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implementation of a quick-sort algorithm in executable form, the decompiler was
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Chapter 1

Introduction

1.1 The goal of the project

The goal of this project is to create a .NET decompiler.

Decompiler is a tool that translates machine code back to source code. That is,

it does the opposite of a compiler – it takes the executable file and it tries to

recreate the original source code.

In general, decompilation can be extremely difficult or even impossible. There-

fore this project focuses on something slightly simpler – decompilation of .NET

executables. The advantage of .NET executables is that they consist of processor

independent bytecode which is easier to decompile then the traditional machine

code because the instructions are more high level and the code is less optimized.

The .NET executables also preserve a lot of metadata about the code like type

information and method names.

Note that despite its name, the .NET Framework is unrelated to networking or

the Internet and it is basically the equivalent of Java Development Kit.

To succeed, the produced decompiler is required to successfully decompile a con-

sole implementation of a quick-sort algorithm back to C# source code.

1



2 CHAPTER 1. INTRODUCTION

1.2 Decompilation

Decompilation is the opposite of compilation. It takes the executable file and

attempts to recreate the original source code. Despite of doing the reverse, de-

compilation is very similar to compilation. This is because both compilation and

decompilation do in essence that same thing – translate program from one form

to other form and then optimize the final form. Because of this, many analysis

and optimizations used in compilation are also applicable in decompilation.

Decompilation may not always be possible. In particular, self-modifying code is

very problematic.

1.3 Uses of decompilation

• Recovery of lost source code.

• Reverse engineering of programs that ship with no source code. This, how-

ever, might be a bit controversial use due to legal issues.

• Interoperability.

• Security analysis of programs.

• Error correction or minor improvements.

• Porting of executable to other platform.

• Translation between languages. Source code in some obscure language can

be compiled into an executable which can in turn be decompiled into C#.

• Debugging of deployed systems. Deployed system might not ship with

source code or it might be difficult to ‘link’ it to the source code because

it is optimized. Also note that it might not be acceptable to restart the

running system because the issue is not easily reproducible.
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1.4 The .NET Framework

The .NET Framework is a general-purpose software development platform which

is very similar to the Java Development Kit. It includes an extensive class library

and, similarly to Java, it is based on a virtual machine model which makes it

platform independent.

To be platform independent the program is stored in form of bytecode (also

called Common Intermediate Language or IL). The bytecode instructions use the

stack to pass data around rather then registers. The instructions are aware of

the object-oriented programing model and are more high level then traditional

processor instructions. For example, there is special instruction to allocate an

object in memory, to access a field of an object, to cast an object to a different

type and so on.

The byte code is translated to machine code of the target platform at run-time.

The code is just-in-time compiled rather then interpreted. This means that the

first execution of a function will be slow due to the translation overhead, but the

subsequent executions of the same function will be very fast.

The .NET executables preserve a lot of information about the structure of the

program. The complete structure of classes is preserved including all the typing

information. The code is still separated into distinct methods and the complete

signatures of the methods are preserved – that is, the executable includes the

method name, the parameters and the return type.

The virtual machine is intended to be type-safe. Before any code is executed it

is verified and code that has been successfully verified is guaranteed to be type-

safe. For example, it is guaranteed not access unallocated memory. However, the

framework also provides some inherently unsafe instructions. This allows support

for languages like C++, but it also means that some parts of the program will be

unverifiable. Unverifiable code may or may not be allowed to execute depending

on the local security policy.

In general, any programming language can be compiled to .NET and there are

already dozens, if not hundreds, of compliers in existence. The most commonly

used language is C#.
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1.5 Scope of the project

The .NET Framework is mature comprehensive platform and handling all of its

features is out the scope of the project. Therefore, it is necessary to state which

features should be supported and which should not.

The decompiler was specified to at least handle all the features required to decom-

pile the quick-sort algorithm. This includes integer arithmetic, array operations,

conditional statements, loops and system method calls.

The decompiler will not support so-called unverifiable instructions – for example,

pointer arithmetic and access to arbitrary memory locations. These operations

are usually used only for interoperability with native code (code not running

under the .NET virtual machine). As such, these instructions are relatively rare

and do not even occur in many programs at all.

Generics also will not be supported. They were introduced in the second version

of the Framework and many programs still do not make any use of them. The

generics also probably does not provide any theoretical challenge for the decom-

pilation. It just involves handing of more bytecodes and more special cases of the

existing bytecodes.

1.6 Previous work

Decompilers are in existence nearly as long as compilers. The very first decompiler

was written by Joel Donnelly in 1960 under the supervision of Professor Maurice

Halstead. Initially, decompilers were created to aid in the program conversion

process from second to third generation computers. Decompilers were actively

developed over the following years and were used for variety of applications.

Probably the best know and most influential research paper is Cristina Cifuentes’

PhD Thesis “Reverse Compilation Techniques”, 1994. As part of the paper

Cristina created a prototype dcc which translates Intel i80286 machine code into

C using various data and control flow analysis techniques.

The introduction of virtual machines made decompilation more feasible then ever

(e.g. Java Virtual Machine or .NET Framework Runtime).

There are already several closed-source .NET decompilers in existence. The most

known one is probably Lutz Roeder’s Reflector for .NET.



Chapter 2

Preparation

This chapter explains the general idea behind the decompilation process. The

implementation chapter then explains how these methods were implemented and

what measures were taken to ensure the correctness of the produced output.

2.1 Overview of the decompilation process

The first step is to read and disassemble the .NET executable files. There is

an open-source library called Cecil which was created exactly for this purpose.

It loads the whole executable into memory and then it provides simple object-

oriented API to access the content of the executable. Using this library, the

access to the executable is straightforward.

It is worth noting the wealth of information we are starting with. The .NET

executables contain quite high-level representation of the program. Complete

typing information is still present – we have access to all the classes including

the fields and methods. The types and names are also preserved. The bytecode

is stored on per-method basis and even the local variables used in the method

body are still explicitly represented including the type.1

Ultimately, the challenge is to translate the bytecode of a given method to a C#

code.

For example, consider decompilation of following code:

1However, the names of local variables are not preserved.

5
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// Load "Hello, world!" on top of the stack

ldstr "Hello, world!"

// Print the top of the stack to the console

call System.Console::WriteLine(string)

We start by taking the bytecodes one by one and translate them to C# state-

ments. The bytecodes are quite high level so the translation is usually straight-

forward. The two bytecodes can thus be represented as the following two C#

statements (output1 and some_input are just dummy variables):

string output1 = "Hello, world!";

System.Console.WriteLine(some_input);

The first major challenge of decompilation is data-flow analysis. In this example,

we would analyze the stack behavior and we would find that output1 is on the

top of the stack when WriteLine is called. Thus, we would get:

string output1 = "Hello, world!";

System.Console.WriteLine(output1);

At this point the produced source code should already compile and work as

intended.

The second major challenge of decompilation is control-flow analysis. The use of

control-flow analysis is to replace goto statements with high-level structures like

loops and conditional statements. This makes the produced source code much

more easier to read and understand.

Finally, there are several sugarings that can be done to the code to make it more

readable – for example, replacing i = i + 1 with the equivalent i++ or using

rules of logic to simplify boolean expressions.
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2.2 Translating bytecodes into C# expressions

The first task is to convert naively the individual bytecodes into equivalent C#

expressions or statements.

This task is reasonably straightforward because the bytecodes are quite high level

and are aware of the object-oriented programming model. For example, there are

bytecodes for integer addition, object creation, array access, field access, object

casting and so on; all of these trivially translate to C# expressions.

Any branching commands are also easy to handle because C# supports labels and

gotos. Unconditional branches are translated to goto statements and conditional

branches are translated to if (condition) goto Label;.

C# uses local variables for data transfer whereas bytecodes use the stack. This

mismatch will be handled during the data-flow analysis phase. Until then, dummy

variables are used as placeholders. For example, add bytecode would be translated

to input1 + input2.

2.3 Data-flow analysis

2.3.1 Stack in .NET

Bytecodes use a stack to pass data between consecutive instructions. When a

bytecode is executed, it pops its arguments from the stack, it performs some

operation on them and then it pushes the result, if any, back to the stack.

The number of popped elements is fixed and known before execution time - for

example, any binary operation pops exactly two arguments and a method call

pops one element for each of its arguments.

Most bytecodes either push only one element on the stack or none at all.2 This

makes the data-flow analysis slightly simpler.

The framework imposes some useful restrictions with regards to control-flow. In

theory, we could arrive at a given point in program and depending on which

execution path was taken, we could end up with two completely different stacks.

This is not allowed. Regardless of the path taken, the stack must have the same

number of elements in it. The typing is also restricted – if one execution path

2There is one exception to this – the ‘dup’ instruction. More on this later.
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pushes an integer on the stack, any other execution path must push an integer

as well.

2.3.2 Stack simulation

Bytecodes use the stack to move data around, but there is no such stack concept

in C#. Therefore we need to use something that C# does have – local variables.

The transformation from stack to local variables is simpler then it might initially

seem. Basically, pushing something on the stack means that we will need that

value later on. So in C#, we create a new temporary variable and store the value

in it. On the other hand, popping is a usage of the value. So in C#, we just

reference the temporary variable that holds the value we want. The only difficult

is to figure out which temporary variable it is.

This is where the restrictions on the stack come handy – we can figure out what

the state of the stack will be at any given point. That is, we do not know what

the value will be, but we do know who pushed the value on the stack and what

the type of the value is. For example, after executing the following code

IL_01: ldstr "Hello’’

IL_02: ldstr "world’’

we know that there will be exactly two values on the stack – the first one pushed

by bytecode labeled IL_01 and the second one pushed by bytecode labeled IL_02.

Both of them of are of type String. Let’s say that the state of the stack is {IL_01,
IL_02}.

Now, let us pop value from the stack by calling System.Console.WriteLine.

This method takes one String argument. Just before the method is called the

state of the stack is {IL_01, IL_02}. Therefore the value allocated by IL_02

is popped from the stack and we are left with {IL_01}. Furthermore, we know

which temporary local variable to use in the method call – the one that stores

the value pushed by IL_02.

Let us call System.Console.WriteLine again to completely empty the stack and

let us see what the produced C# source code would look like (the comments show

the state of the stack between the individual commands).
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// {}

String temp_for_IL_01 = "Hello’’;

// {IL_01}

String temp_for_IL_02 = "world’’;

// {IL_01, IL_02}

System.Console.WriteLine(temp_for_IL_02);

// {IL_01}

System.Console.WriteLine(temp_for_IL_01);

// {}

2.3.3 The ‘dup’ instruction

In general, bytecodes push either one value on the stack or none at all. There is

only one exception to this – the dup instruction. The purpose of this instruction

is to duplicate the value on top of the stack. Fortunately, it does not break our

model. The only significance of the dup instruction is that the same value will

be used twice - that is, the temporary local variable will be referenced twice.

The dup instruction, however, makes some future optimizations more difficult.

The dup instruction is used relatively rarely and it usually just saves a few bytes

of disk space. Note that the dup instruction could always be replaced by store to

a local variable and two loads.

The dup instruction can be used in expression like this.a + this.a – the value

this.a is obtained once, duplicated and then the duplicates are added.

2.3.4 Control merge points

This in essence the most complex part of data-flow analysis. It is caused by the

possibility of multiple execution paths. There are two scenarios that branching

can cause.

The nice scenario is when a value is pushed in one location and, depending on the

execution path, can be popped in two or more different locations. This translates

well into the local variable model - it simply means that the temporary local

variable will be referenced several times and there is nothing special we need to

do.

The worse scenario is when a value can be pushed on the sack in two or more

different locations and then it is poped only in one locations. Example of this
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would be Console.WriteLine(condition ? "true": "false") – depending on

the value of the condition either “true” or “false” is printed. This code snippet

compiles into bytecode with two possible execution paths – one in which “true”

is pushed on the stack and one in which “false” is pushed on the stack. In both

cases the value is poped only once when Console.WriteLine is called.

