Ref: case ILCode.Stelem_Any: return new Ast.AssignmentExpression(arg1.Indexer(arg2), arg3); #endregion #region Comparison case ILCode.Ceq: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Equality, arg2); case ILCode.Cgt: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.GreaterThan, arg2); case ILCode.Cgt_Un: { // can also mean Inequality, when used with object references TypeReference arg1Type = byteCode.Arguments[0].InferredType; if (arg1Type != null && !arg1Type.IsValueType) return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.InEquality, arg2); else return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.GreaterThan, arg2); } case ILCode.Clt: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.LessThan, arg2); case ILCode.Clt_Un: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.LessThan, arg2); #endregion #region Logical case ILCode.LogicNot: return new Ast.UnaryOperatorExpression(UnaryOperatorType.Not, arg1); case ILCode.LogicAnd: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.ConditionalAnd, arg2); case ILCode.LogicOr: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.ConditionalOr, arg2); case ILCode.TernaryOp: return new Ast.ConditionalExpression() { Condition = arg1, TrueExpression = arg2, FalseExpression = arg3 }; #endregion #region Branch case ILCode.Br: return new Ast.GotoStatement(((ILLabel)byteCode.Operand).Name); case ILCode.Brtrue: return new Ast.IfElseStatement() { Condition = arg1, TrueStatement = new BlockStatement() { new Ast.GotoStatement(((ILLabel)byteCode.Operand).Name) } }; case ILCode.LoopOrSwitchBreak: return new Ast.BreakStatement(); case ILCode.LoopContinue: return new Ast.ContinueStatement(); #endregion #region Conversions case ILCode.Conv_I1: case ILCode.Conv_I2: case ILCode.Conv_I4: case ILCode.Conv_I8: case ILCode.Conv_U1: case ILCode.Conv_U2: case ILCode.Conv_U4: case ILCode.Conv_U8: return arg1; // conversion is handled by Convert() function using the info from type analysis case ILCode.Conv_I: return arg1.CastTo(typeof(IntPtr)); // TODO case ILCode.Conv_U: return arg1.CastTo(typeof(UIntPtr)); // TODO case ILCode.Conv_R4: return arg1.CastTo(typeof(float)); case ILCode.Conv_R8: return arg1.CastTo(typeof(double)); case ILCode.Conv_R_Un: return arg1.CastTo(typeof(double)); // TODO case ILCode.Conv_Ovf_I1: case ILCode.Conv_Ovf_I2: case ILCode.Conv_Ovf_I4: case ILCode.Conv_Ovf_I8: case ILCode.Conv_Ovf_U1: case ILCode.Conv_Ovf_U2: case ILCode.Conv_Ovf_U4: case ILCode.Conv_Ovf_U8: case ILCode.Conv_Ovf_I1_Un: case ILCode.Conv_Ovf_I2_Un: case ILCode.Conv_Ovf_I4_Un: case ILCode.Conv_Ovf_I8_Un: case ILCode.Conv_Ovf_U1_Un: case ILCode.Conv_Ovf_U2_Un: case ILCode.Conv_Ovf_U4_Un: case ILCode.Conv_Ovf_U8_Un: return arg1; // conversion was handled by Convert() function using the info from type analysis case ILCode.Conv_Ovf_I: return arg1.CastTo(typeof(IntPtr)); // TODO case ILCode.Conv_Ovf_U: return arg1.CastTo(typeof(UIntPtr)); case ILCode.Conv_Ovf_I_Un: return arg1.CastTo(typeof(IntPtr)); case ILCode.Conv_Ovf_U_Un: return arg1.CastTo(typeof(UIntPtr)); case ILCode.Castclass: return arg1.CastTo(operandAsTypeRef); case ILCode.Unbox_Any: return arg1.CastTo(operandAsTypeRef); case ILCode.Isinst: return arg1.CastAs(operandAsTypeRef); case ILCode.Box: return arg1; case ILCode.Unbox: return InlineAssembly(byteCode, args); #endregion #region Indirect case ILCode.Ldind_I: case ILCode.Ldind_I1: case ILCode.Ldind_I2: case ILCode.Ldind_I4: case ILCode.Ldind_I8: case ILCode.Ldind_U1: case ILCode.Ldind_U2: case ILCode.Ldind_U4: case ILCode.Ldind_R4: case ILCode.Ldind_R8: case ILCode.Ldind_Ref: case ILCode.Ldobj: if (args[0] is DirectionExpression) return ((DirectionExpression)args[0]).Expression.Detach(); else return InlineAssembly(byteCode, args); case ILCode.Stind_I: case ILCode.Stind_I1: case ILCode.Stind_I2: case ILCode.Stind_I4: case ILCode.Stind_I8: case ILCode.Stind_R4: case ILCode.Stind_R8: case ILCode.Stind_Ref: case ILCode.Stobj: if (args[0] is DirectionExpression) return new AssignmentExpression(((DirectionExpression)args[0]).Expression.Detach(), args[1]); else return InlineAssembly(byteCode, args); #endregion case ILCode.Arglist: return InlineAssembly(byteCode, args); case ILCode.Break: return InlineAssembly(byteCode, args); case ILCode.Call: return TransformCall(false, operand, methodDef, args); case ILCode.Callvirt: return TransformCall(true, operand, methodDef, args); case ILCode.Ldftn: { Cecil.MethodReference cecilMethod = ((MethodReference)operand); var expr = new Ast.IdentifierExpression(cecilMethod.Name); expr.TypeArguments.AddRange(ConvertTypeArguments(cecilMethod)); expr.AddAnnotation(cecilMethod); return new IdentifierExpression("ldftn").Invoke(expr) .WithAnnotation(new Transforms.DelegateConstruction.Annotation(false)); } case ILCode.Ldvirtftn: { Cecil.MethodReference cecilMethod = ((MethodReference)operand); var expr = new Ast.IdentifierExpression(cecilMethod.Name); expr.TypeArguments.AddRange(ConvertTypeArguments(cecilMethod)); expr.AddAnnotation(cecilMethod); return new IdentifierExpression("ldvirtftn").Invoke(expr) .WithAnnotation(new Transforms.DelegateConstruction.Annotation(true)); } case ILCode.Calli: return InlineAssembly(byteCode, args); case ILCode.Ckfinite: return InlineAssembly(byteCode, args); case ILCode.Constrained: return InlineAssembly(byteCode, args); case ILCode.Cpblk: return InlineAssembly(byteCode, args); case ILCode.Cpobj: return InlineAssembly(byteCode, args); case ILCode.Dup: return arg1; case ILCode.Endfilter: return InlineAssembly(byteCode, args); case ILCode.Endfinally: return null; case ILCode.Initblk: return InlineAssembly(byteCode, args); case ILCode.Initobj: if (args[0] is DirectionExpression) return new AssignmentExpression(((DirectionExpression)args[0]).Expression.Detach(), MakeDefaultValue((TypeReference)operand)); else return InlineAssembly(byteCode, args); case ILCode.DefaultValue: return MakeDefaultValue((TypeReference)operand); case ILCode.Jmp: return InlineAssembly(byteCode, args); case ILCode.Ldarg: { if (methodDef.HasThis && ((ParameterDefinition)operand).Index < 0) { if (context.CurrentMethod.DeclaringType.IsValueType) return MakeRef(new Ast.ThisReferenceExpression()); else return new Ast.ThisReferenceExpression(); } else { var expr = new Ast.IdentifierExpression(((ParameterDefinition)operand).Name).WithAnnotation(operand); if (((ParameterDefinition)operand).ParameterType is ByReferenceType) return MakeRef(expr); else return expr; } } case ILCode.Ldarga: if (methodDef.HasThis && ((ParameterDefinition)operand).Index < 0) { return MakeRef(new Ast.ThisReferenceExpression()); } else { return MakeRef(new Ast.IdentifierExpression(((ParameterDefinition)operand).Name).WithAnnotation(operand)); } case