using System; using System.Collections.Concurrent; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using System.Threading; using ICSharpCode.NRefactory.Utils; using Ast = ICSharpCode.NRefactory.CSharp; using ICSharpCode.NRefactory.CSharp; using Cecil = Mono.Cecil; using Mono.Cecil; using Mono.Cecil.Cil; using Decompiler.ControlFlow; namespace Decompiler { public class AstMethodBodyBuilder { MethodDefinition methodDef; TypeSystem typeSystem; DecompilerContext context; HashSet localVariablesToDefine = new HashSet(); // local variables that are missing a definition public static BlockStatement CreateMethodBody(MethodDefinition methodDef, DecompilerContext context) { MethodDefinition oldCurrentMethod = context.CurrentMethod; Debug.Assert(oldCurrentMethod == null || oldCurrentMethod == methodDef); context.CurrentMethod = methodDef; try { AstMethodBodyBuilder builder = new AstMethodBodyBuilder(); builder.methodDef = methodDef; builder.context = context; builder.typeSystem = methodDef.Module.TypeSystem; if (Debugger.IsAttached) { return builder.CreateMethodBody(); } else { try { return builder.CreateMethodBody(); } catch (OperationCanceledException) { throw; } catch (Exception ex) { throw new ICSharpCode.Decompiler.DecompilerException(methodDef, ex); } } } finally { context.CurrentMethod = oldCurrentMethod; } } public BlockStatement CreateMethodBody() { if (methodDef.Body == null) return null; context.CancellationToken.ThrowIfCancellationRequested(); ILBlock ilMethod = new ILBlock(); ILAstBuilder astBuilder = new ILAstBuilder(); ilMethod.Body = astBuilder.Build(methodDef, true); context.CancellationToken.ThrowIfCancellationRequested(); ILAstOptimizer bodyGraph = new ILAstOptimizer(); bodyGraph.Optimize(context, ilMethod); context.CancellationToken.ThrowIfCancellationRequested(); NameVariables.AssignNamesToVariables(methodDef.Parameters.Select(p => p.Name), astBuilder.Variables, ilMethod); context.CancellationToken.ThrowIfCancellationRequested(); Ast.BlockStatement astBlock = TransformBlock(ilMethod); CommentStatement.ReplaceAll(astBlock); // convert CommentStatements to Comments foreach (ILVariable v in localVariablesToDefine) { DeclareVariableInSmallestScope.DeclareVariable(astBlock, AstBuilder.ConvertType(v.Type), v.Name); } return astBlock; } Ast.BlockStatement TransformBlock(ILBlock block) { Ast.BlockStatement astBlock = new BlockStatement(); if (block != null) { if (block.EntryGoto != null) astBlock.Add((Statement)TransformExpression(block.EntryGoto)); foreach(ILNode node in block.Body) { astBlock.AddRange(TransformNode(node)); } } return astBlock; } IEnumerable TransformNode(ILNode node) { if (node is ILLabel) { yield return new Ast.LabelStatement { Label = ((ILLabel)node).Name }; } else if (node is ILExpression) { List ilRanges = ((ILExpression)node).GetILRanges(); AstNode codeExpr = TransformExpression((ILExpression)node); if (codeExpr != null) { codeExpr = codeExpr.WithAnnotation(ilRanges); if (codeExpr is Ast.Expression) { yield return new Ast.ExpressionStatement { Expression = (Ast.Expression)codeExpr }; } else if (codeExpr is Ast.Statement) { yield return (Ast.Statement)codeExpr; } else { throw new Exception(); } } } else if (node is ILWhileLoop) { ILWhileLoop ilLoop = (ILWhileLoop)node; if (ilLoop.PreLoopLabel != null) yield return TransformNode(ilLoop.PreLoopLabel).Single(); WhileStatement whileStmt = new WhileStatement() { Condition = ilLoop.Condition != null ? MakeBranchCondition(ilLoop.Condition) : new PrimitiveExpression(true), EmbeddedStatement = TransformBlock(ilLoop.BodyBlock) }; yield return whileStmt; if (ilLoop.PostLoopGoto != null) yield return (Statement)TransformExpression(ilLoop.PostLoopGoto); } else if (node is ILCondition) { ILCondition conditionalNode = (ILCondition)node; if (conditionalNode.FalseBlock.Body.Any()) { // Swap bodies yield return new Ast.IfElseStatement { Condition = new UnaryOperatorExpression(UnaryOperatorType.Not, MakeBranchCondition(conditionalNode.Condition)), TrueStatement = TransformBlock(conditionalNode.FalseBlock), FalseStatement = TransformBlock(conditionalNode.TrueBlock) }; } else { yield return new Ast.IfElseStatement { Condition = MakeBranchCondition(conditionalNode.Condition), TrueStatement = TransformBlock(conditionalNode.TrueBlock), FalseStatement = TransformBlock(conditionalNode.FalseBlock) }; } } else if (node is ILSwitch) { ILSwitch ilSwitch = (ILSwitch)node; SwitchStatement switchStmt = new SwitchStatement() { Expression = (Expression)TransformExpression(ilSwitch.Condition.Arguments[0]) }; for (int i = 0; i < ilSwitch.CaseBlocks.Count; i++) { SwitchSection section = new SwitchSection(); section.CaseLabels.Add(new CaseLabel() { Expression = new PrimitiveExpression(i) }); section.Statements.Add(TransformBlock(ilSwitch.CaseBlocks[i])); switchStmt.SwitchSections.Add(section); } yield return switchStmt; if (ilSwitch.DefaultGoto != null) yield return (Statement)TransformExpression(ilSwitch.DefaultGoto); } else if (node is ILTryCatchBlock) { ILTryCatchBlock tryCatchNode = ((ILTryCatchBlock)node); var tryCatchStmt = new Ast.TryCatchStatement(); tryCatchStmt.TryBlock = TransformBlock(tryCatchNode.TryBlock); foreach (var catchClause in tryCatchNode.CatchBlocks) { tryCatchStmt.CatchClauses.Add( new Ast.CatchClause { Type = AstBuilder.ConvertType(catchClause.ExceptionType), VariableName = catchClause.ExceptionVariable == null ? null : catchClause.ExceptionVariable.Name, Body = TransformBlock(catchClause) }); } if (tryCatchNode.FinallyBlock != null) tryCatchStmt.FinallyBlock = TransformBlock(tryCatchNode.FinallyBlock); yield return tryCatchStmt; } else if (node is ILBlock) { yield return TransformBlock((ILBlock)node); } else if (node is ILComment) { yield return new CommentStatement(((ILComment)node).Text).WithAnnotation(((ILComment)node).ILRanges); } else { throw new Exception("Unknown node type"); } } List TransformExpressionArguments(ILExpression expr) { List args = new List(); // Args generated by nested expressions (which must be closed) foreach(ILExpression arg in expr.Arguments) { args.Add((Ast.Expression)TransformExpression(arg)); } return args; } Ast.Expression MakeBranchCondition(ILExpression expr) { switch(expr.Code) { case ILCode.LogicNot: return new Ast.UnaryOperatorExpression(UnaryOperatorType.Not, MakeBranchCondition(expr.Arguments[0])); case ILCode.BrLogicAnd: return new Ast.BinaryOperatorExpression( MakeBranchCondition(expr.Arguments[0]), BinaryOperatorType.ConditionalAnd, MakeBranchCondition(expr.Arguments[1]) ); case ILCode.BrLogicOr: return new Ast.BinaryOperatorExpression( MakeBranchCondition(expr.Arguments[0]), BinaryOperatorType.ConditionalOr, MakeBranchCondition(expr.Arguments[1]) ); } List args = TransformExpressionArguments(expr); Ast.Expression arg1 = args.Count >= 1 ? args[0] : null; Ast.Expression arg2 = args.Count >= 2 ? args[1] : null; switch((Code)expr.Code) { case Code.Brfalse: return new Ast.UnaryOperatorExpression(UnaryOperatorType.Not, arg1); case Code.Brtrue: return arg1; case Code.Beq: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Equality, arg2); case Code.Bge: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.GreaterThanOrEqual, arg2); case Code.Bge_Un: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.GreaterThanOrEqual, arg2); case