This scenario does not work well with the local variable model. Two values can

be pushed on the stack and so two temporary local variables are created – one

holding “true” and one holding “false”. Depending on the execution path either

of these can be on the top of the stack when Console.WriteLine is executed and

therefore we do not know which temporary variable to use as the argument for

Console.WriteLine. It is impossible to know.

This can be resolved by creating yet another temporary variable which will hold

the actual argument for the Console.WriteLine call. Depending on the execu-

tion path taken, one of the previous variables needs to be copied into this one.

So the produced C# source code would look like this:

String sigma;

if (condition) {

String temp1 = "true";

sigma = temp1;

} else {

String temp2 = "false";

sigma = temp2;

}

Console.WriteLine(sigma);

Note that this is essentially the trick that is used to obtain single static assignment

(SSA) form of programs during compilation.

In reality, this happens extremely rarely and it is almost exclusively caused by

the C# ? operator.
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2.3.5 In-lining expressions

The code produced so far contains many temporary variables. These variables

are often not necessary and can be optimized away. For example, the code

string output1 = "Hello, world!";

System.Console.WriteLine(output1);

can be simplified into a single line:

System.Console.WriteLine("Hello, world!");

Doing this optimization makes the produced code much more readable.

In general, removing a local variable from a method is non-trivial. However,

these generated local variables are special – they were generated to remove the

stack-based data-flow model. This means that the local variables are assigned

only once and are read only once3 (corresponding to the push and pop operations

respectively).

There are some safety issues with this optimization. Even though we are sure

that the local variable is assigned and read only once, we need to make sure

that doing the optimization will not change the semantics of the program. For

example consider the following code:

string output1 = f();

string output2 = g();

System.Console.WriteLine(output2 + output1);

The functions f and g may have side-effects and in this case f is called first and

then g is called. Optimizing the code would produce

System.Console.WriteLine(g() + f());

3With the exception of the ‘dup’ instruction which is read twice and thus needs to be handled
specially.
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which calls the functions in the opposite order.

Being conservative, we will allow this optimization only if the declaration of the

variable immediately precedes its use. In other words, the variable is declared

and then immediately used with no possible side-effects in between these. Using

this rule, the previous example can be optimized to

string output1 = f();

System.Console.WriteLine(g() + output1);

but it can not be optimized further because the function g is executed between

the declaration of output1 and its use.

2.4 Control-flow analysis

The main point of control-flow analysis is to recover high-level structures like

loops and conditional blocks of code. This is not necessary to produce semanti-

cally correct code, but it does make the code much more readable compared to

only using goto statements. It is also the most theoretically interesting part of

the whole decompilation process.

In general, gotos can be always completely removed by playing some ‘tricks’

like duplicating code or adding boolean flags. However, as far as readability of

the code is concerned, this does more harm than good. Therefore, we want to

remove gotos using the ‘natural’ way – by recovering the high-level structures

they represent in the program. Any gotos that can not be removed in such way

are left in the program.

See figures 2.1, 2.2 and 2.3 for examples of control-flow graphs.

Figure 2.1: Conditional statement (if-then)
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Figure 2.2: Conditional statement (if-then-else)

Figure 2.3: Loop

2.4.1 Finding loops

T1-T2 transformations are used to find loops. These transformation are usually

used to determine whether a control flow graph is reducible or not, but it turns

out that they are suitable for finding loops as well.

If a control-flow graph is irreducible, it means that the program can not be repre-

sented only using high-level structures. That is, goto statements are necessary to

represent the program. This is undesirable since goto statements usually make

the decompiled source code less readable. See figure 2.4 for the classical example

of irreducible control-flow graph.

Figure 2.4: Ireducible control-flow graph
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If a control-flow graph is reducible, the program may or may not be representable

only using high-level structures. That is, goto statements still may be necessary

on some occasions. For example, C# has a break statement which exits the inner

most loop, but it does not have any statement which would exit multiple levels

of loops.4 Therefore in such occasion we have to use the goto statement.

The algorithm works by taking the initial control-flow graph and then repeatedly

applying simplifying transformations to it. As we can see from the name, the

algorithm consists of two transformations called T1 and T2. If the graph is

reducible, the algorithm will eventually simplify the graph to only a single node.

If the graph is not reducible, we will end up with multiple nodes and no more

transformations that can be performed.

Both of the transformations look for a specific pattern in the graph and then

replace the pattern with something simpler.

See figure 2.5 for a diagram showing the T1 and T2 transformations.

Figure 2.5: T1 and T2 transformations

The T1 transformation removes self-loop. If one of the successors of a node is

the node itself, then the node is a self-loop. That is, the node ‘points’ to itself.

The T1 transformation replaces the node with a node without such link. The

number of preformed T1 transformations corresponds to the number of loops in

the program.

The T2 transformation merges two consecutive nodes together. The only condi-

tion is the the second node has to have only one predecessor which is the first

4This is language dependent. The Java language, for example, does provide such command.
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node. Preforming this transformation repeatedly basically reduces any directed

acyclic graph into a single node.

See figures 2.6, 2.7 and 2.8 for examples how T1 and T2 transformations can be

used to reduce graphs.

The whole algorithm is guaranteed to terminate if and only the graph is reducible.

However, it may produce different intermediate states depending on the order of

the transformations. For example, the number of T1 transformations used can

vary. This affects the number of apparent loops in the program.

Note that although reducible graphs are preferred, irreducible graphs can be

easily decompiled as well using goto statements. Programs that were originally

written in C# are most likely going to be reducible.

2.4.2 Finding conditionals

Any T1 transformation (self-loop reduction) produces a loop. Similarly, T2 trans-

formation or several T2 transformations produce a directed acyclic sub-graph.

This sub-graph can usually be represented as one or more conditional statements.

Any node in the control-flow graph that has two successors is potentially a con-

ditional – that is, if-then-else statement. The node itself determines which

branch will be taken, so the node is the condition. We now need to determine

what is the ‘true’ body and what is the ‘false’ body. That is, we look for the

blocks of code that will be executed when the condition will or will not hold

respectively. This is done by considering reachability. A code that is reachable

only by following the ‘true’ branch can be considered as the ‘true’ body of the

conditional. Similarly, code that is reachable only by following the ‘false’ branch

is the ‘false’ body of the conditional. Finally, the code that is reachable from

both branches is not part of the conditional – it is the code that follows the

whole if-then-else statement. See figure 2.9 for a diagram of this.
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Figure 2.6: Reduction of if-then-else statement

Figure 2.7: Reduction of two nested loops
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It is not not immediately obvious that these are, in fact, two nested loops. Fifth

conceptual node has been added to demonstrate why the loops can be considered

nested.

Figure 2.8: Reduction of two nested loops 2

Figure 2.9: Reachablity of nodes for a conditional
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2.4.3 Short-circuit boolean expressions

Short-circuit boolean expressions are boolean expressions which may not evaluate

completely.

The semantics of normal boolean expression f() & g() is to evaluate both f()

and g() and then return the logical ‘and’ of these.

The semantics of short-circuit boolean expression f() && g() is different. The

expression f() is evaluated as before, but g() is evaluated only if f() returned

true. If f() returned false then the whole expression will return false anyway

and so there no point in evaluating g().

In general, conditionals depending on this short-circuit logic cannot be expressed

as normal conditionals without the use of gotos or code duplication. Therefore it

is desirable to find the short-circuit boolean expressions in the control-flow graph.

The short-circuit boolean expressions will manifest themselves as one of four

patterns in the control-flow diagrams. See figure 2.10.

Figure 2.10: Short-circuit control-flow graphs

These patterns can be easily searched for and replaced with a single node.

Nested expressions like (f() && g()) || (h() && i()) will simplify well by

applying the algorithm repeatedly.
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2.4.4 Basic blocks

Basic block is a block of code which is always executed as a unit. That is, no

other code can jump in the middle of the block and there are no jumps from the

middle of the block.

The implication of this is that as far as control-flow analysis is concerned, the

whole basic block can be considered as a single instruction.

This primary reason for implementing this is performance gain.

2.5 Requirements Analysis

The decompiler must successfully round-trip a quick-sort algorithm. That is,

given an executable containing an implementation of the quick-sort algorithm,

the decompiler must produce C# source code that is both syntactically and

semantically correct. The produced source code must compile and work correctly

without any additional modifications to the source code.

To achieve this the Decompiler needs to handle at least the following:

• Integers and integer arithmetic

• Create and be able to use integer arrays

• Branching must be successfully decompiled

• Several methods can be defined

• Methods can have arguments and return values

• Methods can be called recursively

• Integer command line arguments can be read and parsed

• Text can be outputted to the standard console output
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2.6 Development model

The development is based on the spiral model.

The decompiler will internally consist of several consecutive code representations.

The decompiled program will be gradually transformed from one representation

to other until it reaches the last one and is outputted as source code. This matches

the spiral model well. Successful implementation of each code representation can

be seen as one iteration in the spiral model.

Furthermore, once a code representation is finished, it can be improved by im-

plementing an optimization which transforms it. This can be seen as another

iteration.

2.7 Reference documentation

The .NET executables will be decompiled into C# source code. It is therefore

crucial to be intimately familiar with the language. Evaluation semantics, oper-

ator precedence, associativity and other aspects of the language can be found in

the ECMA-334 Standard – C# Language Specification.

In oder to decompile .NET executables, it is necessary to get familiar with the

.NET Runtime (i.e. the .NET Virtual Machine). In particular, it is necessary

to learn how the execution engine works – how does the stack behave, what

limitations are imposed on the code, what data types are used and so on. Most

importantly, it is necessary to get familiar with majority of the bytecodes. The

primary reference for the .NET Runtime is the ECMA-335 Standard – Common

Language Infrastructure (CLI).
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Implementation

3.1 Development process

The whole project was developed in C# on the Windows platform. SharpDe-

velop1 was used as the integrated development environment for writing of the

code.

The source code and all files related to the project are stored on SVN2 server. This

has several advantages such as back-up of all data, documented project history

(the commit messages) and the ability to revet back to any previous state. The

graphical user interface for SVN also makes it possible to easily see and review

all changes that were made since previous commit to the server.

The user interface of the decompiler is very simple. It consists of a single window

which is largely covered by a text area containing the output of the decompilation

process. There are only a few controls in the top part of the window. Several

check boxes can be used to completely turn off or on optimization stages of the

decompilation process. Numerical text boxes can be used to specify the maxi-

mal number of interactions for several transformations. By gradually increasing

these it is possible to observe changes to the output step-by-step. These options

significantly aid in debugging and testing of the decompiler.

The source code generated by the decompiler is also stored on the disk and

committed to SVN together with all other files. This is the primary method

1Open-source integrated development environment for the .NET framework. I am actively
participating in its development, currently being one of the major developers.

2Subversion (SVN) is an open-source version control system. It is very similar to CVS and
aims to be its successor.

21
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of regression testing. The generated source code is the primary output of the

decompiler and thus any change in it may potentially signify a regression in the

decompiler. Before every commit the changes to this file were reviewed to confirm

that the new features did yield the expected results and that no regressions were

introduced.

3.2 Overview of representation structures

The decompiler uses the following four intermediate representations of the pro-

gram (sequentially in this order):

• Stack-based bytecode

• Variable-based bytecode

• High-level blocks

• Abstract Syntax Tree

The code is translated from one representation to other and some transforma-

tions/optimizations are done at each of these representations.

The representations are very briefly described in the following four subsections

and then they are covered again in more detail.

Trivial artificial examples are used to aid the explanation. Note that the evalua-

tion chapter shows the actual outputs for the quick-sort implementation.