ILCode.Ldc_I4: return AstBuilder.MakePrimitive((int)operand, byteCode.InferredType); case ILCode.Ldc_I8: return AstBuilder.MakePrimitive((long)operand, byteCode.InferredType); case ILCode.Ldc_R4: case ILCode.Ldc_R8: case ILCode.Ldc_Decimal: return new Ast.PrimitiveExpression(operand); case ILCode.Ldfld: if (arg1 is DirectionExpression) arg1 = ((DirectionExpression)arg1).Expression.Detach(); return arg1.Member(((FieldReference) operand).Name).WithAnnotation(operand); case ILCode.Ldsfld: return AstBuilder.ConvertType(((FieldReference)operand).DeclaringType) .Member(((FieldReference)operand).Name).WithAnnotation(operand); case ILCode.Stfld: if (arg1 is DirectionExpression) arg1 = ((DirectionExpression)arg1).Expression.Detach(); return new AssignmentExpression(arg1.Member(((FieldReference) operand).Name).WithAnnotation(operand), arg2); case ILCode.Stsfld: return new AssignmentExpression( AstBuilder.ConvertType(((FieldReference)operand).DeclaringType) .Member(((FieldReference)operand).Name).WithAnnotation(operand), arg1); case ILCode.Ldflda: return MakeRef(arg1.Member(((FieldReference) operand).Name).WithAnnotation(operand)); case ILCode.Ldsflda: return MakeRef( AstBuilder.ConvertType(((FieldReference)operand).DeclaringType) .Member(((FieldReference)operand).Name).WithAnnotation(operand)); case ILCode.Ldloc: localVariablesToDefine.Add((ILVariable)operand); return new Ast.IdentifierExpression(((ILVariable)operand).Name).WithAnnotation(operand); case ILCode.Ldloca: localVariablesToDefine.Add((ILVariable)operand); return MakeRef(new Ast.IdentifierExpression(((ILVariable)operand).Name).WithAnnotation(operand)); case ILCode.Ldnull: return new Ast.NullReferenceExpression(); case ILCode.Ldstr: return new Ast.PrimitiveExpression(operand); case ILCode.Ldtoken: if (operand is Cecil.TypeReference) { return new Ast.TypeOfExpression { Type = operandAsTypeRef }.Member("TypeHandle"); } else { return InlineAssembly(byteCode, args); } case ILCode.Leave: return new GotoStatement() { Label = ((ILLabel)operand).Name }; case ILCode.Localloc: return InlineAssembly(byteCode, args); case ILCode.Mkrefany: return InlineAssembly(byteCode, args); case ILCode.Newobj: { Cecil.TypeReference declaringType = ((MethodReference)operand).DeclaringType; if (declaringType is ArrayType) { ComposedType ct = AstBuilder.ConvertType((ArrayType)declaringType) as ComposedType; if (ct != null && ct.ArraySpecifiers.Count >= 1) { var ace = new Ast.ArrayCreateExpression(); ct.ArraySpecifiers.First().Remove(); ct.ArraySpecifiers.MoveTo(ace.AdditionalArraySpecifiers); ace.Type = ct; ace.Arguments.AddRange(args); return ace; } } var oce = new Ast.ObjectCreateExpression(); oce.Type = AstBuilder.ConvertType(declaringType); oce.Arguments.AddRange(args); return oce.WithAnnotation(operand); } case ILCode.No: return InlineAssembly(byteCode, args); case ILCode.Nop: return null; case ILCode.Pop: return arg1; case ILCode.Readonly: return InlineAssembly(byteCode, args); case ILCode.Refanytype: return InlineAssembly(byteCode, args); case ILCode.Refanyval: return InlineAssembly(byteCode, args); case ILCode.Ret: if (methodDef.ReturnType.FullName != "System.Void") { return new Ast.ReturnStatement { Expression = arg1 }; } else { return new Ast.ReturnStatement(); } case ILCode.Rethrow: return new