// Copyright (c) 2015 Siegfried Pammer
// 
// Permission is hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
// to whom the Software is furnished to do so, subject to the following conditions:
// 
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
// 
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

using ICSharpCode.Decompiler.IL;
using ICSharpCode.Decompiler.TypeSystem.Implementation;

namespace ICSharpCode.Decompiler.TypeSystem
{
	public static class TypeUtils
	{
		public const int NativeIntSize = 6; // between 4 (Int32) and 8 (Int64)
		
		/// <summary>
		/// Gets the size (in bytes) of the input type.
		/// Returns <c>NativeIntSize</c> for pointer-sized types.
		/// Returns 0 for structs and other types of unknown size.
		/// </summary>
		public static int GetSize(this IType type)
		{
			switch (type.Kind) {
				case TypeKind.Pointer:
				case TypeKind.ByReference:
				case TypeKind.Class:
					return NativeIntSize;
				case TypeKind.Enum:
					type = type.GetEnumUnderlyingType();
					break;
			}
			
			var typeDef = type.GetDefinition();
			if (typeDef == null)
				return 0;
			switch (typeDef.KnownTypeCode) {
				case KnownTypeCode.Boolean:
				case KnownTypeCode.SByte:
				case KnownTypeCode.Byte:
					return 1;
				case KnownTypeCode.Char:
				case KnownTypeCode.Int16:
				case KnownTypeCode.UInt16:
					return 2;
				case KnownTypeCode.Int32:
				case KnownTypeCode.UInt32:
				case KnownTypeCode.Single:
					return 4;
				case KnownTypeCode.IntPtr:
				case KnownTypeCode.UIntPtr:
					return NativeIntSize;
				case KnownTypeCode.Int64:
				case KnownTypeCode.UInt64:
				case KnownTypeCode.Double:
					return 8;
			}
			return 0;
		}
		
		/// <summary>
		/// Gets the size of the input stack type.
		/// </summary>
		/// <returns>
		/// * 4 for <c>I4</c>,
		/// * 8 for <c>I8</c>,
		/// * <c>NativeIntSize</c> for <c>I</c> and <c>Ref</c>,
		/// * 0 otherwise (O, F, Void, Unknown).
		/// </returns>
		public static int GetSize(this StackType type)
		{
			switch (type) {
				case StackType.I4:
					return 4;
				case StackType.I8:
					return 8;
				case StackType.I:
				case StackType.Ref:
					return NativeIntSize;
				default:
					return 0;
			}
		}
		
		public static IType GetLargerType(IType type1, IType type2)
		{
			return GetSize(type1) >= GetSize(type2) ? type1 : type2;
		}
		
		/// <summary>
		/// Gets whether the type is a small integer type.
		/// Small integer types are:
		/// * bool, sbyte, byte, char, short, ushort
		/// * any enums that have a small integer type as underlying type
		/// </summary>
		public static bool IsSmallIntegerType(this IType type)
		{
			return GetSize(type) < 4;
		}

		/// <summary>
		/// Gets whether the type is a C# small integer type: byte, sbyte, short or ushort.
		/// 
		/// Unlike the ILAst, C# does not consider bool or enums to be small integers.
		/// </summary>
		public static bool IsCSharpSmallIntegerType(this IType type)
		{
			switch (type.GetDefinition()?.KnownTypeCode) {
				case KnownTypeCode.Byte:
				case KnownTypeCode.SByte:
				case KnownTypeCode.Int16:
				case KnownTypeCode.UInt16:
					return true;
				default:
					return false;
			}
		}

		/// <summary>
		/// Gets whether the type is a C# primitive integer type: byte, sbyte, short, ushort, int, uint, long and ulong.
		/// 
		/// Unlike the ILAst, C# does not consider bool, enums, pointers or IntPtr to be integers.
		/// </summary>
		public static bool IsCSharpPrimitiveIntegerType(this IType type)
		{
			switch (type.GetDefinition()?.KnownTypeCode) {
				case KnownTypeCode.Byte:
				case KnownTypeCode.SByte:
				case KnownTypeCode.Int16:
				case KnownTypeCode.UInt16:
				case KnownTypeCode.Int32:
				case KnownTypeCode.UInt32:
				case KnownTypeCode.Int64:
				case KnownTypeCode.UInt64:
					return true;
				default:
					return false;
			}
		}