3.2.1 Stack-based bytecode representation

The stack-based bytecode is the original bytecode as read from the assembly. It

is never modified. However, it is analyzed and annotated with the results of the

analysis. Most data-flow analysis is performed at this stage. This is an example

of code in this representation:

ldstr "Hello, world!"

call System.Console::WriteLine
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3.2.2 Variable-based bytecode representation

The variable-based bytecode is the result of removing the stack-based data-flow

model. Local variables are now used instead. Even though the stack-based

model is now completely removed, we can still use the bytecodes to represent

the program. We just need to think about them in a slightly different way. The

bytecodes are in essence functions which take arguments and return values. For

example, the add bytecode pops two values and pushes back the result and so

it is now a function which takes two arguments and returns the result. The

ldstr "Hello, world!" bytecode used above is slightly more complicated. It

does not pop anything from the stack, but it still has the implicit argument

"Hello, world!" which comes from the immediate operand of the bytecode.

Continuing with the example, the variable-based from would be:

temp1 = ldstr("Hello, world!");

call(System.Console::WriteLine, temp1);

where the variable temp1 was used to remove the stack data-flow model.

Some transformations are performed at this stage, modifying the code. For ex-

ample, the in-lining optimization would transform the previous example to:

call(System.Console::WriteLine, ldstr("Hello, world!"));

Note that expressions can be be nested as seen in the code above.

3.2.3 High-level blocks representation

The next data representation introduces high-level blocks. In this representa-

tion, related parts of code can be grouped together into a block of code. The

block signifies some high-level structure and blocks can be nested (for example,

conditional within a loop). All control-flow analysis is performed at this stage.

The blocks can be visualized by a pair of curly braces:
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{ // Block of type ’method body’

IL_01: call(System.Console::WriteLine, ldstr("Hello, world"));

{ // Block of type ’loop’

IL_02: call(System.Console::WriteLine, ldstr("!"));

IL_03: br(IL_02) // Branch to IL_02

}

}

Initially there is only one block containing the whole method body and as the

high-level structures are found, new smaller blocks are created. At this stage the

blocks have no function other than grouping of code.

This data representation also allows code to be reordered to better fit the ordinal

high-level structure.

3.2.4 Abstract Syntax Tree representation

This is the final representation. The abstract syntax tree (AST) is a struc-

tured way of representing the produced source code. For example, the expression

(a + 1) would be represented as four objects – parenthesis, binary operator,

identifier and constant. The structure is a tree so the identifier and the constant

are children of the binary operator which is in turn child of the parenthesis.

This initial abstract syntax tree will be quite verbose due to constructs that

ensure correctness of the produced source code. There will be an especially high

quantity of gotos and parentheses. For example, a simple increment is initially

represented as ((i) = (i) + (1)); where the parentheses are used to ensure

safety. Transformations are done on the abstract syntax tree to simplify the code

in occasions where it is know to be safe.

Several further transformations are done to make the code more readable. For

example, renaming of local variables or use of common programming idioms.
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3.3 Stack-based bytecode representation

This is the first and simplest representation of the code. It directly corresponds

to the bytecode in the .NET executable. It is the only representation which is

not transformed in any way.

The bytecode is loaded from the .NET executable with the help of the Cecil li-

brary. Three fundamental pieces of information are loaded for each bytecode – its

offset from the start of the method, opcode (name) and the immediate operand.

The immediate operand is additional argument present for some bytecodes – for

example, for the call bytecode, the operand specifies the method that should be

called.

For bytecodes that can branch, the operand is the branch target. Each bytecode

stores a reference to the branch target (if any) and each bytecode also stores a

reference to all bytecodes that can branch to it.

3.3.1 Stack analysis

Once all bytecodes are loaded, the stack behavior of the program is analyzed.

The precise state of the stack is determined for each bytecode. The .NET Frame-

work dictates that this must be possible for valid executables. It is possible to

determine the exact number of elements on the stack and for each of these ele-

ments is possible to determine which bytecode pushed it on the stack3 and what

the type of the element is.

There are two stack states for each bytecode – the first is the known state before

the bytecode is executed and the second is the state after the bytecode is executed.

Knowing what the bytecode does, the later state can be obviously derived from

the former. This is usually easy – for example, the add bytecode pops two

elements from the stack and pushes one back. The pushed element is obviously

pushed by the add bytecode and the element is of the same type as the two

popped elements4. The ldstr bytecode just pushes one element of type string.

The behaviour of the call bytecode is slightly more complex because it depends

on the method that it is invoking. Implementing these rules for all bytecodes is

tedious, but usually straightforward.

3In some control merge scenarios, there might be more bytecodes that can, depending on
the execution path, push the value on the stack.

4The ’add’ bytecode can only sum numbers of the same type.
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The whole stack analysis is performed by iterative algorithm. The stack before

the very first bytecode is empty. We can use this to find the stack state after the

first instruction. The stack state after the first bytecode is the initial stack state

for other bytecode. We can apply this principle again and again until all states

are known.

Branching dictates the propagation of the states between bytecodes. For two

simple consecutive bytecodes, the stack state after the first bytecode is same as

the state before the second. Therefore we just copy the state. If the bytecode is

a branch then we need to copy the stack state to the target of the branch as well.

Dead-code can never be executed and thus it does not have any stack state

associated with it.

At the bytecode level, the .NET Runtime handles boolean values as integers. For

example, the bytecode ldc.i4 1 can be interpreted equivalently as ‘push 1’ and

‘push true’. Therefore three integer types are used – ‘zero integer’, ‘non-zero

integer’ and generic ‘integer’ (of unknown value). Bytecode ldc.i4 1 therefore

has type ‘non-zero integer’.

3.4 Variable-based bytecode representation

This is a next representation which differs from the stack-based one by completely

removing the stack-based data-flow model. Data is passed between instructions

using local variables or using nested expressions.

Consider the following stack-based program which evaluates 2 ∗ 3 + 4 ∗ 5.

ldc.i4 2

ldc.i4 3

mul

ldc.i4 4

ldc.i4 5

mul

add

The program is transformed to the variable-based form by interpreting the byte-

codes as functions which return values. The result of every function call is stored

in new temporary variable so that the value can be referred to latter.
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int temp1 = ldc.i4(2);

int temp2 = ldc.i4(3);

int temp3 = mul(temp1, temp2);

int temp4 = ldc.i4(4);

int temp5 = ldc.i4(5);

int temp6 = mul(temp4, temp5);

int temp7 = add(temp3, temp6);

The stack analysis performed earlier is used to determine what local variables

should be used as arguments. For example, the stack analysis tells us that the

stack contains precisely two elements just before the add instruction. It also tells

us that these two elements have been pushed on the stack by the mul instructions

(the third and sixth instruction respectively). Therefore to access the results of

the mul instructions, the add instruction needs to use the temporary variables

temp3 and temp6.

3.4.1 Representation

Internally, each expression (‘function call’) consists of three main elements – the

opcode (e.g. ldc.i4), the immediate operand (e.g. 1) and the arguments (e.g.

temp1). The argument can be either a reference to a local variable or other nested

expression. In the case of

call(System.Console::WriteLine, ldstr("Hello, world"))

call is the opcode, System.Console::WriteLine is the operand and

ldstr("Hello, world") is the argument (nested expression).

Expressions like ldstr("Hello, world") or ldc.i4 do not have any arguments

other then the immediate operand.

There are bytecodes for storing and referencing a local variables (ldloc and

stloc respectively). Therefore no special data structures are needed to declare

and reference the local variables because we we can store program like

int temp1 = ldc.i4(2);

int temp2 = ldc.i4(3);

int temp3 = mul(temp1, temp2);
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only using bytecodes as

stloc(temp1, ldc.i4(2));

stloc(temp2, ldc.i4(3));

stloc(temp3, mul(ldloc(temp1), ldloc(temp2)));

Local variables temp1, temp2 and temp3 are tagged as being ‘single static assign-

ment and single read’. This is a necessary property for the in-lining optimization.

All generated temporary variables satisfy this property except for the ones stor-

ing the result of a dup instruction which does not satisfy this property because

it is read twice.

3.4.2 In-lining of expressions

The variable-based representation passes data between instructions either using

local variables or using expression nesting. Expression nesting is the preferred

more readable form. The in-lining transformations simplifies the code by remov-

ing some temporary variables and using expression nesting instead.

Consider the following code.

stloc(temp1, ldstr("Hello, world!"));

call(System.Console::WriteLine, ldloc(temp1));

This code can be simplified into a single line by in-lining the local variable temp1:

(that is, the stloc expression is nested within the call expression)

call(System.Console::WriteLine, ldstr("Hello, world!"));

The algorithm is iterative. Two consecutive lines are considered and if the first

line assigns to a local variable which is used in the second line then the variable

is in-lined. This is repeated until no more optimizations can be done.

There are some safety concerns with this optimizations. The optimization would

break the program if the local variable was read later in the program. Therefore

the optimization is done only for variables that have the property of being ‘single

static assignment and single read’.

The second concern is change of execution order. Consider the following pseudo-

code:
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temp1 = f();

add(g(), temp1);

In-ling temp1 would change the order in which the functions f and g are called

and thus the optimization can not be performed. On the other hand, the following

code can be optimized:

temp1 = f();

add(1, temp1);

The effect of the optimization will be that the expression 1 will be evaluated

before f rather then after it. However, this does not change the semantics of the

program because evaluation of 1 does not have any side-effects and it will still

evaluate to the same value.

More importantly, the same property holds for ldloc (load local variable) in-

struction. It does not have any side-effects and it will evaluate to the same value

even if evaluated before the function f (or any other expression being in-lined).

This is true because the function f (or any other expression being in-lined) can

not change the value of the local variable.

To sum up, it is safe to in-line a local variable if it has property ‘single static

assignment and single read’ and if the argument referencing it is preceded only

by ldloc instructions.

The following code would be optimized in two iterations:

stloc(temp1, ldc.i4(2));

stloc(temp2, ldc.i4(3));

stloc(temp3, mul(ldloc(temp1), ldloc(temp2)));

First iteration (in-line temp2):

stloc(temp1, ldc.i4(2));

stloc(temp3, mul(ldloc(temp1), ldc.i4(3)));

Second iteration (in-line temp1):

stloc(temp3, mul(ldc.i4(2), ldc.i4(3)));
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3.4.3 In-lining of ‘dup’ instruction

The dup instruction can not be in-lined because it does not satisfy the ‘single

static assignment and single read’ property. This is because the data is referenced

twice. For example, in-lining the following code would cause the function f to be

called twice.

stloc(temp1, dup(f()));

add(temp1, temp1);

However, there are circumstances where this would be acceptable. If the ex-

pression within the dup instruction is a constant then it is possible to in-line it

without any harm. The following code can be optimized:

stloc(temp1, dup(ldc.i4(2)));

add(temp1, temp1);

Even more elaborate expressions like mul(ldc.i4(2), ldc.i4(3)) are still a

constant. The instruction ldarg.0 (load this) is also constant relative to the

single invocation of method.

3.5 High-level blocks representation

So far the code is just a sequential list of statements. The statements are in

the exactly same order as found in the original executable and all control-flow is

achieved only by the goto statements.

The ‘high-level block’ representation structure introduces greater freedom to the

code. High-level structures are recovered and the code can be arbitrarily re-

ordered.

The code is organized into blocks in this representation. A block can can contain

executable code as well as other nested blocks. Therefore this resembles a tree-like

data structure. The root block of the three represents the method and contains all

of its code. A node in the three represents some high-level data structure (loop,

if statement). Nodes can also represent ‘meta’ high-level structures which are

used during the optimizations. For example, node can encapsulate a block of

code that is known to be acyclic (without loops). Finally, all leaves in the tree

are basic blocks.
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3.5.1 Safety

This data representation allows the code to be restructured and reordered. There-

fore care is needed to make sure that the produced code is semantically correct.

It would be possible to make sure that every transformation is valid. However,

there is even more robust solution – give up at the start and allow arbitrary

transformations. The only constraint is that the code can be only moved. It

cannot be duplicated and it cannot be deleted. Deleting of code would indeed

cause problems. Anything else is permitted.

