// Copyright (c) 2015 Siegfried Pammer // // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE // FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. using System; using System.Diagnostics; using System.Linq; using System.Linq.Expressions; using ICSharpCode.Decompiler.TypeSystem; using ICSharpCode.Decompiler.Util; namespace ICSharpCode.Decompiler.IL.Transforms { /// /// Constructs compound assignments and inline assignments. /// /// /// This is a statement transform; /// but some portions are executed as an expression transform instead /// (with HandleCompoundAssign() as entry point) /// public class TransformAssignment : IStatementTransform { StatementTransformContext context; void IStatementTransform.Run(Block block, int pos, StatementTransformContext context) { this.context = context; if (context.Settings.MakeAssignmentExpressions) { if (TransformInlineAssignmentStObjOrCall(block, pos) || TransformInlineAssignmentLocal(block, pos)) { // both inline assignments create a top-level stloc which might affect inlining context.RequestRerun(); return; } } if (context.Settings.IntroduceIncrementAndDecrement) { if (TransformPostIncDecOperatorWithInlineStore(block, pos) || TransformPostIncDecOperator(block, pos)) { // again, new top-level stloc might need inlining: context.RequestRerun(); return; } } } /// /// stloc s(value) /// stloc l(ldloc s) /// stobj(..., ldloc s) /// where ... is pure and does not use s or l, /// and where neither the 'stloc s' nor the 'stobj' truncates /// --> /// stloc l(stobj (..., value)) /// /// e.g. used for inline assignment to instance field /// /// -or- /// /// /// stloc s(value) /// stobj (..., ldloc s) /// where ... is pure and does not use s, and where the 'stobj' does not truncate /// --> /// stloc s(stobj (..., value)) /// /// e.g. used for inline assignment to static field /// /// -or- /// /// /// stloc s(value) /// call set_Property(..., ldloc s) /// where the '...' arguments are pure and not using 's' /// --> /// stloc s(Block InlineAssign { call set_Property(..., stloc i(value)); final: ldloc i }) /// new temporary 'i' has type of the property; transform only valid if 'stloc i' doesn't truncate /// bool TransformInlineAssignmentStObjOrCall(Block block, int pos) { var inst = block.Instructions[pos] as StLoc; // in some cases it can be a compiler-generated local if (inst == null || (inst.Variable.Kind != VariableKind.StackSlot && inst.Variable.Kind != VariableKind.Local)) return false; if (IsImplicitTruncation(inst.Value, inst.Variable.Type, context.TypeSystem)) { // 'stloc s' is implicitly truncating the value return false; } ILVariable local; int nextPos; if (block.Instructions[pos + 1] is StLoc localStore) { // with extra local if (localStore.Variable.Kind != VariableKind.Local || !localStore.Value.MatchLdLoc(inst.Variable)) return false; // if we're using an extra local, we'll delete "s", so check that that doesn't have any additional uses if (!(inst.Variable.IsSingleDefinition && inst.Variable.LoadCount == 2)) return false; local = localStore.Variable; nextPos = pos + 2; } else { local = inst.Variable; localStore = null; nextPos = pos + 1; if (local.LoadCount == 1 && local.AddressCount == 0) { // inline assignment would produce a dead store in this case, which is ugly // and causes problems with the deconstruction transform. return false; } } if (block.Instructions[nextPos] is StObj stobj) { if (!stobj.Value.MatchLdLoc(inst.Variable)) return false; if (!SemanticHelper.IsPure(stobj.Target.Flags) || inst.Variable.IsUsedWithin(stobj.Target)) return false; var pointerType = stobj.Target.InferType(context.TypeSystem); IType newType = stobj.Type; if (TypeUtils.IsCompatiblePointerTypeForMemoryAccess(pointerType, stobj.Type)) { if (pointerType is ByReferenceType byref) newType = byref.ElementType; else if (pointerType is PointerType pointer) newType = pointer.ElementType; } if (IsImplicitTruncation(inst.Value, newType, context.TypeSystem)) { // 'stobj' is implicitly truncating the value return false; } context.Step("Inline assignment stobj", stobj); stobj.Type = newType; block.Instructions.Remove(localStore); block.Instructions.Remove(stobj); stobj.Value = inst.Value; inst.ReplaceWith(new StLoc(local, stobj)); // note: our caller will trigger a re-run, which will call HandleStObjCompoundAssign if applicable return true; } else if (block.Instructions[nextPos] is CallInstruction call) { // call must be a setter call: if (!