Code.Bgt: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.GreaterThan, arg2); case Code.Bgt_Un: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.GreaterThan, arg2); case Code.Ble: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.LessThanOrEqual, arg2); case Code.Ble_Un: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.LessThanOrEqual, arg2); case Code.Blt: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.LessThan, arg2); case Code.Blt_Un: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.LessThan, arg2); case Code.Bne_Un: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.InEquality, arg2); default: throw new Exception("Bad opcode"); } } static string FormatByteCodeOperand(object operand) { if (operand == null) { return string.Empty; //} else if (operand is ILExpression) { // return string.Format("IL_{0:X2}", ((ILExpression)operand).Offset); } else if (operand is MethodReference) { return ((MethodReference)operand).Name + "()"; } else if (operand is Cecil.TypeReference) { return ((Cecil.TypeReference)operand).FullName; } else if (operand is VariableDefinition) { return ((VariableDefinition)operand).Name; } else if (operand is ParameterDefinition) { return ((ParameterDefinition)operand).Name; } else if (operand is FieldReference) { return ((FieldReference)operand).Name; } else if (operand is string) { return "\"" + operand + "\""; } else if (operand is int) { return operand.ToString(); } else { return operand.ToString(); } } AstNode TransformExpression(ILExpression expr) { AstNode node = TransformByteCode(expr); Expression astExpr = node as Expression; if (astExpr != null) return Convert(astExpr, expr.InferredType, expr.ExpectedType); else return node; } AstNode TransformByteCode(ILExpression byteCode) { ILCode opCode = byteCode.Code; object operand = byteCode.Operand; AstType operandAsTypeRef = AstBuilder.ConvertType(operand as Cecil.TypeReference); ILExpression operandAsByteCode = operand as ILExpression; // Do branches first because TransformExpressionArguments does not work on arguments that are branches themselfs // TODO: We should probably have virtual instructions for these and not abuse branch codes as expressions switch(opCode) { case ILCode.Br: return new Ast.GotoStatement(((ILLabel)byteCode.Operand).Name); case ILCode.Brfalse: case ILCode.Brtrue: case ILCode.Beq: case ILCode.Bge: case ILCode.Bge_Un: case ILCode.Bgt: case ILCode.Bgt_Un: case ILCode.Ble: case ILCode.Ble_Un: case ILCode.Blt: case ILCode.Blt_Un: case ILCode.Bne_Un: case ILCode.BrLogicAnd: case ILCode.BrLogicOr: return new Ast.IfElseStatement() { Condition = MakeBranchCondition(byteCode), TrueStatement = new BlockStatement() { new Ast.GotoStatement(((ILLabel)byteCode.Operand).Name) } }; } List args = TransformExpressionArguments(byteCode); Ast.Expression arg1 = args.Count >= 1 ? args[0] : null; Ast.Expression arg2 = args.Count >= 2 ? args[1] : null; Ast.Expression arg3 = args.Count >= 3 ? args[2] : null; switch((Code)opCode) { #region Arithmetic case Code.Add: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Add, arg2); case Code.Add_Ovf: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Add, arg2); case Code.Add_Ovf_Un: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Add, arg2); case Code.Div: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Divide, arg2); case Code.Div_Un: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Divide, arg2); case Code.Mul: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Multiply, arg2); case Code.Mul_Ovf: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Multiply, arg2); case