Ast.ThrowStatement(); case ILCode.Sizeof: return new Ast.SizeOfExpression { Type = operandAsTypeRef }; case ILCode.Starg: return new Ast.AssignmentExpression(new Ast.IdentifierExpression(((ParameterDefinition)operand).Name).WithAnnotation(operand), arg1); case ILCode.Stloc: { ILVariable locVar = (ILVariable)operand; localVariablesToDefine.Add(locVar); return new Ast.AssignmentExpression(new Ast.IdentifierExpression(locVar.Name).WithAnnotation(locVar), arg1); } case ILCode.Switch: return InlineAssembly(byteCode, args); case ILCode.Tail: return InlineAssembly(byteCode, args); case ILCode.Throw: return new Ast.ThrowStatement { Expression = arg1 }; case ILCode.Unaligned: return InlineAssembly(byteCode, args); case ILCode.Volatile: return InlineAssembly(byteCode, args); case ILCode.YieldBreak: return new Ast.YieldBreakStatement(); case ILCode.YieldReturn: return new Ast.YieldStatement { Expression = arg1 }; default: throw new Exception("Unknown OpCode: " + byteCode.Code); } } Expression MakeDefaultValue(TypeReference type) { TypeDefinition typeDef = type.Resolve(); if (typeDef != null) { if (TypeAnalysis.IsIntegerOrEnum(typeDef)) return AstBuilder.MakePrimitive(0, typeDef); else if (!typeDef.IsValueType) return new NullReferenceExpression(); switch (typeDef.FullName) { case "System.Nullable`1": return new NullReferenceExpression(); case "System.Single": return new PrimitiveExpression(0f); case "System.Double": return new PrimitiveExpression(0.0); case "System.Decimal": return new PrimitiveExpression(0m); } } return new DefaultValueExpression { Type = AstBuilder.ConvertType(type) }; } static AstNode TransformCall(bool isVirtual, object operand, MethodDefinition methodDef, List args) { Cecil.MethodReference cecilMethod = ((MethodReference)operand); Ast.Expression target; List methodArgs = new List(args); if (cecilMethod.HasThis) { target = methodArgs[0]; methodArgs.RemoveAt(0); // Unpack any DirectionExpression that is used as target for the call // (calling methods on value types implicitly passes the first argument by reference) if (target is DirectionExpression) { target = ((DirectionExpression)target).Expression; target.Remove(); // detach from DirectionExpression } } else { target = new TypeReferenceExpression { Type = AstBuilder.ConvertType(cecilMethod.DeclaringType) }; } if (target is ThisReferenceExpression && !isVirtual) { // a non-virtual call on "this" might be a "base"-call. if ((cecilMethod.DeclaringType.IsGenericInstance ? cecilMethod.DeclaringType.GetElementType() : cecilMethod.DeclaringType) != methodDef.DeclaringType) { // If we're not calling a method in the current class; we must be calling one in the base class. target = new BaseReferenceExpression(); } } if (cecilMethod.Name == ".ctor" && cecilMethod.DeclaringType.IsValueType) { // On value types, the constructor can be called. // This is equivalent to 'target = new ValueType(args);'. ObjectCreateExpression oce = new ObjectCreateExpression(); oce.Type = AstBuilder.ConvertType(cecilMethod.DeclaringType); AdjustArgumentsForMethodCall(cecilMethod, methodArgs); oce.Arguments.AddRange(methodArgs); return new AssignmentExpression(target, oce); } if (cecilMethod.Name == "Get" && cecilMethod.DeclaringType is ArrayType && methodArgs.Count > 1) { return target.Indexer(methodArgs); } else if (cecilMethod.Name == "Set" && cecilMethod.DeclaringType