(call.OpCode == OpCode.Call || call.OpCode == OpCode.CallVirt)) return false; if (call.ResultType != StackType.Void || call.Arguments.Count == 0) return false; IProperty property = call.Method.AccessorOwner as IProperty; if (property == null) return false; if (!call.Method.Equals(property.Setter)) return false; if (!(property.IsIndexer || property.Setter.Parameters.Count == 1)) { // this is a parameterized property, which cannot be expressed as C# code. // setter calls are not valid in expression context, if property syntax cannot be used. return false; } if (!call.Arguments.Last().MatchLdLoc(inst.Variable)) return false; foreach (var arg in call.Arguments.SkipLast(1)) { if (!SemanticHelper.IsPure(arg.Flags) || inst.Variable.IsUsedWithin(arg)) return false; } if (IsImplicitTruncation(inst.Value, call.Method.Parameters.Last().Type, context.TypeSystem)) { // setter call is implicitly truncating the value return false; } // stloc s(Block InlineAssign { call set_Property(..., stloc i(value)); final: ldloc i }) context.Step("Inline assignment call", call); block.Instructions.Remove(localStore); block.Instructions.Remove(call); var newVar = context.Function.RegisterVariable(VariableKind.StackSlot, call.Method.Parameters.Last().Type); call.Arguments[call.Arguments.Count - 1] = new StLoc(newVar, inst.Value); var inlineBlock = new Block(BlockKind.CallInlineAssign) { Instructions = { call }, FinalInstruction = new LdLoc(newVar) }; inst.ReplaceWith(new StLoc(local, inlineBlock)); // because the ExpressionTransforms don't look into inline blocks, manually trigger HandleCallCompoundAssign if (HandleCompoundAssign(call, context)) { // if we did construct a compound assignment, it should have made our inline block redundant: Debug.Assert(!inlineBlock.IsConnected); } return true; } else { return false; } } static ILInstruction UnwrapSmallIntegerConv(ILInstruction inst, out Conv conv) { conv = inst as Conv; if (conv != null && conv.Kind == ConversionKind.Truncate && conv.TargetType.IsSmallIntegerType()) { // for compound assignments to small integers, the compiler emits a "conv" instruction return conv.Argument; } else { return inst; } } static bool ValidateCompoundAssign(BinaryNumericInstruction binary, Conv conv, IType targetType, DecompilerSettings settings) { if (!NumericCompoundAssign.IsBinaryCompatibleWithType(binary, targetType, settings)) return false; if (conv != null && !(conv.TargetType == targetType.ToPrimitiveType() && conv.CheckForOverflow == binary.CheckForOverflow)) return false; // conv does not match binary operation return true; } static bool MatchingGetterAndSetterCalls(CallInstruction getterCall, CallInstruction setterCall, out Action finalizeMatch) { finalizeMatch = null; if (getterCall == null || setterCall == null || !IsSameMember(getterCall.Method.AccessorOwner, setterCall.Method.AccessorOwner)) return false; if (setterCall.OpCode != getterCall.OpCode) return false; var owner = getterCall.Method.AccessorOwner as IProperty; if (owner == null || !IsSameMember(getterCall.Method, owner.Getter) || !IsSameMember(setterCall.Method, owner.Setter)) return false; if (setterCall.Arguments.Count != getterCall.Arguments.Count + 1) return false; // Ensure that same arguments are passed to getterCall and setterCall: for (int j = 0; j < getterCall.Arguments.Count; j++) { if (setterCall.Arguments[j].MatchStLoc(out var v) && v.IsSingleDefinition && v.LoadCount == 1) { if (getterCall.Arguments[j].MatchLdLoc(v)) { // OK, setter call argument is saved in temporary that is re-used for getter call if (finalizeMatch == null) { finalizeMatch = AdjustArguments; } continue; } } if (!SemanticHelper.IsPure(getterCall.Arguments[j].Flags)) return false; if (!getterCall.Arguments[j].Match(setterCall.Arguments[j]).Success) return false; } return true; void AdjustArguments(ILTransformContext context) { Debug.Assert(setterCall.Arguments.Count == getterCall.Arguments.Count + 1); for (int j = 0; j < getterCall.Arguments.Count; j++) { if (setterCall.Arguments[j].MatchStLoc(out var v, out var value)) { Debug.Assert(v.IsSingleDefinition && v.LoadCount == 1); Debug.Assert(getterCall.Arguments[j].MatchLdLoc(v)); getterCall.Arguments[j] = value; } } } } /// /// Transform compound assignments where the return value is not being used, /// or where there's an inlined assignment within the setter call. /// /// Patterns handled: /// 1. /// callvirt set_Property(ldloc S_1, binary.op(callvirt get_Property(ldloc S_1), value)) /// ==> compound.op.new(callvirt get_Property(ldloc S_1), value) /// 2. /// callvirt set_Property(ldloc S_1, stloc v(binary.op(callvirt get_Property(ldloc S_1), value))) /// ==> stloc v(compound.op.new(callvirt get_Property(ldloc S_1), value)) /// 3. /// stobj(target, binary.op(ldobj(target), ...)) /// where target is pure /// => compound.op(target, ...) /// /// /// Called by ExpressionTransforms, or after the inline-assignment transform for setters. /// internal static bool HandleCompoundAssign(ILInstruction compoundStore, StatementTransformContext context) { if (!context.Settings.MakeAssignmentExpressions || !context.Settings.IntroduceIncrementAndDecrement) return false; if (compoundStore is CallInstruction && compoundStore.SlotInfo != Block.InstructionSlot) { // replacing 'call set_Property' with a compound assignment instruction // changes the return value of the expression, so this is only valid on block-level. return false; } if (!IsCompoundStore(compoundStore, out var targetType, out var setterValue, context.TypeSystem)) return false; // targetType = The type of the property/field/etc. being stored to. // setterValue = The value being stored. var storeInSetter = setterValue as StLoc; if (storeInSetter != null) { // We'll move the stloc to top-level: // callvirt set_Property(ldloc S_1, stloc v(binary.op(callvirt get_Property(ldloc S_1), value))) // ==> stloc v(compound.op.new(callvirt get_Property(ldloc S_1), value)) setterValue = storeInSetter.Value; if (storeInSetter.Variable.Type.IsSmallIntegerType()) { // 'stloc v' implicitly truncates the value. // Ensure that type of 'v' matches the type of the property: if (storeInSetter.Variable.Type.GetSize() != targetType.GetSize()) return false; if (storeInSetter.Variable.Type.GetSign() != targetType.GetSign()) return false; } } ILInstruction newInst; if (UnwrapSmallIntegerConv(setterValue, out var smallIntConv) is BinaryNumericInstruction binary) { if (compoundStore is StLoc) { // transform local variables only for user-defined operators return false; } if (!IsMatchingCompoundLoad(binary.Left, compoundStore, out var target, out var targetKind, out var finalizeMatch, forbiddenVariable: storeInSetter?.Variable)) return false; if (!ValidateCompoundAssign(binary, smallIntConv, targetType, context.Settings)) return false; context.Step($"Compound assignment (binary.numeric)", compoundStore); finalizeMatch?.Invoke(context); newInst = new NumericCompoundAssign( binary, target, targetKind, binary.Right, targetType, CompoundEvalMode.EvaluatesToNewValue); } else if (setterValue is Call operatorCall && operatorCall.Method.IsOperator) { if (operatorCall.Arguments.Count == 0) return false; if (!IsMatchingCompoundLoad(operatorCall.Arguments[0], compoundStore, out var target, out var targetKind, out var finalizeMatch, forbiddenVariable: storeInSetter?.Variable)) return false; ILInstruction rhs; if (operatorCall.Arguments.Count == 2) { if (CSharp.ExpressionBuilder.GetAssignmentOperatorTypeFromMetadataName(operatorCall.Method.Name) == null) return false; rhs = operatorCall.Arguments[1]; } else if (operatorCall.Arguments.Count == 1) { if (!