Code.Mul_Ovf_Un: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Multiply, arg2); case Code.Rem: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Modulus, arg2); case Code.Rem_Un: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Modulus, arg2); case Code.Sub: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Subtract, arg2); case Code.Sub_Ovf: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Subtract, arg2); case Code.Sub_Ovf_Un: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Subtract, arg2); case Code.And: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.BitwiseAnd, arg2); case Code.Or: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.BitwiseOr, arg2); case Code.Xor: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.ExclusiveOr, arg2); case Code.Shl: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.ShiftLeft, arg2); case Code.Shr: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.ShiftRight, arg2); case Code.Shr_Un: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.ShiftRight, arg2); case Code.Neg: return new Ast.UnaryOperatorExpression(UnaryOperatorType.Minus, arg1); case Code.Not: return new Ast.UnaryOperatorExpression(UnaryOperatorType.BitNot, arg1); #endregion #region Arrays case Code.Newarr: { var ace = new Ast.ArrayCreateExpression(); ace.Type = operandAsTypeRef; ace.Arguments.Add(arg1); return ace; } case Code.Ldlen: return arg1.Member("Length"); case Code.Ldelem_I: case Code.Ldelem_I1: case Code.Ldelem_I2: case Code.Ldelem_I4: case Code.Ldelem_I8: case Code.Ldelem_U1: case Code.Ldelem_U2: case Code.Ldelem_U4: case Code.Ldelem_R4: case Code.Ldelem_R8: case Code.Ldelem_Ref: return arg1.Indexer(arg2); case Code.Ldelem_Any: return InlineAssembly(byteCode, args); case Code.Ldelema: return MakeRef(arg1.Indexer(arg2)); case Code.Stelem_I: case Code.Stelem_I1: case Code.Stelem_I2: case Code.Stelem_I4: case Code.Stelem_I8: case Code.Stelem_R4: case Code.Stelem_R8: case Code.Stelem_Ref: return new Ast.AssignmentExpression(arg1.Indexer(arg2), arg3); case Code.Stelem_Any: return InlineAssembly(byteCode, args); #endregion #region Comparison case Code.Ceq: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.Equality, arg2); case Code.Cgt: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.GreaterThan, arg2); case Code.Cgt_Un: // can also mean Inequality, when used with object references { TypeReference arg1Type = byteCode.Arguments[0].InferredType; if (arg1Type != null && !arg1Type.IsValueType) return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.InEquality, arg2); else return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.GreaterThan, arg2); } case Code.Clt: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.LessThan, arg2); case Code.Clt_Un: return new Ast.BinaryOperatorExpression(arg1, BinaryOperatorType.LessThan, arg2); #endregion #region Conversions case Code.Conv_I1: case Code.Conv_I2: case Code.Conv_I4: case Code.Conv_I8: case Code.Conv_U1: case Code.Conv_U2: case Code.Conv_U4: case Code.Conv_U8: return arg1; // conversion is handled by Convert() function using the info from type analysis case Code.Conv_I: return arg1.CastTo(typeof(IntPtr)); // TODO case Code.Conv_U: return arg1.CastTo(typeof(UIntPtr)); // TODO case Code.Conv_R4: return arg1.CastTo(typeof(float)); case Code.Conv_R8: return arg1.CastTo(typeof(double)); case Code.Conv_R_Un: return arg1.CastTo(typeof(double)); // TODO case Code.Conv_Ovf_I1: case Code.Conv_Ovf_I2: case Code.Conv_Ovf_I4: case Code.Conv_Ovf_I8: case Code.Conv_Ovf_U1: case Code.Conv_Ovf_U2: case Code.Conv_Ovf_U4: case Code.Conv_Ovf_U8: case Code.Conv_Ovf_I1_Un: case Code.Conv_Ovf_I2_Un: case Code.Conv_Ovf_I4_Un: case