When the code is generated, the correctness is ensured by explicit labels and

gotos placed in front of and after every basic block respectively. For example

consider the follow piece of code in which the order of basic blocks was reversed

and two unnecessary high-level nodes were added:

goto BasicBlock1; // Method prologue

for(;;) {

BasicBlock2:

Console.WriteLine("world");

goto End;

}

if (true) {

BasicBlock1:

Console.WriteLine("Hello");

goto BasicBlock2;

}

End:

The inclusion of explicit labels and gotos makes the high-level structures and

the order of basic blocks irrelevant and thus the produced source code will be

correct. Note that in the code above the lines for(;;) { and if (true) { will

never be reached during execution.

In general, the transformations done on the code will be more sane then in the

example above and most of the labels and gotos will be redundant. In the

following code all of the labels and gotos can be removed:
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goto BasicBlock1; // Method prologue

BasicBlock1:

Console.WriteLine("Hello");

goto BasicBlock2;

BasicBlock2:

Console.WriteLine("world");

goto End;

End:

The removal of labels and gotos is done once the Abstract Syntax Tree is cre-

ated.

To sum up, finding and correctly identifying all high-level structures will produce

nice results, but failing to do so will not cause any harm as far as correctness is

concerned.

3.5.2 Tree data structure

The data structure to store the tree is very simple – the tree consists of nodes

where each node contains a link to its parent and a list of children. A child can

be either another node or a basic block (leaf).

The API of the tree structure is severely restricted. Once the tree is created, it is

only possible to add new empty nodes and to move basic blocks from one node to

other. This ensures that basic blocks can not be duplicated or deleted which is

the safety requirement as discussed in the previous section. All transformations

are limited by this constraint.

Each node also provides events which are fired whenever the child collection of

the node is changed.
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3.5.3 Creating basic blocks

The previous data representation stored the code as a sequence of statements.

Some of these statements will be always executed sequentially without interfer-

ence of branching. In control-flow analysis we are primarily interested in branch-

ing and therefore it is desirable to group such sequential parts of code together

to basic blocks.

Basic block is a block of code that is always guaranteed to be executed together

without any branching. Basic blocks can be easily found by determining which

statements start a basic block. The very first statement in a method naturally

starts the first basic block. Branching transfers control somewhere else so the

statement immediately following a branch is a start of a basic block. Similarly,

the target of a branch command is a start of basic block.

Using these three simple rules the whole method body is slit into a few basic

blocks.

It is desirable to store control-flow links between basic blocks. These links are used

for finding high-level structures. Each basic block has successors and predecessors.

Successor is an other basic block that may be executed immediately after this one.

There can be up to two successors – the following basic block and the basic block

being branched to. Both of these exist if the basic block ends with conditional

branch. Predecessor is just link in the opposite direction of the successor link.

Note that the number of predecessors is not limited – several gotos can branch

to the same location.

3.5.4 Control-flow links between nodes

The predecessor and successor links of basic blocks reflect the control flow be-

tween basic blocks. However, once basic blocks are ‘merged’ by moving them into

a node, we might be interested in flow properties of the whole node rather then

just the individual basic blocks. Consider two sibling nodes that represent two

loops. In other to put the nodes in correct order, we need to know which one is

successor of the other.

Therefore the predecessor and successor links apply to whole nodes as well. Con-

sider two sibling nodes A and B. Node B is a successor of node A if there exists

a basic block within node A that branches to a basic block within node B.

The algorithm to calculate successors of a node is as flows:
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• Get a list of all basic blocks that are children of node A. The node can

contain other nested nodes so this part needs to be performed recursively.

• Get a list of all succeeding basic blocks of node A. This is the union of all

successors for all basic blocks within the node.

• However, we do not want succeeding basic blocks, we want a succeeding

siblings of the node. Therefore, for each succeeding basic block traverse the

data structure up until a sibling node is reached.

The algorithm to calculate predecessors of a node is similar.

The predecessor and successor links are used extensively and it would be compu-

tationally expensive to recalculate them every time they are needed. Therefore

the links and intermediate results of the calculation are cached. The events of

the tree structure are used to invalidate relevant caches.

3.5.5 Finding loops

The loops are found by using the T1-T2 transformations which where discussed

in the preparation chapter.

There are two node types that directly correspond to the results of these two

transformations. Preforming a T1 transformation produces a node of type Loop

and performing a T2 transformation produces a node of type AcyclicGraph.

The algorithm works by considering all the nodes and basic blocks in the tree

individually and evaluating the conditions required for the transformations. If

transformation can be performed for a given node, it is immediately preformed

and the algorithm is restarted on the new transformed graph. The condition for

the T1 transformation (Loop) is that the node must a be self-loop. The condition

for the T2 transformation (AcyclicGraph) is that the node must have only one

predecessor.

By construction each AcyclicGraph node contains exactly two nodes. For exam-

ple, five sequential statements would be represented as four nested AcyclicGraph

nodes. This makes the tree more complex and more difficult to analyse. The

acyclic property is only required for loop finding and is not needed for anything

else later on. Therefore once loops are found, the AcyclicGraph nodes are flat-

tened (the children of the node are moved to its parent and the node is removed).
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Note that the created loops are trivial – the Loop node represents an infinite

loop without initializer, condition or iterator. The specifics of the loop are not

represented in this tree data structure. However, they are eventually recovered

in the abstract syntax tree phase of the decompiler.

3.5.6 Finding conditionals

In order to recover conditional statements three new node types are introduced:

Condition, Block and IfStatement. Condition represents a piece of code that is

guaranteed to branch into one of two locations. Block has no special semantics

and merely groups several nodes into one. IfStatement represents the whole

conditional including the condition and two bodies.

The IfStatement node is still a genuine node in the tree data structure. How-

ever, subtyping is used to restrict its children. The IfStatement node must have

precisely three children of types Condition, Block and Block representing the

condition, ‘true’ body and ‘false’ body respectively. This defines the semantics

of the IfStatement node.

The algorithm starts by encapsulating all two-successors basic blocks with Condi-

tion node. Two-successor basic blocks are conditional branches and thus they are

conditions of if statements. Note that the bytecode br branches unconditionally

and thus is it not a condition of an if statement (basic blocks ending with br

have only one successor).

The iterative part of the algorithm is to look for free-standing Condition nodes

and encapsulate them with IfStatement nodes. This involves finding the ‘true’

and ‘false’ bodies for the if statements.

The ‘true’ and ‘false’ bodies of an if statement are found by considering reacha-

bility as discussed in the preparation chapter. Nodes reachable only by following

the ‘true’ branch define the ‘true’ body of the if statement. Similarly for the

‘false’ body. The rest of the nodes is the set reachable from both and it is not

part of the if statement – it is the code following the if statement. Note that

these three set are disjoint.

The reachable nodes nodes are found by iterative algorithm in which successors

are added to a collection until the collection does not change anymore. Nodes that

are reachable only from the ‘true’ branch are obtained by taking the set reachable

from ‘true’ branch and removing nodes reachable from the ‘false’ branch.
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Consider the special case where there are no nodes reachable from both the ‘true’

and ‘false’ branches. In this case, there is no code following the if statement.

Such code might look like this:

if (condition) {

return null;

} else {

return result;

}

In this special case the ‘false’ body is moved outside the if statement producing

more compact code:

if (condtion) {

return null;

}

return result;

3.5.7 Short-circuit conditionals

Consider condition like a & b (a and b). This or even more complex expressions

compile into a code without any branches. Therefore the expression will be

contained within a single basic block and thus the approach described so far

would work well.

Conditions like a && b are more difficult to handle (a and b, but evaluate b only

if a is true). These short-circuit conditionals introduce additional branching and

thus they are more difficult to decompile.

The expression a is always evaluated first. The flow graph is characterized by

two things – in which case the expression b is evaluated and which path is taken

if the expression b is not evaluated.

The Condtition node was previously defined as a piece of code that is guaranteed

to branch into one of two locations. This still holds for the flow graphs above. If

two nodes that evaluate a and b are considered together, they still define a proper

condition for an if statement. We define a new node type ShortCircuitCondi-

tion which is a special case of Condition. This node has exactly two children

(expressions a and b) and a meta-data field which specifies which one of the four
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short-circuit patters it represents. This is for convenience so that the pattern

matching does not have to be done again in the future.

The whole program is repeatedly searched and if one of the four patters is found,

the two nodes are merged into a ShortCircuitCondition node. This new node

represents the combined expression (e.g. a && b). Since it is a single node is

eligible to fit into the pattern again and thus nested short-circuit expressions will

be also found (e.g. (a && b) || (c && d)).

Note that this is an extension to the previous algorithm rather then a new one.

It needs to be preformed just before Condition nodes are encapsulated in IfState-

ment nodes.

3.6 Abstract Syntax Tree representation

Abstract syntax tree (AST) is the last representation of the program. It very

closely corresponds to the final textual output.

3.6.1 Data structure

External library is used to hold the abstract syntax tree.

Initially the CodeDom library that ships with the .NET Framework was used,

but it was soon abandoned due to lack of support for many crucial C# features.

It was replaced with NRefactory which is an open-source library used in SharpDe-

velop for parsing and representation of C# and VB.NET files. It focuses exclu-

sively on these two languages and thus provides excellent support for them.

NRefactory allows perfect control over the generated code. Parsing arbitrary

C# file and then generating it again will almost exactly reproduce the original

text. Whitespace would be reformated but anything else is explicitly represented

in NRefactory’s abstract syntax tree. For example, (a + b) and a + b have

different representations and so do if (a) return; and if (a) { return; }.

The decompiler aims to generate not only correct code, but also as readable code

as possible. Therefore this precise control is desirable.
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3.6.2 Generating skeleton

The first task is to generate code skeleton that is equivalent to the one in the

executable. The Cecil library helps with reading of the executable meta-data and

thus it is not necessary to work directly with the binary format of the executable.

The following four object types can be found in .NET executables: classes, struc-

tures, interfaces and enumerations. For the purpose of logical organization these

can be nested within namespaces and, in some cases, nested within each other.

Classes can be inherited and may implement one or more interfaces. Depend-

ing on the type, the objects can contain fields, properties, events and methods.

Specific set of modifies can be applied to almost everything.

Handling all these cases is tedious, but usually straightforward.

3.6.3 Generating method bodies

Once the skeleton is created, high-level blocks and the bytecode expressions con-

tained within them are translated to abstract syntax tree. For example, the Loop

node is translated to a ForStatement in the AST and the bytecode expression

add is translated to BinaryOperatorExpression in the AST.

In terms of lines of code, this is by far the largest part of the decompiler. The

reason for this is that there are many bytecodes and every bytecode needs to have

its own specific translation code.

Conceptually5, the translation code consists of three main functions: Trans-

lateMethodBody, TranslateHighLevelNode and TranslateBytecodeExpression. All

of these return complete abstract syntax tree for the given input.

TranslateMethodBody is the simples function which encapsulates the whole al-

gorithm. It takes tree of high-level blocks as input and produces the complete

abstract syntax tree of the method. Internally, it calls TranslateHighLevelNode

for each top-level node and then merely concatenates the results.

TranslateHighLevelNode translates one particular high-level node into abstract

syntax tree. There are several types of high-level nodes and each of them needs to

considered individually. If the high-level node has child nodes then this function is

called recursively. Some comments about particular node types: The BasicBlock

node needs to be preceded by explicit label and succeeded by explicit goto in

5In reality there are more functions that are loosely coupled.
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order to ensure safety. The Loop node is easy to handle since it is just an infinite

loop. The IfStatement node is most difficult to handle since it needs to handle

creation of the condition for the if statement. Remember, that the condition

can include short-circuit booleans and that these can be arbitrarily nested.

TranslateBytecodeExpression is the lowest level function. It translates the in-

dividual bytecode expressions. Note that bytecode expression may have other

bytecode expressions as arguments and therefore this function is often called re-

cursively. Getting abstract syntax tree for all arguments is in fact the first thing

that is done. After that these arguments are combined in a way that is appro-

priate for the given bytecode and operand. This logic is completely different for

each bytecode. Simple example is the add bytecode – in this case the arguments

end up being children of BinaryOperatorExpression (which is an AST node). At

this point we have the abstract syntax tree representing the bytecode expression.