is ArrayType && methodArgs.Count > 2) { return new AssignmentExpression(target.Indexer(methodArgs.GetRange(0, methodArgs.Count - 1)), methodArgs.Last()); } // Resolve the method to figure out whether it is an accessor: Cecil.MethodDefinition cecilMethodDef = cecilMethod.Resolve(); if (cecilMethodDef != null) { if (cecilMethodDef.IsGetter && methodArgs.Count == 0) { foreach (var prop in cecilMethodDef.DeclaringType.Properties) { if (prop.GetMethod == cecilMethodDef) return target.Member(prop.Name).WithAnnotation(prop); } } else if (cecilMethodDef.IsGetter) { // with parameters PropertyDefinition indexer = GetIndexer(cecilMethodDef); if (indexer != null) return target.Indexer(methodArgs).WithAnnotation(indexer); } else if (cecilMethodDef.IsSetter && methodArgs.Count == 1) { foreach (var prop in cecilMethodDef.DeclaringType.Properties) { if (prop.SetMethod == cecilMethodDef) return new Ast.AssignmentExpression(target.Member(prop.Name).WithAnnotation(prop), methodArgs[0]); } } else if (cecilMethodDef.IsSetter && methodArgs.Count > 1) { PropertyDefinition indexer = GetIndexer(cecilMethodDef); if (indexer != null) return new AssignmentExpression( target.Indexer(methodArgs.GetRange(0, methodArgs.Count - 1)).WithAnnotation(indexer), methodArgs[methodArgs.Count - 1] ); } else if (cecilMethodDef.IsAddOn && methodArgs.Count == 1) { foreach (var ev in cecilMethodDef.DeclaringType.Events) { if (ev.AddMethod == cecilMethodDef) { return new Ast.AssignmentExpression { Left = target.Member(ev.Name).WithAnnotation(ev), Operator = AssignmentOperatorType.Add, Right = methodArgs[0] }; } } } else if (cecilMethodDef.IsRemoveOn && methodArgs.Count == 1) { foreach (var ev in cecilMethodDef.DeclaringType.Events) { if (ev.RemoveMethod == cecilMethodDef) { return new Ast.AssignmentExpression { Left = target.Member(ev.Name).WithAnnotation(ev), Operator = AssignmentOperatorType.Subtract, Right = methodArgs[0] }; } } } else if (cecilMethodDef.Name == "Invoke" && cecilMethodDef.DeclaringType.BaseType != null && cecilMethodDef.DeclaringType.BaseType.FullName == "System.MulticastDelegate") { AdjustArgumentsForMethodCall(cecilMethod, methodArgs); return target.Invoke(methodArgs); } } // Default invocation AdjustArgumentsForMethodCall(cecilMethod, methodArgs); return target.Invoke(cecilMethod.Name, ConvertTypeArguments(cecilMethod), methodArgs).WithAnnotation(cecilMethod); } static void AdjustArgumentsForMethodCall(MethodReference cecilMethod, List methodArgs) { // Convert 'ref' into 'out' where necessary for (int i = 0; i < methodArgs.Count && i < cecilMethod.Parameters.Count; i++) { DirectionExpression dir = methodArgs[i] as DirectionExpression; if (dir != null && cecilMethod.Parameters[i].IsOut) dir.FieldDirection = FieldDirection.Out; } } static PropertyDefinition GetIndexer(MethodDefinition cecilMethodDef) { TypeDefinition typeDef = cecilMethodDef.DeclaringType; string indexerName = null; foreach (CustomAttribute ca in typeDef.CustomAttributes) { if (ca.Constructor.FullName == "System.Void System.Reflection.DefaultMemberAttribute::.ctor(System.String)") { indexerName = ca.ConstructorArguments.Single().Value as string; break; } } if (indexerName == null) return null; foreach (PropertyDefinition prop in typeDef.Properties) { if (prop.Name == indexerName) { if (prop.GetMethod == cecilMethodDef || prop.SetMethod == cecilMethodDef) return prop; } } return null; } #if DEBUG static readonly ConcurrentDictionary unhandledOpcodes = new ConcurrentDictionary(); #endif [Conditional("DEBUG")] public static void ClearUnhandledOpcodes() { #if DEBUG unhandledOpcodes.Clear(); #endif } [Conditional("DEBUG")] public static void PrintNumberOfUnhandledOpcodes() { #if DEBUG foreach (var pair in unhandledOpcodes) { Debug.WriteLine("AddMethodBodyBuilder unhandled opcode: {1}x {0}", pair.Key, pair.Value); } #endif } static Expression InlineAssembly(ILExpression byteCode, List args) { #if DEBUG unhandledOpcodes.AddOrUpdate(byteCode.Code, c => 1, (c, n) => n+1); #endif // Output the operand of the unknown IL code as well if (byteCode.Operand != null) { args.Insert(0, new IdentifierExpression(FormatByteCodeOperand(byteCode.Operand))); } return new IdentifierExpression(byteCode.Code.GetName()).Invoke(args); } static string FormatByteCodeOperand(object operand) { if (operand == null) { return string.Empty; //} else if (operand is ILExpression) { // return string.Format("IL_{0:X2}", ((ILExpression)operand).Offset); } else if (operand is MethodReference) { return ((MethodReference)operand).Name + "()"; } else if (operand is Cecil.TypeReference) { return ((Cecil.TypeReference)operand).FullName; } else if (operand is VariableDefinition) { return ((VariableDefinition)operand).Name; } else if (operand is ParameterDefinition) { return ((ParameterDefinition)operand).Name; } else if (operand is FieldReference) { return ((FieldReference)operand).Name; } else if (operand is string) { return "\"" + operand + "\""; } else if (operand is int) { return operand.ToString(); } else { return operand.ToString(); } } static IEnumerable ConvertTypeArguments(MethodReference cecilMethod) { GenericInstanceMethod g = cecilMethod as GenericInstanceMethod; if (g == null) return null; return g.GenericArguments.Select(t => AstBuilder.ConvertType(t)); } static Ast.DirectionExpression MakeRef(Ast.Expression expr) { return new DirectionExpression { Expression = expr, FieldDirection = FieldDirection.Ref }; } Ast.Expression Convert(Ast.Expression expr, Cecil.TypeReference actualType, Cecil.TypeReference reqType) { if (reqType == null || actualType == reqType) { return expr; } else { bool actualIsIntegerOrEnum = TypeAnalysis.IsIntegerOrEnum(actualType); bool requiredIsIntegerOrEnum = TypeAnalysis.IsIntegerOrEnum(reqType); if (TypeAnalysis.IsBoolean(reqType)) { if (TypeAnalysis.IsBoolean(actualType)) return expr; if (actualIsIntegerOrEnum) { return new BinaryOperatorExpression(expr, BinaryOperatorType.InEquality, AstBuilder.MakePrimitive(0, actualType)); } else { return new BinaryOperatorExpression(expr, BinaryOperatorType.InEquality, new NullReferenceExpression()); } } if (TypeAnalysis.IsBoolean(actualType) && requiredIsIntegerOrEnum) { return new ConditionalExpression { Condition = expr, TrueExpression = AstBuilder.MakePrimitive(1, reqType), FalseExpression = AstBuilder.MakePrimitive(0, reqType) }; } if (expr is PrimitiveExpression && !requiredIsIntegerOrEnum && TypeAnalysis.IsEnum(actualType)) { return expr.CastTo(AstBuilder.ConvertType(actualType)); } if (actualIsIntegerOrEnum && requiredIsIntegerOrEnum) { if (actualType.FullName == reqType.FullName) return expr; return expr.CastTo(AstBuilder.ConvertType(reqType)); } return expr; } } } }