Code.Conv_Ovf_I8_Un: case Code.Conv_Ovf_U1_Un: case Code.Conv_Ovf_U2_Un: case Code.Conv_Ovf_U4_Un: case Code.Conv_Ovf_U8_Un: return arg1; // conversion was handled by Convert() function using the info from type analysis case Code.Conv_Ovf_I: return arg1.CastTo(typeof(IntPtr)); // TODO case Code.Conv_Ovf_U: return arg1.CastTo(typeof(UIntPtr)); case Code.Conv_Ovf_I_Un: return arg1.CastTo(typeof(IntPtr)); case Code.Conv_Ovf_U_Un: return arg1.CastTo(typeof(UIntPtr)); case Code.Castclass: case Code.Unbox_Any: return arg1.CastTo(operandAsTypeRef); case Code.Isinst: return arg1.CastAs(operandAsTypeRef); case Code.Box: return arg1; case Code.Unbox: return InlineAssembly(byteCode, args); #endregion #region Indirect case Code.Ldind_I: case Code.Ldind_I1: case Code.Ldind_I2: case Code.Ldind_I4: case Code.Ldind_I8: case Code.Ldind_U1: case Code.Ldind_U2: case Code.Ldind_U4: case Code.Ldind_R4: case Code.Ldind_R8: case Code.Ldind_Ref: case Code.Ldobj: if (args[0] is DirectionExpression) return ((DirectionExpression)args[0]).Expression.Detach(); else return InlineAssembly(byteCode, args); case Code.Stind_I: case Code.Stind_I1: case Code.Stind_I2: case Code.Stind_I4: case Code.Stind_I8: case Code.Stind_R4: case Code.Stind_R8: case Code.Stind_Ref: case Code.Stobj: if (args[0] is DirectionExpression) return new AssignmentExpression(((DirectionExpression)args[0]).Expression.Detach(), args[1]); else return InlineAssembly(byteCode, args); #endregion case Code.Arglist: return InlineAssembly(byteCode, args); case Code.Break: return InlineAssembly(byteCode, args); case Code.Call: return TransformCall(false, operand, methodDef, args); case Code.Callvirt: return TransformCall(true, operand, methodDef, args); case Code.Ldftn: { Cecil.MethodReference cecilMethod = ((MethodReference)operand); var expr = new Ast.IdentifierExpression(cecilMethod.Name); expr.TypeArguments.AddRange(ConvertTypeArguments(cecilMethod)); expr.AddAnnotation(cecilMethod); return new IdentifierExpression("ldftn").Invoke(expr) .WithAnnotation(new Transforms.DelegateConstruction.Annotation(false)); } case Code.Ldvirtftn: { Cecil.MethodReference cecilMethod = ((MethodReference)operand); var expr = new Ast.IdentifierExpression(cecilMethod.Name); expr.TypeArguments.AddRange(ConvertTypeArguments(cecilMethod)); expr.AddAnnotation(cecilMethod); return new IdentifierExpression("ldvirtftn").Invoke(expr) .WithAnnotation(new Transforms.DelegateConstruction.Annotation(true)); } case Code.Calli: return InlineAssembly(byteCode, args); case Code.Ckfinite: return InlineAssembly(byteCode, args); case Code.Constrained: return InlineAssembly(byteCode, args); case Code.Cpblk: return InlineAssembly(byteCode, args); case Code.Cpobj: return InlineAssembly(byteCode, args); case Code.Dup: return arg1; case Code.Endfilter: return InlineAssembly(byteCode, args); case Code.Endfinally: return null; case Code.Initblk: return InlineAssembly(byteCode, args); case Code.Initobj: if (args[0] is DirectionExpression) return new AssignmentExpression(((DirectionExpression)args[0]).Expression.Detach(), new DefaultValueExpression { Type = operandAsTypeRef }); else return InlineAssembly(byteCode, args); case Code.Jmp: return InlineAssembly(byteCode, args); case Code.Ldarg: if (methodDef.HasThis && ((ParameterDefinition)operand).Index < 0) { if (context.CurrentMethod.DeclaringType.IsValueType) return MakeRef(new Ast.ThisReferenceExpression()); else return new Ast.ThisReferenceExpression(); } else { var expr = new Ast.IdentifierExpression(((ParameterDefinition)operand).Name).WithAnnotation(operand); if (((ParameterDefinition)operand).ParameterType is ByReferenceType) return