The expression is further encapsulated by parenthesis for safety and the type of

the expression is recoded in the AST meta-data.

Unsupported bytecodes are handled gracefully and are represented as function

calls. For example if the add bytecode would not be implemented, it would be

outputed as IL__add(1, 2) rather then 1 + 2.

Recoding the type of AST is useful so that it can be converted depending on a

context. If AST of type IntegerOne is used in context where bool is expected,

the AST can be simply replaced by true.

Here is a list of bytecodes whose translation into abstract syntax tree has been

implemented (star is used to represent several bytecodes with similar names):

Arithmetic: add* div* mul* rem* sub* and xor shl shr* neg not

Arrays: newarr ldlen ldelem.* stelem.*

Branching: br brfalse brtrue beq bge* bgt* ble* blt* bne.un

Comparison: ceq cgt* clt*

Conversions: conv.*.*

Object-oriented: newobj castclass call callvirt

Constants: ldnull ldc.* ldstr ldtoken

Data access: ldarg ldfld stfld ldsfld stsfld ldloc stloc

Miscellaneous: nop dup ret

The complexity of implementing a translation for a bytecode varies between a

single line (nop) to over a page of code (callvirt).
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3.6.4 Optimizations

The produced abstract syntax tree represents a fully functional program. That

is, it can be pretty printed and the generated source code would compile and

work without problems. However, the produced source code is still quite verbose

and therefore several optimizations are done to simplify it or make it ‘nicer’.

The optimizations are implemented by using the visitor pattern provided by the

NRefactory library. For each optimization a new class is created which inherits

from the AstVisitor class. Instance of this class is created and it is applied to

the root of the abstract syntax tree. As a result of this, NRefactory will traverse

the whole abstract syntax tree and notify the visitor (the optimization) about

every element it encounters. For example, whenever a goto statement is encoun-

tered, the method VisitGotoStatement will be invoked on the visitor. If the

optimization wants to act upon this, it has to override the VisitGotoStatement

method. The abstract syntax tree can be modified during the traversal. For

example, when the goto statement is encountered, the visitor (the optimization)

can modify it, replace it or simply remove it.

3.6.4.1 Removal of dead labels

This is not the first optimization to be executed, but it is the simplest one and

therefore it is explained first.

The purpose of this optimization is to remove dead labels. That is, to remove all

labels that are not referenced by one or more goto statements.

The optimization uses two visitors. The first visitor overrides the

VisitGotoStatement method and is thus notified about all goto statements in

the method. The body of the overridden VisitGotoStatement method records

the name of the label being targeted and puts in into an ‘alive’ list.

The second visitor overrides the VisitLabelStatement method and is thus no-

tified about all labels. If the label is not in the ‘alive’ list, it is removed.

Note that all optimizations are done on per-method basis and therefore we do

not have to worry about name clashes of labels from different methods.
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3.6.4.2 Removal of negations

In some cases negations can be removed by using the rules of logic. Negations

are represented as UnaryOperatorExpression in the abstract syntax tree.

When a negation is encountered, it is matched against the following patterns and

simplified if possible.

!((x)) = !(x)

!!(x) = (x)

!(a > b) = (a <= b)

!(a >= b) = (a < b)

!(a < b) = (a >= b)

!(a <= b) = (a > b)

!(a == b) = (a != b)

!(a != b) = (a == b)

!(a & b) = (!(a) | !(b))

!(a && b) = (!(a) || !(b))

!(a | b) = (!(a) & !(b))

!(a || b) = (!(a) && !(b))

3.6.4.3 Removal of parenthesis

To ensures safety, the abstract syntax tree will contain extensive amount of paren-

thesis. Even simple increment would be expressed as ((i) = ((i) + (1))).

This optimization removes parenthesis where it is known to be safe.

Parenthesis can be removed from primitive values ((1)), identifiers ((i)) and

already parenthesized expressions (((...))).

Several parenthesis can also be removed due to the unambiguous context they are

in. This includes cases like return (...);, array[(...)], if((...)), (...);

and several others.

The rest of the cases is governed by the C# precedence and associativity rules.

There are 15 precedence groups in C# and expressions within the same group

are left-associative6.

6Only assignment and conditional operator (?:) are right associative, but these are never
generated in nested form by the decompiler.
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The optimization implements a function GetPrecedence that returns the prece-

dence for the given expression as an integer.

Majority of expressions are binary expressions. When a binary expression is

encountered, precedence is calculated for it and both of its operands. For example

consider (a + b) - (c * d). The precedence of the main binary expression is

12 and the precedences of the operands are 12 and 13 respectively. Since the right

operand has higher precedence then the binary expression itself, its parenthesis

can be removed. The left operand has the same precedence. However, in this

special case (left operand, same precedence), parenthesis can be removed as well

due to left-associativity of C#.

Similar, but simpler, logic applies to unary expressions.

3.6.4.4 Removal of ‘goto’ statements

This is the most complex optimization performed on the abstract syntax tree.

Its purpose is the remove or replace goto statements.

In the following case it is obvious that the goto can be removed:

// Code

goto Label;

Label:

// Code

However, in general, more complex scenarios can occur. It is not immediately

obvious that the goto statement can be removed in the following code:

if (condition1) {

if (condition2) {

// Code

goto Label;

} else {

// Code

}

}

for(;;) {

for(;;) {

Label:
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// Code

}

}

This optimization is based on simulation of execution under various conditions.

There are three important questions that the simulation answers:

What would happen if the goto was replaced by no-op (i.e. removed)?

What would happen if the goto was replaced by break?

What would happen if the goto was replaced by continue?

In the first case, the goto is replaced by no-op and the simulator is started at

that location. The simulation will traverse the AST tree structure until it finds

the next executable line of code or an label. If the reached location is the same

as the one that would be reached by following the original goto then the original

goto can be removed.

Similar simulation runs are performed by replacing the goto by break and

continue.

After this optimization is done, it is desirable to remove the dead labels.

3.6.4.5 Simplifying loops

The for loop statement has the following form in C#:

for(initializer; condition; iterator) { body };

The semantics of the for loop statement is:

initializer;

for(;;) {

if (!condition) break;

body;

iterator;

}
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So far the decompiler generated only infinite loops in form for(;;). Now it is

time to make the loops more interesting. This optimization does pattern matching

on the code and tries to identify the initializer, condition or iterator.

If the loop is preceded by something like int i = 0; then it is most likely the

initializer of the loop and it will be pushed into the for statement producing

for(int i = 0;;). If it is not really the initializer, it does not matter – seman-

tics is same.

If the first line of the body is if (not_condition) break;, it is as-

sumed to be the condition for the loop and it is pushed in to produce

for(;!not_condition;).

If the last line of the body is i = ... or i++, it is assumed to be the iterator.

Consider the following code:

int i = 0;

for(;;) {

if (i >= 10) break;

// body

i++;

}

Performing this optimization will simplify the code to:

for(int i = 0; !(i >= 10); i++) {

// body

}

This is then further simplified by the ‘removal of negation’ optimization to:

for(int i = 0; i < 10; i++) {

// body

}
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3.6.4.6 Further optimizations

Several further optimizations are done which are briefly discussed here.

Integer local variables are renamed from the more generic names like V_0 to i, j,

k, and so on. Boolean local variables are renamed to flag1, flag2 and so on.

C# aliases for types are used. For example, System.Int32 is replaced with int.

C# using (import in java) is used to simplify System.Console to just Console.

Types in scope of same namespace also do not have to be fully qualified.

Explicit this.field is simplified to just field.

The increments in form i = i + 1 are simplified to i++. The increments in form

i = i + 2 are simplified to i += 2. Analogous forms hold for decrements.

String concatenation String.Concat("Hello", "world") can be expressed in

C# just as "Hello" + "world".

Sometimes ‘false’ body of an if statement can end up being empty and can be

harmlessly removed.

Some control-flow commands are sometimes redundant since the implicit behavior

is equivalent. For example, return; at the end of method is redundant and

continue; at the end of loop is redundant.

3.6.5 Pretty Printing

Pretty printing7 is provided as part of the NRefactory library and therefore does

not need to be implemented as part of the decompiler. The NRefactory provides

provides several options that control the format of the produced source code

(for example whether an opening curly brace is placed on the same line as if

statement or on the following line).

NRefactory is capable to output the code both in C# and in VB.NET.

7Pretty printing is the act of converting abstract syntax tree into a textual form.
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Chapter 4

Evaluation

4.1 Success Criteria

The principal criterion was that the quick-sort algorithm must successfully de-

compile. This goal was achieved. The decompiled source code is, in fact, almost

identical to the original. This is demonstrated at the end of the following section.

4.2 Evolution of quick-sort

This section demonstrates how the quick-sort algorithm is decompiled.

Four different representations are used during the decompilation process. The

output of each of these representations is shown.

Unless otherwise specified the shown pieces of code are verbatim outputs of the

decompiler.

4.2.1 Original source code

To save space we will initially consider only the Main method of the quick-sort

algorithm. It parses textual arguments, performs the quick-sort and then prints

the result.

47
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public static void Main(string[] args)

{

int[] intArray = new int[args.Length];

for (int i = 0; i < intArray.Length; i++) {

intArray[i] = int.Parse(args[i]);

}

QuickSort(intArray, 0, intArray.Length - 1);

for (int i = 0; i < intArray.Length; i++) {

System.Console.Write(intArray[i].ToString() + " ");

}

}

This code is compiled with all optimizations turn on and its binary form is con-

sidered is the following sections.

4.2.2 Stack-based bytecode representation

See section 3.3 Stack-based bytecode representation on page 25 for reference.

This is a snippet of the bytecode as loaded from the executable. This part

represents the line intArray[i] = int.Parse(args[i]);. V_0 is intArray and

V_1 is i.

Comments denote the stack behaviour of the bytecodes.

The (manually) stared bytecodes represent just the part int.Parse(args[i]);.

IL_0F: ldloc V_0 # Pop0->Push1

IL_10: ldloc V_1 # Pop0->Push1

IL_11: ldarg args * # Pop0->Push1

IL_12: ldloc V_1 * # Pop0->Push1

IL_13: ldelem.ref * # Popref_popi->Pushref

IL_14: call Parse() * # Varpop->Varpush Flow=Call

IL_19: stelem.i4 # Popref_popi_popi->Push0

The used bytecodes are ldloc (load local variable), ldarg (load argument),

ldelem (get array element), call (call method) and stelem (set array element).

Here is the same snippet again after the stack analysis has been performed.
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// Stack: {}

IL_0F: ldloc V_0 # Pop0->Push1

// Stack: {IL_0F}

IL_10: ldloc V_1 # Pop0->Push1

// Stack: {IL_0F, IL_10}

IL_11: ldarg args # Pop0->Push1

// Stack: {IL_0F, IL_10, IL_11}

IL_12: ldloc V_1 # Pop0->Push1

// Stack: {IL_0F, IL_10, IL_11, IL_12}

IL_13: ldelem.ref # Popref_popi->Pushref

// Stack: {IL_0F, IL_10, IL_13}

IL_14: call Parse() # Varpop->Varpush Flow=Call

// Stack: {IL_0F, IL_10, IL_14}

IL_19: stelem.i4 # Popref_popi_popi->Push0

// Stack: {}

For example, we can see that bytecode IL_13: ldelem.ref pops the last two

elements from the stack – {IL_11, IL_12}. These will hold the values args and

V_1 respectively.

The bytecode IL_19: stelem.i4 pops three values.

4.2.3 Variable-based bytecode representation

See section 3.4 Variable-based bytecode representation on page 26 for reference.

