#nullable enable
// Copyright (c) 2018 Daniel Grunwald
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
using System.Diagnostics;
using System.Linq;
using ICSharpCode.Decompiler.IL.Transforms;
namespace ICSharpCode.Decompiler.IL
{
///
/// For a nullable input, gets the underlying value.
///
/// There are three possible input types:
/// * reference type: if input!=null, evaluates to the input
/// * nullable value type: if input.Has_Value, evaluates to input.GetValueOrDefault()
/// * generic type: behavior depends on the type at runtime.
/// If non-nullable value type, unconditionally evaluates to the input.
///
/// If the input is null, control-flow is tranferred to the nearest surrounding nullable.rewrap
/// instruction.
///
partial class NullableUnwrap
{
///
/// Whether the argument is dereferenced before checking for a null input.
/// If true, the argument must be a managed reference to a valid input type.
///
///
/// This mode exists because the C# compiler sometimes avoids copying the whole Nullable{T} struct
/// before the null-check.
/// The underlying struct T is still copied by the GetValueOrDefault() call, but only in the non-null case.
///
public readonly bool RefInput;
///
/// Consider the following code generated for t?.Method()
on a generic t:
/// if (comp(box ``0(ldloc t) != ldnull)) newobj Nullable..ctor(constrained[``0].callvirt Method(ldloca t)) else default.value Nullable
/// Here, the method is called on the original reference, and any mutations performed by the method will be visible in the original variable.
///
/// To represent this, we use a nullable.unwrap with ResultType==Ref: instead of returning the input value,
/// the input reference is returned in the non-null case.
/// Note that in case the generic type ends up being Nullable{T}, this means methods will end up being called on
/// the nullable type, not on the underlying type. However, this ends up making no difference, because the only methods
/// that can be called that way are those on System.Object. All the virtual methods are overridden in Nullable{T}
/// and end up forwarding to T; and the non-virtual methods cause boxing which strips the Nullable{T} wrapper.
///
/// RefOutput can only be used if RefInput is also used.
///
public bool RefOutput { get => ResultType == StackType.Ref; }
public NullableUnwrap(StackType unwrappedType, ILInstruction argument, bool refInput = false)
: base(OpCode.NullableUnwrap, argument)
{
this.ResultType = unwrappedType;
this.RefInput = refInput;
if (unwrappedType == StackType.Ref)
{
Debug.Assert(refInput);
}
}
internal override void CheckInvariant(ILPhase phase)
{
base.CheckInvariant(phase);
if (this.RefInput)
{
Debug.Assert(Argument.ResultType == StackType.Ref, "nullable.unwrap expects reference to nullable type as input");
}
else
{
Debug.Assert(Argument.ResultType == StackType.O, "nullable.unwrap expects nullable type as input");
}
Debug.Assert(Ancestors.Any(a => a is NullableRewrap));
}
public override void WriteTo(ITextOutput output, ILAstWritingOptions options)
{
output.Write("nullable.unwrap.");
if (RefInput)
{
output.Write("refinput.");
}
output.Write(ResultType);
output.Write('(');
Argument.WriteTo(output, options);
output.Write(')');
}
public override StackType ResultType { get; }
}
partial class NullableRewrap
{
internal override void CheckInvariant(ILPhase phase)
{
base.CheckInvariant(phase);
Debug.Assert(Argument.HasFlag(InstructionFlags.MayUnwrapNull));
}
public override InstructionFlags DirectFlags => InstructionFlags.ControlFlow;
protected override InstructionFlags ComputeFlags()
{
// Convert MayUnwrapNull flag to ControlFlow flag.
// Also, remove EndpointUnreachable flag, because the end-point is reachable through
// the implicit nullable.unwrap branch.
const InstructionFlags flagsToRemove = InstructionFlags.MayUnwrapNull | InstructionFlags.EndPointUnreachable;
return (Argument.Flags & ~flagsToRemove) | InstructionFlags.ControlFlow;
}
public override StackType ResultType {
get {
if (Argument.ResultType == StackType.Void)
return StackType.Void;
else
return StackType.O;
}
}
internal override bool PrepareExtract(int childIndex, ExtractionContext ctx)
{
return base.PrepareExtract(childIndex, ctx)
&& (ctx.FlagsBeingMoved & InstructionFlags.MayUnwrapNull) == 0;
}
internal override bool CanInlineIntoSlot(int childIndex, ILInstruction expressionBeingMoved)
{
// Inlining into nullable.rewrap is OK unless the expression being inlined
// contains a nullable.wrap that isn't being re-wrapped within the expression being inlined.
return base.CanInlineIntoSlot(childIndex, expressionBeingMoved)
&& !expressionBeingMoved.HasFlag(InstructionFlags.MayUnwrapNull);
}
}
}