MakeRef(expr); else return expr; } case Code.Ldarga: if (methodDef.HasThis && ((ParameterDefinition)operand).Index < 0) { return MakeRef(new Ast.ThisReferenceExpression()); } else { return MakeRef(new Ast.IdentifierExpression(((ParameterDefinition)operand).Name).WithAnnotation(operand)); } case Code.Ldc_I4: return MakePrimitive((int)operand, byteCode.InferredType); case Code.Ldc_I8: case Code.Ldc_R4: case Code.Ldc_R8: return new Ast.PrimitiveExpression(operand); case Code.Ldfld: if (arg1 is DirectionExpression) arg1 = ((DirectionExpression)arg1).Expression.Detach(); return arg1.Member(((FieldReference) operand).Name).WithAnnotation(operand); case Code.Ldsfld: return AstBuilder.ConvertType(((FieldReference)operand).DeclaringType) .Member(((FieldReference)operand).Name).WithAnnotation(operand); case Code.Stfld: if (arg1 is DirectionExpression) arg1 = ((DirectionExpression)arg1).Expression.Detach(); return new AssignmentExpression(arg1.Member(((FieldReference) operand).Name).WithAnnotation(operand), arg2); case Code.Stsfld: return new AssignmentExpression( AstBuilder.ConvertType(((FieldReference)operand).DeclaringType) .Member(((FieldReference)operand).Name).WithAnnotation(operand), arg1); case Code.Ldflda: return MakeRef(arg1.Member(((FieldReference) operand).Name).WithAnnotation(operand)); case Code.Ldsflda: return MakeRef( AstBuilder.ConvertType(((FieldReference)operand).DeclaringType) .Member(((FieldReference)operand).Name).WithAnnotation(operand)); case Code.Ldloc: localVariablesToDefine.Add((ILVariable)operand); return new Ast.IdentifierExpression(((ILVariable)operand).Name).WithAnnotation(operand); case Code.Ldloca: localVariablesToDefine.Add((ILVariable)operand); return MakeRef(new Ast.IdentifierExpression(((ILVariable)operand).Name).WithAnnotation(operand)); case Code.Ldnull: return new Ast.NullReferenceExpression(); case Code.Ldstr: return new Ast.PrimitiveExpression(operand); case Code.Ldtoken: if (operand is Cecil.TypeReference) { return new Ast.TypeOfExpression { Type = operandAsTypeRef }.Member("TypeHandle"); } else { return InlineAssembly(byteCode, args); } case Code.Leave: return null; case Code.Localloc: return InlineAssembly(byteCode, args); case Code.Mkrefany: return InlineAssembly(byteCode, args); case Code.Newobj: { Cecil.TypeReference declaringType = ((MethodReference)operand).DeclaringType; // TODO: Ensure that the corrent overloaded constructor is called /*if (declaringType is ArrayType) { shouldn't this be newarr? return new Ast.ArrayCreateExpression { Type = AstBuilder.ConvertType((ArrayType)declaringType), Arguments = args }; }*/ var oce = new Ast.ObjectCreateExpression(); oce.Type = AstBuilder.ConvertType(declaringType); oce.Arguments.AddRange(args); return oce.WithAnnotation(operand); } case Code.No: return InlineAssembly(byteCode, args); case Code.Nop: return null; case Code.Pop: return arg1; case Code.Readonly: return InlineAssembly(byteCode, args); case Code.Refanytype: return InlineAssembly(byteCode, args); case Code.Refanyval: return InlineAssembly(byteCode, args); case Code.Ret: { if (methodDef.ReturnType.FullName != "System.Void") { return new Ast.ReturnStatement { Expression = arg1 }; } else { return new Ast.ReturnStatement(); } } case Code.Rethrow: return new Ast.ThrowStatement(); case Code.Sizeof: return new Ast.SizeOfExpression { Type = operandAsTypeRef }; case Code.Starg: return new Ast.AssignmentExpression(new Ast.IdentifierExpression(((ParameterDefinition)operand).Name).WithAnnotation(operand), arg1); case Code.Stloc: { ILVariable locVar = (ILVariable)operand; localVariablesToDefine.Add(locVar); return new Ast.AssignmentExpression(new