		/// <summary>
		/// Gets whether the type is an IL integer type.
		/// Returns true for I4, I, or I8.
		/// </summary>
		public static bool IsIntegerType(this StackType type)
		{
			switch (type) {
				case StackType.I4:
				case StackType.I:
				case StackType.I8:
					return true;
				default:
					return false;
			}
		}
		
		/// <summary>
		/// Gets whether reading/writing an element of accessType from the pointer
		/// is equivalent to reading/writing an element of the pointer's element type.
		/// </summary>
		/// <remarks>
		/// The access semantics may sligthly differ on read accesses of small integer types,
		/// due to zero extension vs. sign extension when the signs differ.
		/// </remarks>
		public static bool IsCompatibleTypeForMemoryAccess(IType pointerType, IType accessType)
		{
			IType memoryType;
			if (pointerType is PointerType || pointerType is ByReferenceType)
				memoryType = ((TypeWithElementType)pointerType).ElementType;
			else
				return false;
			if (memoryType.Equals(accessType))
				return true;
			// If the types are not equal, the access still might produce equal results in some cases:
			// 1) Both types are reference types
			if (memoryType.IsReferenceType == true && accessType.IsReferenceType == true)
				return true;
			// 2) Both types are integer types of equal size
			StackType memoryStackType = memoryType.GetStackType();
			StackType accessStackType = accessType.GetStackType();
			return memoryStackType == accessStackType && memoryStackType.IsIntegerType() && GetSize(memoryType) == GetSize(accessType);
		}

		/// <summary>
		/// Gets the stack type corresponding to this type.
		/// </summary>
		public static StackType GetStackType(this IType type)
		{
			switch (type.Kind) {
				case TypeKind.Unknown:
					return StackType.Unknown;
				case TypeKind.ByReference:
					return StackType.Ref;
				case TypeKind.Pointer:
					return StackType.I;
			}
			ITypeDefinition typeDef = type.GetEnumUnderlyingType().GetDefinition();
			if (typeDef == null)
				return StackType.O;
			switch (typeDef.KnownTypeCode) {
				case KnownTypeCode.Boolean:
				case KnownTypeCode.Char:
				case KnownTypeCode.SByte:
				case KnownTypeCode.Byte:
				case KnownTypeCode.Int16:
				case KnownTypeCode.UInt16:
				case KnownTypeCode.Int32:
				case KnownTypeCode.UInt32:
					return StackType.I4;
				case KnownTypeCode.Int64:
				case KnownTypeCode.UInt64:
					return StackType.I8;
				case KnownTypeCode.Single:
				case KnownTypeCode.Double:
					return StackType.F;
				case KnownTypeCode.Void:
					return StackType.Void;
				case KnownTypeCode.IntPtr:
				case KnownTypeCode.UIntPtr:
					return StackType.I;
				default:
					return StackType.O;
			}
		}
		
		/// <summary>
		/// If type is an enumeration type, returns the underlying type.
		/// Otherwise, returns type unmodified.
		/// </summary>
		public static IType GetEnumUnderlyingType(this IType type)
		{
			return (type.Kind == TypeKind.Enum) ? type.GetDefinition().EnumUnderlyingType : type;
		}
		
		/// <summary>
		/// Gets the sign of the input type.
		/// </summary>
		/// <remarks>
		/// Integer types (including IntPtr/UIntPtr) return the sign as expected.
		/// Floating point types and <c>decimal</c> are considered to be signed.
		/// <c>char</c>, <c>bool</c> and pointer types (e.g. <c>void*</c>) are unsigned.
		/// Enums have a sign based on their underlying type.
		/// All other types return <c>Sign.None</c>.
		/// </remarks>
		public static Sign GetSign(this IType type)
		{
			if (type.Kind == TypeKind.Pointer)
				return Sign.Unsigned;
			var typeDef = type.GetEnumUnderlyingType().GetDefinition();
			if (typeDef == null)
				return Sign.None;
			switch (typeDef.KnownTypeCode) {
				case KnownTypeCode.SByte:
				case KnownTypeCode.Int16:
				case KnownTypeCode.Int32:
				case KnownTypeCode.Int64:
				case KnownTypeCode.IntPtr:
				case KnownTypeCode.Single:
				case KnownTypeCode.Double:
				case KnownTypeCode.Decimal:
					return Sign.Signed;
				case KnownTypeCode.UIntPtr:
				case KnownTypeCode.Char:
				case KnownTypeCode.Boolean:
				case KnownTypeCode.Byte:
				case KnownTypeCode.UInt16:
				case KnownTypeCode.UInt32:
				case KnownTypeCode.UInt64:
					return Sign.Unsigned;
				default:
					return Sign.None;
			}
		}

