// Copyright (c) 2015 Siegfried Pammer // // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE // FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. using ICSharpCode.Decompiler.IL; using ICSharpCode.Decompiler.TypeSystem.Implementation; namespace ICSharpCode.Decompiler.TypeSystem { public static class TypeUtils { public const int NativeIntSize = 6; // between 4 (Int32) and 8 (Int64) /// /// Gets the size (in bytes) of the input type. /// Returns NativeIntSize for pointer-sized types. /// Returns 0 for structs and other types of unknown size. /// public static int GetSize(this IType type) { switch (type.Kind) { case TypeKind.Pointer: case TypeKind.ByReference: case TypeKind.Class: case TypeKind.NInt: case TypeKind.NUInt: return NativeIntSize; case TypeKind.Enum: type = type.GetEnumUnderlyingType(); break; case TypeKind.ModOpt: case TypeKind.ModReq: return type.SkipModifiers().GetSize(); } var typeDef = type.GetDefinition(); if (typeDef == null) return 0; switch (typeDef.KnownTypeCode) { case KnownTypeCode.Boolean: case KnownTypeCode.SByte: case KnownTypeCode.Byte: return 1; case KnownTypeCode.Char: case KnownTypeCode.Int16: case KnownTypeCode.UInt16: return 2; case KnownTypeCode.Int32: case KnownTypeCode.UInt32: case KnownTypeCode.Single: return 4; case KnownTypeCode.IntPtr: case KnownTypeCode.UIntPtr: return NativeIntSize; case KnownTypeCode.Int64: case KnownTypeCode.UInt64: case KnownTypeCode.Double: return 8; } return 0; } /// /// Gets the size of the input stack type. /// /// /// * 4 for I4, /// * 8 for I8, /// * NativeIntSize for I and Ref, /// * 0 otherwise (O, F, Void, Unknown). /// public static int GetSize(this StackType type) { switch (type) { case StackType.I4: return 4; case StackType.I8: return 8; case StackType.I: case StackType.Ref: return NativeIntSize; default: return 0; } } public static IType GetLargerType(IType type1, IType type2) { return GetSize(type1) >= GetSize(type2) ? type1 : type2; } /// /// Gets whether the type is a small integer type. /// Small integer types are: /// * bool, sbyte, byte, char, short, ushort /// * any enums that have a small integer type as underlying type /// public static bool IsSmallIntegerType(this IType type) { int size = GetSize(type); return size > 0 && size < 4; } /// /// Gets whether the type is a C# small integer type: byte, sbyte, short or ushort. /// /// Unlike the ILAst, C# does not consider bool, char or enums to be small integers. /// public static bool IsCSharpSmallIntegerType(this IType type) { switch (type.GetDefinition()?.KnownTypeCode) { case KnownTypeCode.Byte: case KnownTypeCode.SByte: case KnownTypeCode.Int16: case KnownTypeCode.UInt16: return true; default: return false; } } /// /// Gets whether the type is a C# 9 native integer type: nint or nuint. /// /// Returns false for (U)IntPtr. /// public static bool IsCSharpNativeIntegerType(this IType type) { switch (type.Kind) { case TypeKind.NInt: case TypeKind.NUInt: return true; default: return false; } } /// /// Gets whether the type is a C# primitive integer type: byte, sbyte, short, ushort, int, uint, long and ulong. /// /// Unlike the ILAst, C# does not consider bool, enums, pointers or IntPtr to be integers. /// public static bool IsCSharpPrimitiveIntegerType(this IType type) { switch (type.GetDefinition()?.KnownTypeCode) { case KnownTypeCode.Byte: case KnownTypeCode.SByte: case KnownTypeCode.Int16: case KnownTypeCode.UInt16: case KnownTypeCode.Int32: case KnownTypeCode.UInt32: case KnownTypeCode.Int64: case KnownTypeCode.UInt64: return true; default: return false; } } /// /// Gets whether the type is an IL integer type. /// Returns true for I4, I, or I8. /// public static bool IsIntegerType(this StackType type) { switch (type) { case StackType.I4: case StackType.I: case StackType.I8: return true; default: return false; } } /// /// Gets whether the type is an IL floating point type. /// Returns true for F4 or F8. /// public static bool IsFloatType(this StackType type) { switch (type) { case StackType.F4: case StackType.F8: return true; default: return false; } } /// /// Gets whether reading/writing an element of accessType