Ast.IdentifierExpression(locVar.Name).WithAnnotation(locVar), arg1); } case Code.Switch: return InlineAssembly(byteCode, args); case Code.Tail: return InlineAssembly(byteCode, args); case Code.Throw: return new Ast.ThrowStatement { Expression = arg1 }; case Code.Unaligned: return InlineAssembly(byteCode, args); case Code.Volatile: return InlineAssembly(byteCode, args); default: throw new Exception("Unknown OpCode: " + opCode); } } static AstNode TransformCall(bool isVirtual, object operand, MethodDefinition methodDef, List args) { Cecil.MethodReference cecilMethod = ((MethodReference)operand); Ast.Expression target; List methodArgs = new List(args); if (cecilMethod.HasThis) { target = methodArgs[0]; methodArgs.RemoveAt(0); // Unpack any DirectionExpression that is used as target for the call // (calling methods on value types implicitly passes the first argument by reference) if (target is DirectionExpression) { target = ((DirectionExpression)target).Expression; target.Remove(); // detach from DirectionExpression } } else { target = new TypeReferenceExpression { Type = AstBuilder.ConvertType(cecilMethod.DeclaringType) }; } if (target is ThisReferenceExpression && !isVirtual) { // a non-virtual call on "this" might be a "base"-call. if (cecilMethod.DeclaringType != methodDef.DeclaringType) { // If we're not calling a method in the current class; we must be calling one in the base class. target = new BaseReferenceExpression(); } } // Resolve the method to figure out whether it is an accessor: Cecil.MethodDefinition cecilMethodDef = cecilMethod.Resolve(); if (cecilMethodDef != null) { if (cecilMethodDef.IsGetter && methodArgs.Count == 0) { foreach (var prop in cecilMethodDef.DeclaringType.Properties) { if (prop.GetMethod == cecilMethodDef) return target.Member(prop.Name).WithAnnotation(prop); } } else if (cecilMethodDef.IsGetter) { // with parameters PropertyDefinition indexer = GetIndexer(cecilMethodDef); if (indexer != null) return target.Indexer(methodArgs).WithAnnotation(indexer); } else if (cecilMethodDef.IsSetter && methodArgs.Count == 1) { foreach (var prop in cecilMethodDef.DeclaringType.Properties) { if (prop.SetMethod == cecilMethodDef) return new Ast.AssignmentExpression(target.Member(prop.Name).WithAnnotation(prop), methodArgs[0]); } } else if (cecilMethodDef.IsSetter && methodArgs.Count > 1) { PropertyDefinition indexer = GetIndexer(cecilMethodDef); if (indexer != null) return new AssignmentExpression( target.Indexer(methodArgs.GetRange(0, methodArgs.Count - 1)).WithAnnotation(indexer), methodArgs[methodArgs.Count - 1] ); } else if (cecilMethodDef.IsAddOn && methodArgs.Count == 1) { foreach (var ev in cecilMethodDef.DeclaringType.Events) { if (ev.AddMethod == cecilMethodDef) { return new Ast.AssignmentExpression { Left = target.Member(ev.Name).WithAnnotation(ev), Operator = AssignmentOperatorType.Add, Right = methodArgs[0] }; } } } else if (cecilMethodDef.IsRemoveOn && methodArgs.Count == 1) { foreach (var ev in cecilMethodDef.DeclaringType.Events) { if (ev.RemoveMethod == cecilMethodDef) { return new Ast.AssignmentExpression { Left = target.Member(ev.Name).WithAnnotation(ev), Operator = AssignmentOperatorType.Subtract, Right = methodArgs[0] }; } } } } // Default invocation return target.Invoke(cecilMethod.Name, ConvertTypeArguments(cecilMethod), methodArgs).WithAnnotation(cecilMethod); } static PropertyDefinition GetIndexer(MethodDefinition cecilMethodDef) { TypeDefinition typeDef = cecilMethodDef.DeclaringType; string indexerName = null; foreach (CustomAttribute ca in typeDef.CustomAttributes) { if (ca.Constructor.FullName == "System.Void