This is the same snippet after the stack-based data-flow is replaced with variable-

based one: (code manually simplified for clarity)

expr0D = ldloc(V_0);

expr0E = ldloc(i);

expr0F = ldarg(args);

expr10 = ldloc(i);

expr11 = ldelem.ref(expr0F, expr10);

expr12 = call(Parse(), expr11);

stelem.i4(expr0D, expr0E, expr12);

Here is the actual unedited output:
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stloc(expr0D, ldloc(V_0));

stloc(expr0E, ldloc(i));

stloc(expr0F, ldarg(args));

stloc(expr10, ldloc(i));

stloc(expr11, ldelem.ref(ldloc(expr0F), ldloc(expr10)));

stloc(expr12, call(Parse(), ldloc(expr11)));

stelem.i4(ldloc(expr0D), ldloc(expr0E), ldloc(expr12));

4.2.3.1 In-lining of expressions

See section 3.4.2 In-lining of expressions on page 28 for reference.

Here is the same snippet after two in-lining optimizations. (this is actual output

– the GUI of the decompiler allows performing of optimizations step-by-step)

stloc(expr0D, ldloc(V_0));

stloc(expr0E, ldloc(i));

stloc(expr11, ldelem.ref(ldarg(args), ldloc(i)));

stloc(expr12, call(Parse(), ldloc(expr11)));

stelem.i4(ldloc(expr0D), ldloc(expr0E), ldloc(expr12));

All posible in-lines are performed:

stelem.i4(ldloc(V_0), ldloc(i),

call(Parse(), ldelem.ref(ldarg(args), ldloc(i))));

4.2.4 Abstract Syntax Tree representation (part 1)

See section 3.6 Abstract Syntax Tree representation on page 37 for reference.

Let us omit the optimization of high-level structures for this moment and skip

directly to the Abstract Syntax Tree.

After transforming a snippet of code to variable-based bytecode and then per-

forming the in-lining optimization we have obtained

stelem.i4(ldloc(V_0), ldloc(i),

call(Parse(), ldelem.ref(ldarg(args), ldloc(i))));
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Let us see the same result for larger part of the method:

BasicBlock_1: stloc(V_0, newarr(System.Int32,

conv.i4(ldlen(ldarg(args)))));

BasicBlock_2: stloc(i, ldc.i4(0));

BasicBlock_3: goto BasicBlock_6;

BasicBlock_4: stelem.i4(ldloc(V_0), ldloc(i), call(Parse(),

ldelem.ref(ldarg(args), ldloc(i))));

BasicBlock_5: stloc(i, @add(ldloc(i), ldc.i4(1)));

BasicBlock_6: if (ldloc(i) < conv.i4(ldlen(ldloc(V_0))))

goto BasicBlock_4;

BasicBlock_7: call(QuickSort(), ldloc(V_0), ldc.i4(0),

sub(conv.i4(ldlen(ldloc(V_0))), ldc.i4(1)));

This code includes the first for loop of the Main method. Note that br and blt

were already translated to goto and if (...) goto.

4.2.4.1 Translation of bytecodes to C# expressions

See section 3.6.3 Generating method bodies on page 38 for reference.

Let us translate just the bytecodes ldloc, ldarg and ldc.i4.

BasicBlock_1: stloc(V_0, newarr(System.Int32,

conv.i4(ldlen((args)))));

BasicBlock_2: stloc(i, (0));

BasicBlock_3: goto BasicBlock_6;

BasicBlock_4: stelem.i4((V_0), (i), call(Parse(),

ldelem.ref((args), (i))));

BasicBlock_5: stloc(i, @add((i), (1)));

BasicBlock_6: if ((i) < conv.i4(ldlen((V_0)))) goto BasicBlock_4;

BasicBlock_7: call(QuickSort(), (V_0), (0),

sub(conv.i4(ldlen((V_0))), (1)));

This is a small improvement. Note the safety parenthesis that were inserted

during the translation (e.g. (0), (args)).

After all translations are performed the code will look like this:
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BasicBlock_1: System.Int32[] V_0 =

(new int[((int)((args).Length))]);

BasicBlock_2: int i = (0);

BasicBlock_3: goto BasicBlock_6;

BasicBlock_4: ((V_0)[(i)] = (System.Int32.Parse(((args)[(i)]))));

BasicBlock_5: (i = ((i) + (1)));

BasicBlock_6: if ((i) < ((int)((V_0).Length))) goto BasicBlock_4;

BasicBlock_7: (QuickSortProgram.QuickSort((V_0), (0),

(((int)((V_0).Length)) - (1))));

4.2.4.2 Removal of parenthesis

See section 3.6.4.3 Removal of parenthesis on page 41 for reference.

C# rules of precedence are used to remove unnecessary parenthesis:

BasicBlock_1: System.Int32[] V_0 = new int[(int)args.Length];

BasicBlock_2: int i = 0;

BasicBlock_3: goto BasicBlock_6;

BasicBlock_4: V_0[i] = System.Int32.Parse(args[i]);

BasicBlock_5: i = i + 1;

BasicBlock_6: if (i < (int)V_0.Length) goto BasicBlock_4;

BasicBlock_7: QuickSortProgram.QuickSort(V_0, 0, (int)V_0.Length - 1);

4.2.4.3 Removal of dead labels

See section 3.6.4.1 Removal of dead labels on page 40 for reference.

Unreferenced labels are removed.

System.Int32[] V_0 = new int[(int)args.Length];

int i = 0;

goto BasicBlock_6;

BasicBlock_4: V_0[i] = System.Int32.Parse(args[i]);

i = i + 1;

BasicBlock_6: if (i < (int)V_0.Length) goto BasicBlock_4;

QuickSortProgram.QuickSort(V_0, 0, (int)V_0.Length - 1);
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4.2.4.4 Further optimizations

See section 3.6.4.6 Further optimizations on page 45 for reference.

The remainder of applicable AST optimizations is performed.

int[] V_0 = new int[args.Length];

int i = 0;

goto BasicBlock_6;

BasicBlock_4: V_0[i] = Int32.Parse(args[i]);

i++;

BasicBlock_6: if (i < V_0.Length) goto BasicBlock_4;

QuickSortProgram.QuickSort(V_0, 0, V_0.Length - 1);

4.2.5 High-level blocks representation

See section 3.5 High-level blocks representation on page 30 for reference.

4.2.5.1 Initial state

This representation is based on tree structure. However, initially the tree is flat

with all basic blocks being siblings.

These are the first four basic blocks in the Main method. The relations between

the nodes are noted in the brackets (e.g. basic block 1 has one successor which is

basic block number 2). See figure 4.1 for graphical representation of these four

basic blocks.

// BasicBlock 1 (Successors:2 Parent:0)

BasicBlock_1:

int[] V_0 = new int[args.Length];

int i = 0;

goto BasicBlock_2;

// BasicBlock 2 (Predecessors:1 Successors:4 Parent:0)

BasicBlock_2:

goto BasicBlock_4;
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// BasicBlock 3 (Predecessors:4 Successors:4 Parent:0)

BasicBlock_3:

V_0[i] = Int32.Parse(args[i]);

i++;

goto BasicBlock_4;

// BasicBlock 4 (Predecessors:3,2 Successors:5,3 Parent:0)

BasicBlock_4:

if (i < V_0.Length) goto BasicBlock_3;

goto BasicBlock_5;

Figure 4.1: Loop in the ‘Main’ method of quick-sort

4.2.5.2 Finding loops and conditionals

See section 3.5.5 Finding loops on page 34 for reference.

Loops are found by repeatedly applying the T1-T2 transformations. In this case

the first transformation to be performed will be a T2 transformation on basic

blocks 1 and 2. This will result in this ‘tree’:
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// AcyclicGraph 10 (Successors:4 Parent:0)

AcyclicGraph_10:

{

// BasicBlock 1 (Successors:2 Parent:10)

BasicBlock_1:

int[] V_0 = new int[args.Length];

int i = 0;

goto BasicBlock_2;

// BasicBlock 2 (Predecessors:1 Parent:10)

BasicBlock_2:

goto BasicBlock_4;

}

// BasicBlock 3 (Predecessors:4 Successors:4 Parent:0)

BasicBlock_3:

V_0[i] = Int32.Parse(args[i]);

i++;

goto BasicBlock_4;

// BasicBlock 4 (Predecessors:3,10 Successors:5,3 Parent:0)

BasicBlock_4:

if (i < V_0.Length) goto BasicBlock_3;

goto BasicBlock_5;

Note how the links changed. Basic blocks 1 and 2 are now considered as a single

node 10 – the predecessor of basic block 4 is now 10 rather then 2. Links within

the node 10 are limited just to the scope of that node.

Several further transformations are performed until all loops are found.

Conditional statements are identified as well. This code has one conditional

statement which does not have any code in the bodies other then the gotos.
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// BasicBlock 1 (Successors:2 Parent:0)

BasicBlock_1:

int[] V_0 = new int[args.Length];

int i = 0;

goto BasicBlock_2;

// BasicBlock 2 (Predecessors:1 Successors:11 Parent:0)

BasicBlock_2:

goto BasicBlock_4;

// Loop 11 (Predecessors:2 Successors:5 Parent:0)

Loop_11:

for (;;) {

// ConditionalNode 22 (Predecessors:3 Successors:3 Parent:11)

ConditionalNode_22:

BasicBlock_4:

if (i >= V_0.Length) {

goto BasicBlock_5;

// Block 21 (Parent:22)

Block_21:

} else {

goto BasicBlock_3;

// Block 20 (Parent:22)

Block_20:

}

// BasicBlock 3 (Predecessors:22 Successors:22 Parent:11)

BasicBlock_3:

V_0[i] = Int32.Parse(args[i]);

i++;

goto BasicBlock_4;

}
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4.2.5.3 Final version

Let us see the code once again without the comments and empty lines.

BasicBlock_1:

int[] V_0 = new int[args.Length];

int i = 0;

goto BasicBlock_2;

BasicBlock_2:

goto BasicBlock_4;

Loop_11:

for (;;) {

ConditionalNode_22:

BasicBlock_4:

if (i >= V_0.Length) {

goto BasicBlock_5;

Block_21:

} else {

goto BasicBlock_3;

Block_20:

}

BasicBlock_3:

V_0[i] = Int32.Parse(args[i]);

i++;

goto BasicBlock_4;

}
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4.2.6 Abstract Syntax Tree representation (part 2)

4.2.6.1 Removal of ‘goto’ statements

See section 3.6.4.4 Removal of ‘goto’ statements on page 42 for reference.

All of the goto statements in the code above can be removed or replaced. After

the removal of goto statements we get the following much simpler code:

int[] V_0 = new int[args.Length];

int i = 0;

for (;;) {

if (i >= V_0.Length) {

break;

}

V_0[i] = Int32.Parse(args[i]);

i++;

}

Note that the ‘false’ body of the if statement was removed because it was empty.

4.2.6.2 Simplifying loops

See section 3.6.4.5 Simplifying loops on page 43 for reference.