from the pointer /// is equivalent to reading/writing an element of the pointer's element type. /// /// /// The access semantics may sligthly differ on read accesses of small integer types, /// due to zero extension vs. sign extension when the signs differ. /// public static bool IsCompatiblePointerTypeForMemoryAccess(IType pointerType, IType accessType) { IType memoryType; if (pointerType is PointerType || pointerType is ByReferenceType) memoryType = ((TypeWithElementType)pointerType).ElementType; else return false; return IsCompatibleTypeForMemoryAccess(memoryType, accessType); } /// /// Gets whether reading/writing an element of accessType from the pointer /// is equivalent to reading/writing an element of the memoryType. /// /// /// The access semantics may sligthly differ on read accesses of small integer types, /// due to zero extension vs. sign extension when the signs differ. /// public static bool IsCompatibleTypeForMemoryAccess(IType memoryType, IType accessType) { memoryType = memoryType.AcceptVisitor(NormalizeTypeVisitor.TypeErasure); accessType = accessType.AcceptVisitor(NormalizeTypeVisitor.TypeErasure); if (memoryType.Equals(accessType)) return true; // If the types are not equal, the access still might produce equal results in some cases: // 1) Both types are reference types if (memoryType.IsReferenceType == true && accessType.IsReferenceType == true) return true; // 2) Both types are integer types of equal size StackType memoryStackType = memoryType.GetStackType(); StackType accessStackType = accessType.GetStackType(); if (memoryStackType == accessStackType && memoryStackType.IsIntegerType() && GetSize(memoryType) == GetSize(accessType)) return true; // 3) Any of the types is unknown: we assume they are compatible. return memoryType.Kind == TypeKind.Unknown || accessType.Kind == TypeKind.Unknown; } /// /// Gets the stack type corresponding to this type. /// public static StackType GetStackType(this IType type) { switch (type.Kind) { case TypeKind.Unknown: if (type.IsReferenceType == true) { return StackType.O; } return StackType.Unknown; case TypeKind.ByReference: return StackType.Ref; case TypeKind.Pointer: case TypeKind.NInt: case TypeKind.NUInt: case TypeKind.FunctionPointer: return StackType.I; case TypeKind.TypeParameter: // Type parameters are always considered StackType.O, even // though they might be instantiated with primitive types. return StackType.O; case TypeKind.ModOpt: case TypeKind.ModReq: return type.SkipModifiers().GetStackType(); } ITypeDefinition typeDef = type.GetEnumUnderlyingType().GetDefinition(); if (typeDef == null) return StackType.O; switch (typeDef.KnownTypeCode) { case KnownTypeCode.Boolean: case KnownTypeCode.Char: case KnownTypeCode.SByte: case KnownTypeCode.Byte: case KnownTypeCode.Int16: case KnownTypeCode.UInt16: case KnownTypeCode.Int32: case KnownTypeCode.UInt32: return StackType.I4; case KnownTypeCode.Int64: case KnownTypeCode.UInt64: return StackType.I8; case KnownTypeCode.Single: return StackType.F4; case KnownTypeCode.Double: return StackType.F8; case KnownTypeCode.Void: return StackType.Void; case KnownTypeCode.IntPtr: case KnownTypeCode.UIntPtr: return StackType.I; default: return StackType.O; } } /// /// If type is an enumeration type, returns the underlying type. /// Otherwise, returns type unmodified. /// public static IType GetEnumUnderlyingType(this IType type) { type = type.SkipModifiers(); return (type.Kind == TypeKind.Enum) ? type.GetDefinition().EnumUnderlyingType : type; } /// /// Gets the sign of the input type. /// /// /// Integer types (including IntPtr/UIntPtr) return the sign as expected. /// Floating point types and decimal are considered to be signed. /// char, bool and pointer types (e.g. void*) are unsigned. /// Enums have a sign based on their underlying type. /// All other types return Sign.None. /// public static Sign GetSign(this IType type) { type = type.SkipModifiers(); switch (type.Kind) { case TypeKind.Pointer: case TypeKind.NUInt: case TypeKind.FunctionPointer: return Sign.Unsigned; case TypeKind.NInt: return Sign.Signed; } var typeDef = type.GetEnumUnderlyingType().GetDefinition(); if (typeDef == null) return Sign.None; switch (typeDef.KnownTypeCode) { case KnownTypeCode.SByte: case KnownTypeCode.Int16: case KnownTypeCode.Int32: case KnownTypeCode.Int64: case KnownTypeCode.IntPtr: case KnownTypeCode.Single: case KnownTypeCode.Double: case KnownTypeCode.Decimal: return Sign.Signed; case KnownTypeCode.UIntPtr: case KnownTypeCode.Char: case KnownTypeCode.Boolean: case KnownTypeCode.Byte: case KnownTypeCode.UInt16: case KnownTypeCode.UInt32: case KnownTypeCode.UInt64: return Sign.Unsigned; default: return Sign.None; } } /// /// Maps the KnownTypeCode values to the corresponding PrimitiveTypes. /// public static PrimitiveType ToPrimitiveType(this KnownTypeCode knownTypeCode) { switch (knownTypeCode) { case KnownTypeCode.SByte: return PrimitiveType.I1; case KnownTypeCode.Int16: return PrimitiveType.I2; case KnownTypeCode.Int32: return PrimitiveType.I4; case KnownTypeCode.Int64: return PrimitiveType.I8; case KnownTypeCode.Single: return PrimitiveType.R4; case KnownTypeCode.Double: return PrimitiveType.R8; case KnownTypeCode.Byte: return PrimitiveType.U1; case KnownTypeCode.UInt16: case KnownTypeCode.Char: return PrimitiveType.U2; case KnownTypeCode.UInt32: return PrimitiveType.U4; case KnownTypeCode.UInt64: return PrimitiveType.U8; case KnownTypeCode.IntPtr: return PrimitiveType.I; case KnownTypeCode.UIntPtr: return PrimitiveType.U; default: return PrimitiveType.None; } } /// /// Maps the KnownTypeCode values to the corresponding PrimitiveTypes. /// public static PrimitiveType ToPrimitiveType(this IType type) { type = type.SkipModifiers(); switch (type.Kind) { case TypeKind.Unknown: return PrimitiveType.Unknown; case TypeKind.ByReference: return PrimitiveType.Ref; case TypeKind.NInt: case TypeKind.FunctionPointer: return PrimitiveType.I; case TypeKind.NUInt: return PrimitiveType.U; } var def = type.GetEnumUnderlyingType().GetDefinition(); return def != null ? def.KnownTypeCode.ToPrimitiveType() : PrimitiveType.None; } /// /// Maps the PrimitiveType values to the corresponding KnownTypeCodes. /// public static KnownTypeCode ToKnownTypeCode(this PrimitiveType primitiveType) { switch (primitiveType) { case PrimitiveType.I1: return KnownTypeCode.SByte; case PrimitiveType.I2: return KnownTypeCode.Int16; case PrimitiveType.I4: return KnownTypeCode.Int32; case PrimitiveType.I8: return KnownTypeCode.Int64; case PrimitiveType.R4: return KnownTypeCode.Single; case PrimitiveType.R8: case PrimitiveType.R: return KnownTypeCode.Double; case PrimitiveType.U1: return KnownTypeCode.Byte; case PrimitiveType.U2: return KnownTypeCode.UInt16; case PrimitiveType.U4: return KnownTypeCode.UInt32; case PrimitiveType.U8: return KnownTypeCode.UInt64; case PrimitiveType.I: return KnownTypeCode.IntPtr; case PrimitiveType.U: return KnownTypeCode.UIntPtr; default: return KnownTypeCode.None; } } public static KnownTypeCode ToKnownTypeCode(this StackType stackType, Sign sign = Sign.None) { switch (stackType) { case StackType.I4: return sign == Sign.Unsigned ? KnownTypeCode.UInt32 : KnownTypeCode.Int32; case StackType.I8: return sign == Sign.Unsigned ? KnownTypeCode.UInt64 : KnownTypeCode.Int64; case StackType.I: return sign == Sign.Unsigned ? KnownTypeCode.UIntPtr : KnownTypeCode.IntPtr; case StackType.F4: return KnownTypeCode.Single; case StackType.F8: return KnownTypeCode.Double; case StackType.O: return KnownTypeCode.Object; case StackType.Void: return KnownTypeCode.Void; default: return KnownTypeCode.None; } } public static PrimitiveType ToPrimitiveType(this StackType stackType, Sign sign = Sign.None) { switch (stackType) { case StackType.I4: return sign == Sign.Unsigned ? PrimitiveType.U4 : PrimitiveType.I4; case StackType.I8: return sign == Sign.Unsigned ? PrimitiveType.U8 : PrimitiveType.I8; case StackType.I: return sign == Sign.Unsigned ? PrimitiveType.U : PrimitiveType.I; case StackType.F4: return PrimitiveType.R4; case StackType.F8: return PrimitiveType.R8; case StackType.Ref: return PrimitiveType.Ref; case StackType.Unknown: return PrimitiveType.Unknown; default: return PrimitiveType.None; } } } public enum Sign : byte { None, Signed, Unsigned } }