(operatorCall.Method.Name == "op_Increment" || operatorCall.Method.Name == "op_Decrement")) return false; // use a dummy node so that we don't need a dedicated instruction for user-defined unary operator calls rhs = new LdcI4(1); } else { return false; } if (operatorCall.IsLifted) return false; // TODO: add tests and think about whether nullables need special considerations context.Step($"Compound assignment (user-defined binary)", compoundStore); finalizeMatch?.Invoke(context); newInst = new UserDefinedCompoundAssign(operatorCall.Method, CompoundEvalMode.EvaluatesToNewValue, target, targetKind, rhs); } else if (setterValue is DynamicBinaryOperatorInstruction dynamicBinaryOp) { if (!IsMatchingCompoundLoad(dynamicBinaryOp.Left, compoundStore, out var target, out var targetKind, out var finalizeMatch, forbiddenVariable: storeInSetter?.Variable)) return false; context.Step($"Compound assignment (dynamic binary)", compoundStore); finalizeMatch?.Invoke(context); newInst = new DynamicCompoundAssign(ToCompound(dynamicBinaryOp.Operation), dynamicBinaryOp.BinderFlags, target, dynamicBinaryOp.LeftArgumentInfo, dynamicBinaryOp.Right, dynamicBinaryOp.RightArgumentInfo, targetKind); static ExpressionType ToCompound(ExpressionType from) { return from switch { ExpressionType.Add => ExpressionType.AddAssign, ExpressionType.AddChecked => ExpressionType.AddAssignChecked, ExpressionType.And => ExpressionType.AndAssign, ExpressionType.Divide => ExpressionType.DivideAssign, ExpressionType.ExclusiveOr => ExpressionType.ExclusiveOrAssign, ExpressionType.LeftShift => ExpressionType.LeftShiftAssign, ExpressionType.Modulo => ExpressionType.ModuloAssign, ExpressionType.Multiply => ExpressionType.MultiplyAssign, ExpressionType.MultiplyChecked => ExpressionType.MultiplyAssignChecked, ExpressionType.Or => ExpressionType.OrAssign, ExpressionType.Power => ExpressionType.PowerAssign, ExpressionType.RightShift => ExpressionType.RightShiftAssign, ExpressionType.Subtract => ExpressionType.SubtractAssign, ExpressionType.SubtractChecked => ExpressionType.SubtractAssignChecked, _ => from }; } } else if (setterValue is Call concatCall && UserDefinedCompoundAssign.IsStringConcat(concatCall.Method)) { // setterValue is a string.Concat() invocation if (compoundStore is StLoc) { // transform local variables only for user-defined operators return false; } if (concatCall.Arguments.Count != 2) return false; // for now we only support binary compound assignments if (!targetType.IsKnownType(KnownTypeCode.String)) return false; if (!IsMatchingCompoundLoad(concatCall.Arguments[0], compoundStore, out var target, out var targetKind, out var finalizeMatch, forbiddenVariable: storeInSetter?.Variable)) return false; context.Step($"Compound assignment (string concatenation)", compoundStore); finalizeMatch?.Invoke(context); newInst = new UserDefinedCompoundAssign(concatCall.Method, CompoundEvalMode.EvaluatesToNewValue, target, targetKind, concatCall.Arguments[1]); } else { return false; } newInst.AddILRange(setterValue); if (storeInSetter != null) { storeInSetter.Value = newInst; newInst = storeInSetter; context.RequestRerun(); // moving stloc to top-level might trigger inlining } compoundStore.ReplaceWith(newInst); if (newInst.Parent is Block inlineAssignBlock && inlineAssignBlock.Kind == BlockKind.CallInlineAssign) { // It's possible that we first replaced the instruction in an inline-assign helper block. // In such a situation, we know from the block invariant that we're have a storeInSetter. Debug.Assert(storeInSetter != null); Debug.Assert(storeInSetter.Variable.IsSingleDefinition && storeInSetter.Variable.LoadCount == 1); Debug.Assert(inlineAssignBlock.Instructions.Single() == storeInSetter); Debug.Assert(inlineAssignBlock.FinalInstruction.MatchLdLoc(storeInSetter.Variable)); // Block CallInlineAssign { stloc I_0(compound.op(...)); final: ldloc I_0 } // --> compound.op(...) inlineAssignBlock.ReplaceWith(storeInSetter.Value); } return true; } /// /// stloc s(value) /// stloc l(ldloc s) /// where neither 'stloc s' nor 'stloc l' truncates the value /// --> /// stloc s(stloc l(value)) /// bool TransformInlineAssignmentLocal(Block block, int pos) { var inst = block.Instructions[pos] as StLoc; var nextInst = block.Instructions.ElementAtOrDefault(pos + 1) as StLoc; if (inst == null || nextInst == null) return false; if (inst.Variable.Kind != VariableKind.StackSlot) return false; if (!(nextInst.Variable.Kind == VariableKind.Local || nextInst.Variable.Kind == VariableKind.Parameter)) return false; if (!nextInst.Value.MatchLdLoc(inst.Variable)) return false; if (IsImplicitTruncation(inst.Value, inst.Variable.Type, context.TypeSystem)) { // 'stloc s' is implicitly truncating the stack value return false; } if (IsImplicitTruncation(inst.Value, nextInst.Variable.Type, context.TypeSystem)) { // 'stloc l' is implicitly truncating the stack value return false; } if (nextInst.Variable.StackType == StackType.Ref) { // ref locals need to be initialized when they are declared, so // we can only use inline assignments when we know that the // ref local is definitely assigned. // We don't have an easy way to check for that in this transform, // so avoid inline assignments to ref locals for now. return false; } context.Step("Inline assignment to local variable", inst); var value = inst.Value; var var = nextInst.Variable; var stackVar = inst.Variable; block.Instructions.RemoveAt(pos); nextInst.ReplaceWith(new StLoc(stackVar, new StLoc(var, value))); return true; } /// /// Gets whether 'stobj type(..., value)' would evaluate to a different value than 'value' /// due to implicit truncation. /// static internal bool IsImplicitTruncation(ILInstruction value, IType type, ICompilation compilation, bool allowNullableValue = false) { if (!type.IsSmallIntegerType()) { // Implicit truncation in ILAst only happens for small integer types; // other types of implicit truncation in IL cause the ILReader to insert // conv instructions. return false; } // With small integer types, test whether the value might be changed by // truncation (based on type.GetSize()) followed by sign/zero extension (based on type.GetSign()). // (it's OK to have false-positives here if we're unsure) if (value.MatchLdcI4(out int val)) { switch (type.GetEnumUnderlyingType().GetDefinition()?.KnownTypeCode) { case KnownTypeCode.Boolean: return !(val == 0 || val == 1); case KnownTypeCode.Byte: return !(val >= byte.MinValue && val <= byte.MaxValue); case KnownTypeCode.SByte: return !(val >= sbyte.MinValue && val <= sbyte.MaxValue); case KnownTypeCode.Int16: return !(val >= short.MinValue && val <= short.MaxValue); case KnownTypeCode.UInt16: case KnownTypeCode.Char: return !(val >= ushort.MinValue && val <= ushort.MaxValue); } } else if (value is Conv conv) { return conv.TargetType != type.ToPrimitiveType(); } else if (value is Comp) { return false; // comp returns 0 or 1, which always fits } else if (value is BinaryNumericInstruction bni) { switch (bni.Operator) { case BinaryNumericOperator.BitAnd: case BinaryNumericOperator.BitOr: case BinaryNumericOperator.BitXor: // If both input values fit into the type without truncation, // the result of a binary operator will also fit. return IsImplicitTruncation(bni.Left, type, compilation, allowNullableValue) || IsImplicitTruncation(bni.Right, type, compilation, allowNullableValue); } } else if (value is IfInstruction ifInst) { return IsImplicitTruncation(ifInst.TrueInst, type, compilation, allowNullableValue) || IsImplicitTruncation(ifInst.FalseInst, type, compilation, allowNullableValue); } else { IType inferredType = value.InferType(compilation); if (allowNullableValue) { inferredType = NullableType.GetUnderlyingType(inferredType); } if (inferredType.Kind != TypeKind.Unknown) { return !