		/// <summary>
		/// Maps the KnownTypeCode values to the corresponding PrimitiveTypes.
		/// </summary>
		public static PrimitiveType ToPrimitiveType(this KnownTypeCode knownTypeCode)
		{
			switch (knownTypeCode) {
				case KnownTypeCode.SByte:
					return PrimitiveType.I1;
				case KnownTypeCode.Int16:
					return PrimitiveType.I2;
				case KnownTypeCode.Int32:
					return PrimitiveType.I4;
				case KnownTypeCode.Int64:
					return PrimitiveType.I8;
				case KnownTypeCode.Single:
					return PrimitiveType.R4;
				case KnownTypeCode.Double:
					return PrimitiveType.R8;
				case KnownTypeCode.Byte:
					return PrimitiveType.U1;
				case KnownTypeCode.UInt16:
					return PrimitiveType.U2;
				case KnownTypeCode.UInt32:
					return PrimitiveType.U4;
				case KnownTypeCode.UInt64:
					return PrimitiveType.U8;
				case KnownTypeCode.IntPtr:
					return PrimitiveType.I;
				case KnownTypeCode.UIntPtr:
					return PrimitiveType.U;
				default:
					return PrimitiveType.None;
			}
		}

		/// <summary>
		/// Maps the KnownTypeCode values to the corresponding PrimitiveTypes.
		/// </summary>
		public static PrimitiveType ToPrimitiveType(this IType type)
		{
			var def = type.GetEnumUnderlyingType().GetDefinition();
			return def != null ? def.KnownTypeCode.ToPrimitiveType() : PrimitiveType.None;
		}

		/// <summary>
		/// Maps the PrimitiveType values to the corresponding KnownTypeCodes.
		/// </summary>
		public static KnownTypeCode ToKnownTypeCode(this PrimitiveType primitiveType)
		{
			switch (primitiveType) {
				case PrimitiveType.I1:
					return KnownTypeCode.SByte;
				case PrimitiveType.I2:
					return KnownTypeCode.Int16;
				case PrimitiveType.I4:
					return KnownTypeCode.Int32;
				case PrimitiveType.I8:
					return KnownTypeCode.Int64;
				case PrimitiveType.R4:
					return KnownTypeCode.Single;
				case PrimitiveType.R8:
					return KnownTypeCode.Double;
				case PrimitiveType.U1:
					return KnownTypeCode.Byte;
				case PrimitiveType.U2:
					return KnownTypeCode.UInt16;
				case PrimitiveType.U4:
					return KnownTypeCode.UInt32;
				case PrimitiveType.U8:
					return KnownTypeCode.UInt64;
				case PrimitiveType.I:
					return KnownTypeCode.IntPtr;
				case PrimitiveType.U:
					return KnownTypeCode.UIntPtr;
				default:
					return KnownTypeCode.None;
			}
		}
		
		public static KnownTypeCode ToKnownTypeCode(this StackType stackType, Sign sign = Sign.None)
		{
			switch (stackType) {
				case StackType.I4:
					return sign == Sign.Unsigned ? KnownTypeCode.UInt32 : KnownTypeCode.Int32;
				case StackType.I8:
					return sign == Sign.Unsigned ? KnownTypeCode.UInt64 : KnownTypeCode.Int64;
				case StackType.I:
					return sign == Sign.Unsigned ? KnownTypeCode.UIntPtr : KnownTypeCode.IntPtr;
				case StackType.F:
					return KnownTypeCode.Double;
				case StackType.O:
					return KnownTypeCode.Object;
				case StackType.Void:
					return KnownTypeCode.Void;
				default:
					return KnownTypeCode.None;
			}
		}
	}
	
	public enum Sign : byte
	{
		None,
		Signed,
		Unsigned
	}
}