#nullable enable // Copyright (c) 2018 Daniel Grunwald // // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE // FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. using System.Diagnostics; using System.Linq; using ICSharpCode.Decompiler.IL.Transforms; namespace ICSharpCode.Decompiler.IL { /// /// For a nullable input, gets the underlying value. /// /// There are three possible input types: /// * reference type: if input!=null, evaluates to the input /// * nullable value type: if input.Has_Value, evaluates to input.GetValueOrDefault() /// * generic type: behavior depends on the type at runtime. /// If non-nullable value type, unconditionally evaluates to the input. /// /// If the input is null, control-flow is tranferred to the nearest surrounding nullable.rewrap /// instruction. /// partial class NullableUnwrap { /// /// Whether the argument is dereferenced before checking for a null input. /// If true, the argument must be a managed reference to a valid input type. /// /// /// This mode exists because the C# compiler sometimes avoids copying the whole Nullable{T} struct /// before the null-check. /// The underlying struct T is still copied by the GetValueOrDefault() call, but only in the non-null case. /// public readonly bool RefInput; /// /// Consider the following code generated for t?.Method() on a generic t: /// if (comp(box ``0(ldloc t) != ldnull)) newobj Nullable..ctor(constrained[``0].callvirt Method(ldloca t)) else default.value Nullable /// Here, the method is called on the original reference, and any mutations performed by the method will be visible in the original variable. /// /// To represent this, we use a nullable.unwrap with ResultType==Ref: instead of returning the input value, /// the input reference is returned in the non-null case. /// Note that in case the generic type ends up being Nullable{T}, this means methods will end up being called on /// the nullable type, not on the underlying type. However, this ends up making no difference, because the only methods /// that can be called that way are those on System.Object. All the virtual methods are overridden in Nullable{T} /// and end up forwarding to T; and the non-virtual methods cause boxing which strips the Nullable{T} wrapper. /// /// RefOutput can only be used if RefInput is also used. /// public bool RefOutput { get => ResultType == StackType.Ref; } public NullableUnwrap(StackType unwrappedType, ILInstruction argument, bool refInput = false) : base(OpCode.NullableUnwrap, argument) { this.ResultType = unwrappedType; this.RefInput = refInput; if (unwrappedType == StackType.Ref) { Debug.Assert(refInput); } } internal override void CheckInvariant(ILPhase phase) { base.CheckInvariant(phase); if (this.RefInput) { Debug.Assert(Argument.ResultType == StackType.Ref, "nullable.unwrap expects reference to nullable type as input"); } else { Debug.Assert(Argument.ResultType == StackType.O, "nullable.unwrap expects nullable type as input"); } Debug.Assert(Ancestors.Any(a => a is NullableRewrap)); } public override void WriteTo(ITextOutput output, ILAstWritingOptions options) { output.Write("nullable.unwrap."); if (RefInput) { output.Write("refinput."); } output.Write(ResultType); output.Write('('); Argument.WriteTo(output, options); output.Write(')'); } public override StackType ResultType { get; } } partial class NullableRewrap { internal override void CheckInvariant(ILPhase phase) { base.CheckInvariant(phase); Debug.Assert(Argument.HasFlag(InstructionFlags.MayUnwrapNull)); } public override InstructionFlags DirectFlags => InstructionFlags.ControlFlow; protected override InstructionFlags ComputeFlags() { // Convert MayUnwrapNull flag to ControlFlow flag. // Also, remove EndpointUnreachable flag, because the end-point is reachable through // the implicit nullable.unwrap branch. const InstructionFlags flagsToRemove = InstructionFlags.MayUnwrapNull | InstructionFlags.EndPointUnreachable; return (Argument.Flags & ~flagsToRemove) | InstructionFlags.ControlFlow; } public override StackType ResultType { get { if (Argument.ResultType == StackType.Void) return StackType.Void; else return StackType.O; } } internal override bool PrepareExtract(int childIndex, ExtractionContext ctx) { return base.PrepareExtract(childIndex, ctx) && (ctx.FlagsBeingMoved & InstructionFlags.MayUnwrapNull) == 0; } internal override bool CanInlineIntoSlot(int childIndex, ILInstruction expressionBeingMoved) { // Inlining into nullable.rewrap is OK unless the expression being inlined // contains a nullable.wrap that isn't being re-wrapped within the expression being inlined. return base.CanInlineIntoSlot(childIndex, expressionBeingMoved) && !expressionBeingMoved.HasFlag(InstructionFlags.MayUnwrapNull); } } }