(inferredType.GetSize() <= type.GetSize() && inferredType.GetSign() == type.GetSign()); } } return true; } /// /// Gets whether 'inst' is a possible store for use as a compound store. /// /// /// Output parameters: /// storeType: The type of the value being stored. /// value: The value being stored (will be analyzed further to detect compound assignments) /// /// Every IsCompoundStore() call should be followed by an IsMatchingCompoundLoad() call. /// static bool IsCompoundStore(ILInstruction inst, out IType storeType, out ILInstruction value, ICompilation compilation) { value = null; storeType = null; if (inst is StObj stobj) { // stobj.Type may just be 'int' (due to stind.i4) when we're actually operating on a 'ref MyEnum'. // Try to determine the real type of the object we're modifying: storeType = stobj.Target.InferType(compilation); if (storeType is ByReferenceType refType) { if (TypeUtils.IsCompatibleTypeForMemoryAccess(refType.ElementType, stobj.Type)) { storeType = refType.ElementType; } else { storeType = stobj.Type; } } else if (storeType is PointerType pointerType) { if (TypeUtils.IsCompatibleTypeForMemoryAccess(pointerType.ElementType, stobj.Type)) { storeType = pointerType.ElementType; } else { storeType = stobj.Type; } } else { storeType = stobj.Type; } value = stobj.Value; return SemanticHelper.IsPure(stobj.Target.Flags); } else if (inst is CallInstruction call && (call.OpCode == OpCode.Call || call.OpCode == OpCode.CallVirt)) { if (call.Method.Parameters.Count == 0) { return false; } foreach (var arg in call.Arguments.SkipLast(1)) { if (arg.MatchStLoc(out var v) && v.IsSingleDefinition && v.LoadCount == 1) { continue; // OK, IsMatchingCompoundLoad can perform an adjustment in this special case } if (!SemanticHelper.IsPure(arg.Flags)) { return false; } } storeType = call.Method.Parameters.Last().Type; value = call.Arguments.Last(); return IsSameMember(call.Method, (call.Method.AccessorOwner as IProperty)?.Setter); } else if (inst is StLoc stloc && (stloc.Variable.Kind == VariableKind.Local || stloc.Variable.Kind == VariableKind.Parameter)) { storeType = stloc.Variable.Type; value = stloc.Value; return true; } else { return false; } } /// /// Checks whether 'load' and 'store' both access the same store, and can be combined to a compound assignment. /// /// The load instruction to test. /// The compound store to test against. Must have previously been tested via IsCompoundStore() /// The target to use for the compound assignment instruction. /// The target kind to use for the compound assignment instruction. /// If set to a non-null value, call this delegate to fix up minor mismatches between getter and setter. /// /// If given a non-null value, this function returns false if the forbiddenVariable is used in the load/store instructions. /// Some transforms effectively move a store around, /// which is only valid if the variable stored to does not occur in the compound load/store. /// /// /// Instruction preceding the load. /// static bool IsMatchingCompoundLoad(ILInstruction load, ILInstruction store, out ILInstruction target, out CompoundTargetKind targetKind, out Action finalizeMatch, ILVariable forbiddenVariable = null, ILInstruction previousInstruction = null) { target = null; targetKind = 0; finalizeMatch = null; if (load is LdObj ldobj && store is StObj stobj) { Debug.Assert(SemanticHelper.IsPure(stobj.Target.Flags)); if (!SemanticHelper.IsPure(ldobj.Target.Flags)) return false; if (forbiddenVariable != null && forbiddenVariable.IsUsedWithin(ldobj.Target)) return