The code can be further simplified by pushing the loop initializer, condition and

iterator inside the for(;;):

int[] V_0 = new int[args.Length];

for (int i = 0; i < V_0.Length; i++) {

V_0[i] = Int32.Parse(args[i]);

}

This concludes the decompilation of quick-sort.
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4.2.7 Original quick-sort (complete source code)

1 using System ;
2 stat ic class QuickSortProgram
3 {
4 public stat ic void Main( string [ ] a rgs )
5 {
6 int [ ] intArray = new int [ a rgs . Length ] ;
7 for ( int i = 0 ; i < intArray . Length ; i++) {
8 intArray [ i ] = int . Parse ( args [ i ] ) ;
9 }

10 QuickSort ( intArray , 0 , intArray . Length − 1 ) ;
11 for ( int i = 0 ; i < intArray . Length ; i++) {
12 Console . Write ( intArray [ i ] . ToString ( ) + ” ” ) ;
13 }
14 }
15 public stat ic void QuickSort ( int [ ] array , int l e f t , int r i g h t )
16 {
17 i f ( r i g h t > l e f t ) {
18 int pivotIndex = ( l e f t + r i gh t ) / 2 ;
19 int pivotNew = Par t i t i on ( array , l e f t , r i ght , p ivotIndex ) ;
20 QuickSort ( array , l e f t , pivotNew − 1 ) ;
21 QuickSort ( array , pivotNew + 1 , r i g h t ) ;
22 }
23 }
24 stat ic int Par t i t i on ( int [ ] array , int l e f t , int r i ght , int pivotIndex )
25 {
26 int pivotValue = array [ p ivotIndex ] ;
27 Swap( array , pivotIndex , r i g h t ) ;
28 int s to r e Index = l e f t ;
29 for ( int i = l e f t ; i < r i g h t ; i++) {
30 i f ( array [ i ] <= pivotValue ) {
31 Swap( array , s tore Index , i ) ;
32 s to re Index = sto re Index + 1 ;
33 }
34 }
35 Swap( array , r i ght , s to r e Index ) ;
36 return s to r e Index ;
37 }
38 stat ic void Swap( int [ ] array , int index1 , int index2 )
39 {
40 int tmp = array [ index1 ] ;
41 array [ index1 ] = array [ index2 ] ;
42 array [ index2 ] = tmp ;
43 }
44 }
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4.2.8 Decompiled quick-sort (complete source code)

1 using System ;
2 abstract class QuickSortProgram
3 {
4 public stat ic void Main( string [ ] a rgs )
5 {
6 int [ ] V 0 = new int [ a rgs . Length ] ;
7 for ( int i = 0 ; i < V 0 . Length ; i++) {
8 V 0 [ i ] = Int32 . Parse ( args [ i ] ) ;
9 }

10 QuickSortProgram . QuickSort (V 0 , 0 , V 0 . Length − 1 ) ;
11 for ( int j = 0 ; j < V 0 . Length ; j++) {
12 Console . Write (V 0 [ j ] . ToString ( ) + ” ” ) ;
13 }
14 }
15 public stat ic void QuickSort ( int [ ] array , int l e f t , int r i g h t )
16 {
17 i f ( r i g h t > l e f t ) {
18 int i = ( l e f t + r i gh t ) / 2 ;
19 int j = QuickSortProgram . Pa r t i t i on ( array , l e f t , r i ght , i ) ;
20 QuickSortProgram . QuickSort ( array , l e f t , j − 1 ) ;
21 QuickSortProgram . QuickSort ( array , j + 1 , r i g h t ) ;
22 }
23 }
24 private stat ic int Par t i t i on ( int [ ] array , int l e f t , int r i ght , int pivotIndex )
25 {
26 int i = array [ p ivot Index ] ;
27 QuickSortProgram . Swap( array , pivotIndex , r i g h t ) ;
28 int j = l e f t ;
29 for ( int k = l e f t ; k < r i g h t ; k++) {
30 i f ( array [ k ] <= i ) {
31 QuickSortProgram . Swap( array , j , k ) ;
32 j++;
33 }
34 }
35 QuickSortProgram . Swap( array , r i ght , j ) ;
36 return j ;
37 }
38 private stat ic void Swap( int [ ] array , int index1 , int index2 )
39 {
40 int i = array [ index1 ] ;
41 array [ index1 ] = array [ index2 ] ;
42 array [ index2 ] = i ;
43 }
44 }
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4.3 Advanced and unsupported features

This section demonstrates decompilation of more advanced application. The

examples that follow were produced by decompiling a reversi game1.

The examples demonstrate advanced features of the decompiler and in some cases

its limitations (i.e. still unimplemented features).

4.3.1 Properties and fields

Properties and fields are well-supported.

Original:

private int[,] squares;

private bool[,] safeDiscs;

public int BlackCount {

get { return blackCount; }

}

public int WhiteCount {

get { return whiteCount; }

}

Decompiled:

private System.Int32[,] squares;

private System.Boolean[,] safeDiscs;

public int BlackCount {

get { return blackCount; }

}

public int WhiteCount {

get { return whiteCount; }

}

The decompiled code is correct.

The type System.Int32[,] was not simplified to int[,].

1Taken from the CodeProject. Written by Mike Hall.
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4.3.2 Short-circuit boolean expressions

Original:

if (r < 0 || r > 7 || c < 0 || c > 7 ||

(r - dr == row && c - dc == col) ||

this.squares[r, c] != color)

return false;

Decompiled:

if (i < 0 || i > 7 || j < 0 || j > 7 ||

i - dr == row && j - dc == col ||

squares[i, j] != color) {

return false;

}

The decompiled code is correct. Variable names were lost during compilation.

By precedence rules it was possible to remove the parenthesis.

4.3.3 Short-circuit boolean expressions 2

Original:

if ((hasSpaceSide1 && hasSpaceSide2 ) ||

(hasSpaceSide1 && hasUnsafeSide2) ||

(hasUnsafeSide1 && hasSpaceSide2 ))

return true;

Decompiled:

if (flag && flag2 || flag && flag4 || flag3 && flag2) {

return true;

}

The decompiled code is correct. Variable names were lost during compilation.
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4.3.4 Complex control nesting

Original:

bool statusChanged = true;

while (statusChanged)

{

statusChanged = false;

for (i = 0; i < 8; i++)

for (j = 0; j < 8; j++)

if (this.squares[i, j] != Board.Empty &&

!this.safeDiscs[i, j] &&

!this.IsOutflankable(i, j)) {

this.safeDiscs[i, j] = true;

statusChanged = true;

}

}

Decompiled:

for (bool flag = true; flag;) {

flag = false;

for (int i = 0; i < 8; i++) {

for (int j = 0; j < 8; j++) {

if (squares[i, j] != Empty &&

!safeDiscs[i, j] &&

!IsOutflankable(i, j)) {

safeDiscs[i, j] = true;

flag = true;

}

}

}

}

The decompiled code is correct.

A for loop was used instead of while loop. The decompiler always uses for

loop.

In the example, four control structures are nested; even more levels do not cause

any problems.
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4.3.5 Multidimensional arrays

Multidimensional arrays are supported.

Original:

this.squares = new int[8, 8];

this.safeDiscs = new bool[8, 8];

// Clear the board and map.

int i, j;

for (i = 0; i < 8; i++)

for (j = 0; j < 8; j++) {

this.squares[i, j] = Board.Empty;

this.safeDiscs[i, j] = false;

}

Decompiled:

squares = new int[8, 8];

safeDiscs = new bool[8, 8];

for (int i = 0; i < 8; i++) {

for (int j = 0; j < 8; j++) {

squares[i, j] = Empty;

safeDiscs[i, j] = false;

}

}

The decompiled code is correct and even slightly simplified.

4.3.6 Dispose method

This is the standard .NET dispose method for a form.

Original:

if(disposing) {

if (components != null) {

components.Dispose();

}

}
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Decompiled:

if (disposing && components) {

components.Dispose();

}

The decompiler did a good job identify that the two ifs can be expressed as

short-circuit expression.

On the hand, it failed to distinguish being ‘true’ and being ‘non-null’ – on the

bytecode level these are the same thing (together with being ‘non-zero’).

4.3.7 Event handlers

Event handlers are not supported.

Original:

this.aboutMenuItem.Click +=

new System.EventHandler(this.aboutMenuItem_Click);

Decompiled:

aboutMenuItem.add_Click(

new System.EventHandler(this, IL__ldftn(aboutMenuItem_Click()))

);

Note how the unsupported bytecode ldftn is presented.

4.3.8 Constructors

Original:

this.infoPanel.Location = new System.Drawing.Point(296, 32);

Decompiled:

infoPanel.Location = new System.Drawing.Point(296, 32);

The decompiled code is correct including the constructor arguments.
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4.3.9 Property access

Original:

this.infoPanel.Name = "infoPanel";

Decompiled:

infoPanel.Name = "infoPanel";

The decompiled code is correct.

Note that properties are actually set methods. This is, set_Name(string) here.

4.3.10 Object casting

Original:

this.Icon = ((System.Drawing.Icon)(resources.GetObject("$this.Icon")));

Decompiled:

Icon = (System.Drawing.Icon)V_0.GetObject("$this.Icon");

The decompiled code is correct.

4.3.11 Boolean values

In the .NET Runtime there is no difference between integers and booleans. Han-

dling of this is delicate.

Original:

return false;

Decompiled:

return false;
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The decompiled code is correct.

Original:

this.infoPanel.ResumeLayout(false);

Decompiled:

infoPanel.ResumeLayout(0);

This code is incorrect – the case where boolean is passed as argument still has

no been considered in the decompiler. This is just case-by-case laborious work.

4.3.12 The ‘dup’ instruction

The dup instruction is handled well.

Decompiled: (‘dup’ unsupported)

expr175 = this;

expr175.whiteCount = expr175.whiteCount + 1;

Decompiled: (‘dup’ supported)

whiteCount++;



Chapter 5

Conclusion

The project was a success. The goal of the project was to decompile an imple-

mentation of a quick-sort algorithm and this goal was achieved well. The C#

source code produced by the decompiler is virtually identical to the original source

code1. In particular, the source code compiles back to identical .NET CLR code.

More complex programs than the quick-sort implementation were considered and

the decompiler was improved to handle them better. The improvements include:

• Better support for several bytecodes related to: creation and casting of ob-

jects, multidimensional arrays, virtual method invocation, property access

and field access.

• Support for the dup bytecode which does not occur very frequently in pro-

grams. In particular, it does not occur in the quick-sort implementation.

• Arbitrarily complicated short-circuit boolean expression are handled. Fur-

thermore, both the short-circuit and the traditional boolean expressions are

simplified using rules of logic (e.g. using De Morgan’s laws).

• Nested high-level control structures are handled well (e.g. nested loops).

• The performance is improved by using basic blocks.

• The removal of gotos was improved to work in almost any scenario (by

using the ‘simulator’ approach).

1See pages 60 and 61 in the evaluation chapter.
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5.1 Hindsight

I am very satisfied with the current implementation. Whenever I have seen an

opportunity for improvement, I have have refactored the code right away. As a

result of this, I think that the algorithms and data structures currently used are

very well suited for the purpose.

If I were to reimplement the project, I would merely save time by making the

right design decisions right away.

Here are some issues that I have encountered are resolved:

• During the preparation phase, I have spend reasonable amount of time

researching algorithms for finding of loops. I found most of the algorithms

either unintuitive or not not sufficiently robust for all scenarios. Therefore,

I have derived my own algorithm based on the T1-T2 transformations.

• I have initially used the CodeDom library for the abstract syntax tree. In

the end, NRefactory proved much more suitable.

• I have eventually made the stack-based and variable-based code representa-

tions quite distinct and decoupled. This allowed greater freedom for trans-

formations.

• Initially the links between nodes were manually kept in synchronization

during transformations. It is more convenient and robust just to throw the

links away and recalculate them.

• The removal of gotos was gradually pushed all the way to the last stage of

decompilation where it is most powerful and safest.



5.2. FUTURE WORK 71

5.2 Future work

The theoretical problems have been resolved. However, a lot of laborious work

still needs to be done before the decompiler will be able to handle all .NET

executables.

The decompiler could be extended to recover C# compile-time features like

anonymous methods, enumerators or LINQ expressions.

The decompiler greatly overlaps with a verification of .NET executables (the

code needs to be valid in order to be decompiled). The project could be forked

to create .NET verifier.

I am the primary developer of the SharpDevelop debugger. I would like integrate

the decompiler with the debugger so that is it possible to debug applications with

no source code.
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Project Proposal

Part II of the Computer Science Project Proposal

.NET Decompiler

October 14, 2007

Project Originator: David Srbecký

Resources Required: See attached Project Resource Form

Project Supervisor: Alan Mycroft

Director of Studies: Jean Bacon and David Ingram

Overseers: Anuj Dawar and Andrew Moore
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Introduction and Description of the Work

The .NET Framework is a general-purpose software development platform which

is very similar to Java. It includes extensive class library and, similarly to Java, is

based on the virtual machine model. The executable code for a .NET program is

stored in a file called assembly which consists of class metadata and a stack-based

bytecode called Common Intermediate Language (CIL or IL).

In general, any programming language can be compiled to .NET and there are

dozens of compilers that compile into CIL. The most common language used for

.NET development is C#.