System.Reflection.DefaultMemberAttribute::.ctor(System.String)") { indexerName = ca.ConstructorArguments.Single().Value as string; break; } } if (indexerName == null) return null; foreach (PropertyDefinition prop in typeDef.Properties) { if (prop.Name == indexerName) { if (prop.GetMethod == cecilMethodDef || prop.SetMethod == cecilMethodDef) return prop; } } return null; } #if DEBUG static readonly ConcurrentDictionary unhandledOpcodes = new ConcurrentDictionary(); #endif [Conditional("DEBUG")] public static void ClearUnhandledOpcodes() { #if DEBUG unhandledOpcodes.Clear(); #endif } [Conditional("DEBUG")] public static void PrintNumberOfUnhandledOpcodes() { #if DEBUG foreach (var pair in unhandledOpcodes) { Debug.WriteLine("AddMethodBodyBuilder unhandled opcode: {1}x {0}", pair.Key, pair.Value); } #endif } static Expression InlineAssembly(ILExpression byteCode, List args) { #if DEBUG unhandledOpcodes.AddOrUpdate(byteCode.Code, c => 1, (c, n) => n+1); #endif // Output the operand of the unknown IL code as well if (byteCode.Operand != null) { args.Insert(0, new IdentifierExpression(FormatByteCodeOperand(byteCode.Operand))); } return new IdentifierExpression(byteCode.Code.GetName()).Invoke(args); } static IEnumerable ConvertTypeArguments(MethodReference cecilMethod) { GenericInstanceMethod g = cecilMethod as GenericInstanceMethod; if (g == null) return null; return g.GenericArguments.Select(t => AstBuilder.ConvertType(t)); } static Ast.DirectionExpression MakeRef(Ast.Expression expr) { return new DirectionExpression { Expression = expr, FieldDirection = FieldDirection.Ref }; } Ast.Expression Convert(Ast.Expression expr, Cecil.TypeReference actualType, Cecil.TypeReference reqType) { if (reqType == null || actualType == reqType) { return expr; } else { bool actualIsIntegerOrEnum = TypeAnalysis.IsIntegerOrEnum(actualType); bool requiredIsIntegerOrEnum = TypeAnalysis.IsIntegerOrEnum(reqType); if (TypeAnalysis.IsBoolean(reqType)) { if (TypeAnalysis.IsBoolean(actualType)) return expr; if (actualIsIntegerOrEnum) { return new BinaryOperatorExpression(expr, BinaryOperatorType.InEquality, MakePrimitive(0, actualType)); } else { return new BinaryOperatorExpression(expr, BinaryOperatorType.InEquality, new NullReferenceExpression()); } } if (TypeAnalysis.IsBoolean(actualType) && requiredIsIntegerOrEnum) { return new ConditionalExpression { Condition = expr, TrueExpression = MakePrimitive(1, reqType), FalseExpression = MakePrimitive(0, reqType) }; } if (actualIsIntegerOrEnum && requiredIsIntegerOrEnum) { return expr.CastTo(AstBuilder.ConvertType(reqType)); } return expr; } } Expression MakePrimitive(long val, TypeReference type) { if (TypeAnalysis.IsBoolean(type) && val == 0) return new Ast.PrimitiveExpression(false); else if (TypeAnalysis.IsBoolean(type) && val == 1) return new Ast.PrimitiveExpression(true); if (type != null) { // cannot rely on type.IsValueType, it's not set for typerefs (but is set for typespecs) TypeDefinition enumDefinition = type.Resolve(); if (enumDefinition != null && enumDefinition.IsEnum) { foreach (FieldDefinition field in enumDefinition.Fields) { if (field.IsStatic && object.Equals(CSharpPrimitiveCast.Cast(TypeCode.Int64, field.Constant, false), val)) return AstBuilder.ConvertType(enumDefinition).Member(field.Name).WithAnnotation(field); else if (!field.IsStatic && field.IsRuntimeSpecialName) type = field.FieldType; // use primitive type of the enum } } } TypeCode code = TypeAnalysis.GetTypeCode(type); if (code == TypeCode.Object) return new Ast.PrimitiveExpression((int)val); else return new Ast.PrimitiveExpression(CSharpPrimitiveCast.Cast(code, val, false)); } } }