false; target = ldobj.Target; targetKind = CompoundTargetKind.Address; if (ldobj.Target.Match(stobj.Target).Success) { return true; } else if (IsDuplicatedAddressComputation(stobj.Target, ldobj.Target)) { // Use S_0 as target, so that S_0 can later be eliminated by inlining. // (we can't eliminate previousInstruction right now, because it's before the transform's starting instruction) target = stobj.Target; return true; } else { return false; } } else if (MatchingGetterAndSetterCalls(load as CallInstruction, store as CallInstruction, out finalizeMatch)) { if (forbiddenVariable != null && forbiddenVariable.IsUsedWithin(load)) return false; target = load; targetKind = CompoundTargetKind.Property; return true; } else if (load is LdLoc ldloc && store is StLoc stloc && ILVariableEqualityComparer.Instance.Equals(ldloc.Variable, stloc.Variable)) { if (ILVariableEqualityComparer.Instance.Equals(ldloc.Variable, forbiddenVariable)) return false; target = new LdLoca(ldloc.Variable).WithILRange(ldloc); targetKind = CompoundTargetKind.Address; finalizeMatch = context => context.Function.RecombineVariables(ldloc.Variable, stloc.Variable); return true; } else { return false; } bool IsDuplicatedAddressComputation(ILInstruction storeTarget, ILInstruction loadTarget) { // Sometimes roslyn duplicates the address calculation: // stloc S_0(ldloc refParam) // stloc V_0(ldobj System.Int32(ldloc refParam)) // stobj System.Int32(ldloc S_0, binary.add.i4(ldloc V_0, ldc.i4 1)) while (storeTarget is LdFlda storeLdFlda && loadTarget is LdFlda loadLdFlda) { if (!storeLdFlda.Field.Equals(loadLdFlda.Field)) return false; storeTarget = storeLdFlda.Target; loadTarget = loadLdFlda.Target; } if (!storeTarget.MatchLdLoc(out var s)) return false; if (!(s.Kind == VariableKind.StackSlot && s.IsSingleDefinition && s != forbiddenVariable)) return false; if (s.StoreInstructions.SingleOrDefault() != previousInstruction) return false; return previousInstruction is StLoc addressStore && addressStore.Value.Match(loadTarget).Success; } } /// /// stobj(target, binary.add(stloc l(ldobj(target)), ldc.i4 1)) /// where target is pure and does not use 'l', and the 'stloc l' does not truncate /// --> /// stloc l(compound.op.old(ldobj(target), ldc.i4 1)) /// /// -or- /// /// call set_Prop(args..., binary.add(stloc l(call get_Prop(args...)), ldc.i4 1)) /// where args.. are pure and do not use 'l', and the 'stloc l' does not truncate /// --> /// stloc l(compound.op.old(call get_Prop(target), ldc.i4 1)) /// /// /// This pattern is used for post-increment by legacy csc. /// /// Even though this transform operates only on a single expression, it's not an expression transform /// as the result value of the expression changes (this is OK only for statements in a block). /// bool TransformPostIncDecOperatorWithInlineStore(Block block, int pos) { var store = block.Instructions[pos]; if (!IsCompoundStore(store, out var targetType, out var value, context.TypeSystem)) { return false; } StLoc stloc; var binary = UnwrapSmallIntegerConv(value, out var conv) as BinaryNumericInstruction; if (binary != null && (binary.Right.MatchLdcI(1) || binary.Right.MatchLdcF4(1) || binary.Right.MatchLdcF8(1))) { if (!(binary.Operator == BinaryNumericOperator.Add || binary.Operator == BinaryNumericOperator.Sub)) return false; if (!ValidateCompoundAssign(binary, conv, targetType, context.Settings)) return false; stloc = binary.Left as StLoc; } else if (value is Call operatorCall && operatorCall.Method.IsOperator && operatorCall.Arguments.Count == 1) { if (!(operatorCall.Method.Name == "op_Increment" || operatorCall.Method.Name == "op_Decrement")) return false; if (operatorCall.IsLifted) return false; // TODO: add tests and think about whether nullables need special considerations stloc = operatorCall.Arguments[0] as StLoc; } else { return false; } if (stloc == null) return false; if (!