The goal of this project is to decompile .NET assemblies back into equivalent

C# source code. Compared to decompilation of conventional assembly code, this

task is hugely simplified by the presence of metadata in the .NET assemblies.

The metadata contains complete information about classes, methods and fields.

The method bodies consist of stack-based IL code which needs to be decompiled

into higher-level C# statements. Data-flow analysis will need to be employed to

transform the stack-based data model into one that uses temporary local variables

and composition of expressions. Control-flow analysis will be used to recreate high

level control structures like for loops and conditional branching.

Resources Required

• My own machine

(1.6 GHz CPU, 1.5 GB of RAM, 50 GB & 75 GB Disks, Windows XP SP2

OS)

Used for development

• Student-Run Computing Facility (SRCF)

Used for running the SVN server

• Public Workstation Facility (PWF)

Used for storage of back-ups
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Starting Point

I plan to implement the project in C#. I have been using this language for over

five years now and so I do not have to spend any time learning a new language.

It also means that I will not be having any problems neither with the syntax of

the language nor with any peculiar error messages produced by the compiler or

by the runtime.

I have written an integrated .NET debugger for the SharpDevelop IDE. Dur-

ing that I have obtained some basic knowledge about metadata and lower-level

functionality in .NET. I can read .NET bytecode and, with the help of reference

manual, I can write short programs in it.

The metadata and bytecode needs to be read form the assembly files. I plan

to use the Cecil library for it. I am not familiar with this library, but I do not

expect to have any difficulties with it.

Substance and Structure of the Project

The project consists of the following major work items:

1. Preliminary research

I will have to research the following topics:

• Cecil library - Cecil is the library which I will use for reading of the

metadata. It will need to get familiar with its public API. Because it

is open-source, it might be valuable to get some basic understanding

of its source code as well.

• CIL bytecode - The runtime of the .NET Framework is described in

ECMA-335 Standard: “CLI Specification – Virtual Machine” (556

pages). I will need to get familiar with this document since I will

be using it as the main reference. I will be especially interested in

Partition III – CIL Instruction Set.

• Decompilation theory - I will need to get familiar with the theory

behind decompilation of programs. Cristina Cifuentes’ PhD thesis

“Reverse Compilation Techniques” might prove as especially useful

starting point.
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The research of these topics should not be too extensive. I only indeed to

get sufficient background knowledge in these areas and then return to the

finner details when I needed them.

2. Create a skeleton of the code

It will be necessary to read the assembly metadata and create a C# source

code that has the same classes, fields and methods. The method signatures

have to match the ones in the assembly. At this point the method bodies

can be left empty.

3. Read and disassemble .NET bytecode

The next step is to read the bytecode for each method, disassemble it and

output it as comments (for example, // IL_01: ldstr "Hello world").

This will help me learn how to use the Cecil library to read the bytecode

and how to process it. I also expect that this output will be extremely

helpful for debugging purposes later on.

4. Start creating r-value expressions

Ignoring the stack of the virtual machine, some bytecodes can be straight-

forwardly converted into expressions. For example:

ldstr "Hello world" - string "Hello world"

ldnull - ’null’ reference

ldc.i4.0 - 4 byte integer of value 0

ldc.i4 123 - 4 byte integer of value 123

ldarg.0 - the first method argument

ldloc.0 - the first local variable in the method

The goal of this stage is to create C# expressions for several of the most

important bytecodes.

Function calls and arithmetic operations are also expressions, but at this

stage I do not know their inputs and so I will have to use dummy values as

their inputs.

5. Conditional and unconditional branching

There are several bytecodes that investigate one or two values on the top

of stack and then, if a given condition is met, branch to different location.

(br, brfalse, brtrue, beq, bge, bgt, etc...)
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The goal of this stage is to use C# labels and goto statements

to recreate this flow of control. (eg translate brfalse IL_02 to

if (input == false) goto Label_02;)

As in the previous stage the inputs (ie the values at the top of stack) are

still not know.

6. Simple data-flow analysis

This is where it begins to be difficult. Consider the code:

// Load "Hello, world!" on top of the stack

IL_01: ldstr "Hello, world!"

// Print the top of the stack to the console

IL_02: call void [mscorlib]System.Console::WriteLine(string)

Both of these are already decompiled as expressions, however the call has

a dummy value as its argument. The goal of this stage is to perform as

simple data-flow analysis as possible. The text ”Hello, world!” must find

its way to the method call. At this point it will probably be through one

or even two temporary variables. For example:

String il_01_expression = "Hello, world!";

String il_02_argument_1 = il_01_expression;

System.Console.WriteLine(il_02_argument_1);

The most difficult part will be handling of control flow. Different values

can be on stack depending on which branch of code was executed. At this

stage it will be necessary to create and analyse control flow graph. As a

result of this stage, many temporary variables might be introduced to the

code.

7. Round-trip quick-sort algorithm

At this point very simple applications should probably successfully decom-

pile and compile again (round-trip).

The goal of this stage is to fix bugs and to add features so that simple

algorithm like quick-sort can be successfully round-tripped without need to

manually change the produced C# source code. At this point there is no

restriction on the aesthetics of the source code. The only requirement is

that it does compile.
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There are many features of .NET that I do not plan to support at this

point. For example, boxing & unboxing, casting, generics and exception

handling. In general, all non-essential features are excluded.

8. Further data-flow analysis

Employ more advanced data-flow analysis to simplify the generated C#

code. Many temporary variables can be probably removed, relocated or

renamed according to their use.

[This task has variable scope and if the project starts falling behind schedule,

simpler algorithms can be employed and vice versa.]

9. Control-flow analysis

The goal of this stage is to use control-flow analysis to regenerate high-

level structures like if statements and for loops. It will not be possible

to eliminated all goto statements, but they should be avoided whenever

possible.

[This task has variable scope and if the project starts falling behind schedule,

simpler algorithms can be employed and vice versa.]

10. Assembly resources

.NET assemblies can have files embed in them. These files can then be

accessed at runtime and thus the programs might require them.

The goal is to extract the resources so that they can be included during the

recompilation process.

[Optional. This is an optional goal which will be done only if the project

development goes much better then originally anticipated.]

11. Advanced features

Add commonly used features which where ignored so far - for example,

boxing & unboxing, casting, generics and exception handling.

[Optional. This is an optional goal which will be done only if the project

development goes much better then originally anticipated.]

12. Round-trip Mono

The ultimate goal of this project is to be able to round-trip any .NET

assembly. This means that for any given assembly the Decompiler should

produce C# source code which is valid (does compile again without error).

Even more importantly, the program produced by the compilation of the

source code should be semantically same as the original one. Since the
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bytecode will in general differ, this condition is difficult to verify. One way

to check that the Decompiler preserves the meaning of programs is to simply

try it.

Mono is open-source reimplantation of the .NET Framework. The major

part of it are the .NET class libraries which can be used for testing of

the Decompiler. The project is open-source and so if any decompilation

problems occur, it is possible to investigate the source code of these libraries.

Furthermore, the libraries come with extensive unit testing suite so it is

possible to verify that the round-tripped libraries are not broken.

The goal of this final stage is to successfully round-trip all Mono libraries

and pass the unit tests. This would probably involve enormous amount of

bugfixing, investigation and handling of corner cases. All remaining .NET

features would have to be implemented.

[Optional. This last stage is huge and impossible to be finished within the

time frame of Part II project. If all goes well, I expect that it will take at

least one more year for the project to mature to this point.]

13. Write the dissertation

The last and most important piece of work is to write the dissertation. Be-

ing a non-native English speaker, I expect this to take considerable amount

of time. I plan to spend the last seven weeks of project time on it. This

includes the end of Lent Term and the whole Easter vacation. I plan to

have the dissertation finished by the start of Easter term.
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Success Criteria

The Decompiler should successfully round-trip a quick-sort algorithm (or any al-

gorithm of comparable complexity). That is, when an assembly containing the

algorithm is decompiled, the produced C# source code should be both syntac-

tically and semantically correct. The bytecode produced by compilation of the

generated source code is not expected to be identical to the original one, but it is

expected to be equivalent. That is, the binary may be different but it still needs

to be a correct implementation of the algorithm.

To achieve this the Decompiler will need to have the following features:

• Handle integers and integer arithmetic

• Create and be able to use integer arrays

• Branching must be successfully decompiled

• Several methods can be defined

• Methods can have arguments and return values

• Methods can be called recursively

• Integer command line arguments can be read and parsed

• Text can be outputted to the standard console output

See the following page for a C# implementation of a quick-sort algorithm which

will be used to demonstrate successful implementation of these features.

I plan to achieve the success criteria by the progress report dead-line and then

spend the rest of the time available by increasing the quality of the generated

source code (ie “Further data-flow analysis” and “Control-flow analysis”).
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Quick-sort algorithm� �
1 stat ic class QuickSortProgram
2 {
3 public stat ic void Main( string [ ] a rgs )
4 {
5 int [ ] intArray = new int [ a rgs . Length ] ;
6 for ( int i = 0 ; i < intArray . Length ; i++) {
7 intArray [ i ] = int . Parse ( args [ i ] ) ;
8 }
9 QuickSort ( intArray , 0 , intArray . Length − 1 ) ;

10 for ( int i = 0 ; i < intArray . Length ; i++) {
11 System . Console . Write ( intArray [ i ] . ToString ( ) + ” ” ) ;
12 }
13 }
14
15 /// For d e s c r i p t i o n o f t h i s a l gor i thm see :
16 /// h t t p :// en . w i k i p ed i a . org / w ik i /Quick sor t
17 public stat ic void QuickSort ( int [ ] array , int l e f t , int r i g h t )
18 {
19 i f ( r i g h t > l e f t ) {
20 int pivotIndex = ( l e f t + r i gh t ) / 2 ;
21 int pivotNew = Par t i t i on ( array , l e f t , r i ght , p ivotIndex ) ;
22 QuickSort ( array , l e f t , pivotNew − 1 ) ;
23 QuickSort ( array , pivotNew + 1 , r i g h t ) ;
24 }
25 }
26
27 stat ic int Par t i t i on ( int [ ] array , int l e f t , int r i ght ,
28 int pivotIndex )
29 {
30 int pivotValue = array [ p ivotIndex ] ;
31 Swap( array , pivotIndex , r i g h t ) ;
32 int s to r e Index = l e f t ;
33 for ( int i = l e f t ; i < r i g h t ; i++) {
34 i f ( array [ i ] <= pivotValue ) {
35 Swap( array , s tore Index , i ) ;
36 s to re Index = store Index + 1 ;
37 }
38 }
39 Swap( array , r i ght , s to r e Index ) ;
40 return s to r e Index ;
41 }
42
43 stat ic void Swap( int [ ] array , int index1 , int index2 )
44 {
45 int tmp = array [ index1 ] ;
46 array [ index1 ] = array [ index2 ] ;
47 array [ index2 ] = tmp ;
48 }
49 }
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Timetable and Milestones

The work shall start on the Monday 22.10.2007 and is expected to take 20 weeks

in total.

22 Oct - 28 Oct (week 1) Preliminary research

29 Oct - 4 Nov (week 2) Create a skeleton of the code

5 Nov - 11 Nov (week 3) Read and disassemble .NET bytecode

12 Nov - 18 Nov (week 4) Start creating r-value expressions

19 Nov - 25 Nov (week 5) Conditional and unconditional branching

26 Nov - 9 Dec (weeks 6 and 7) Simple data-flow analysis

10 Dec - 20 Jan Christmas vacation

21 Jan - 27 Jan (week 8) Round-trip quick-sort algorithm

26 Jan - 27 Jan Write the Progress Report

28 Jan - 10 Feb (weeks 9 and 10) Further data-flow analysis

11 Feb - 2 Mar (weeks 11 to 13) Control-flow analysis

3 Mar - 20 Apr (weeks 14 to 20) Write the dissertation (over Easter vacation)

21 Apr onwards Easter term – Preparation for exams

Unscheduled tasks: Assembly resources; Advanced features; Round-trip

Mono