(stloc.Variable.Kind == VariableKind.Local || stloc.Variable.Kind == VariableKind.StackSlot)) return false; if (!IsMatchingCompoundLoad(stloc.Value, store, out var target, out var targetKind, out var finalizeMatch, forbiddenVariable: stloc.Variable)) return false; if (IsImplicitTruncation(stloc.Value, stloc.Variable.Type, context.TypeSystem)) return false; context.Step("TransformPostIncDecOperatorWithInlineStore", store); finalizeMatch?.Invoke(context); if (binary != null) { block.Instructions[pos] = new StLoc(stloc.Variable, new NumericCompoundAssign( binary, target, targetKind, binary.Right, targetType, CompoundEvalMode.EvaluatesToOldValue)); } else { Call operatorCall = (Call)value; block.Instructions[pos] = new StLoc(stloc.Variable, new UserDefinedCompoundAssign( operatorCall.Method, CompoundEvalMode.EvaluatesToOldValue, target, targetKind, new LdcI4(1))); } return true; } /// /// stloc tmp(ldobj(target)) /// stobj(target, binary.op(ldloc tmp, ldc.i4 1)) /// target is pure and does not use 'tmp', 'stloc does not truncate' /// --> /// stloc tmp(compound.op.old(ldobj(target), ldc.i4 1)) /// /// This is usually followed by inlining or eliminating 'tmp'. /// /// Local variables use a similar pattern, also detected by this function: /// /// stloc tmp(ldloc target) /// stloc target(binary.op(ldloc tmp, ldc.i4 1)) /// --> /// stloc tmp(compound.op.old(ldloca target, ldc.i4 1)) /// /// /// This pattern occurs with legacy csc for static fields, and with Roslyn for most post-increments. /// bool TransformPostIncDecOperator(Block block, int i) { var inst = block.Instructions[i] as StLoc; var store = block.Instructions.ElementAtOrDefault(i + 1); if (inst == null || store == null) return false; var tmpVar = inst.Variable; if (!IsCompoundStore(store, out var targetType, out var value, context.TypeSystem)) return false; if (IsImplicitTruncation(inst.Value, targetType, context.TypeSystem)) { // 'stloc tmp' is implicitly truncating the value return false; } if (!IsMatchingCompoundLoad(inst.Value, store, out var target, out var targetKind, out var finalizeMatch, forbiddenVariable: inst.Variable, previousInstruction: block.Instructions.ElementAtOrDefault(i - 1))) { return false; } if (UnwrapSmallIntegerConv(value, out var conv) is BinaryNumericInstruction binary) { if (!binary.Left.MatchLdLoc(tmpVar) || !(binary.Right.MatchLdcI(1) || binary.Right.MatchLdcF4(1) || binary.Right.MatchLdcF8(1))) return false; if (!(binary.Operator == BinaryNumericOperator.Add || binary.Operator == BinaryNumericOperator.Sub)) return false; if (!ValidateCompoundAssign(binary, conv, targetType, context.Settings)) return false; context.Step("TransformPostIncDecOperator (builtin)", inst); finalizeMatch?.Invoke(context); inst.Value = new NumericCompoundAssign(binary, target, targetKind, binary.Right, targetType, CompoundEvalMode.EvaluatesToOldValue); } else if (value is Call operatorCall && operatorCall.Method.IsOperator && operatorCall.Arguments.Count == 1) { if (!operatorCall.Arguments[0].MatchLdLoc(tmpVar)) return false; if (!(operatorCall.Method.Name == "op_Increment" || operatorCall.Method.Name == "op_Decrement")) return false; if (operatorCall.IsLifted) return false; // TODO: add tests and think about whether nullables need special considerations context.Step("TransformPostIncDecOperator (user-defined)", inst); finalizeMatch?.Invoke(context); inst.Value = new UserDefinedCompoundAssign(operatorCall.Method, CompoundEvalMode.EvaluatesToOldValue, target, targetKind, new LdcI4(1)); } else { return false; } block.Instructions.RemoveAt(i + 1); if (inst.Variable.IsSingleDefinition && inst.Variable.LoadCount == 0) { // dead store -> it was a statement-level post-increment inst.ReplaceWith(inst.Value); } return true; } static bool IsSameMember(IMember a, IMember b) { if (a == null || b == null) return false; a = a.MemberDefinition; b = b.MemberDefinition; return a.Equals(b); } } }