// Copyright (c) 2011-2015 Daniel Grunwald // // Permission is hereby granted, free of charge, to any person obtaining a copy of this // software and associated documentation files (the "Software"), to deal in the Software // without restriction, including without limitation the rights to use, copy, modify, merge, // publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons // to whom the Software is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all copies or // substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, // INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR // PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE // FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER // DEALINGS IN THE SOFTWARE. using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using Mono.Cecil; using ICSharpCode.Decompiler.IL; namespace ICSharpCode.Decompiler.IL { /// /// Performs inlining transformations. /// public class ILInlining : IILTransform { public void Run(ILFunction function, ILTransformContext context) { foreach (var block in function.Descendants.OfType()) { InlineAllInBlock(block); } } public bool InlineAllInBlock(Block block) { bool modified = false; int i = 0; while (i < block.Instructions.Count) { if (InlineOneIfPossible(block, i, aggressive: false)) { modified = true; i = Math.Max(0, i - 1); // Go back one step } else { i++; } } return modified; } /// /// Inlines instructions before pos into block.Instructions[pos]. /// /// The number of instructions that were inlined. public int InlineInto(Block block, int pos, bool aggressive) { if (pos >= block.Instructions.Count) return 0; int count = 0; while (--pos >= 0) { if (InlineOneIfPossible(block, pos, aggressive)) count++; else break; } return count; } /// /// Aggressively inlines the stloc instruction at block.Body[pos] into the next instruction, if possible. /// If inlining was possible; we will continue to inline (non-aggressively) into the the combined instruction. /// /// /// After the operation, pos will point to the new combined instruction. /// public bool InlineIfPossible(Block block, ref int pos) { if (InlineOneIfPossible(block, pos, true)) { pos -= InlineInto(block, pos, false); return true; } return false; } /// /// Inlines the stloc instruction at block.Instructions[pos] into the next instruction, if possible. /// public bool InlineOneIfPossible(Block block, int pos, bool aggressive) { StLoc stloc = block.Instructions[pos] as StLoc; if (stloc == null || stloc.Variable.Kind == VariableKind.PinnedLocal) return false; ILVariable v = stloc.Variable; // ensure the variable is accessed only a single time if (v.StoreCount != 1) return false; if (v.LoadCount > 1 || v.LoadCount + v.AddressCount != 1) return false; return InlineOne(stloc, aggressive); } /// /// Inlines the stloc instruction at block.Instructions[pos] into the next instruction. /// /// Note that this method does not check whether 'v' has only one use; /// the caller is expected to validate whether inlining 'v' has any effects on other uses of 'v'. /// public static bool InlineOne(StLoc stloc, bool aggressive) { ILVariable v = stloc.Variable; Block block = (Block)stloc.Parent; int pos = stloc.ChildIndex; if (DoInline(v, stloc.Value, block.Instructions.ElementAtOrDefault(pos + 1), aggressive)) { // Assign the ranges of the stloc instruction: stloc.Value.AddILRange(stloc.ILRange); // Remove the stloc instruction: Debug.Assert(block.Instructions[pos] == stloc); block.Instructions.RemoveAt(pos); return true; } else if (v.LoadCount == 0 && v.AddressCount == 0) { // The variable is never loaded if (SemanticHelper.IsPure(stloc.Value.Flags)) { // Remove completely if the instruction has no effects // (except for reading locals) block.Instructions.RemoveAt(pos); return true; } else if (v.Kind == VariableKind.StackSlot) { // Assign the ranges of the stloc instruction: stloc.Value.AddILRange(stloc.ILRange); // Remove the stloc, but keep the inner expression stloc.ReplaceWith(stloc.Value); return true; } } return false; } /// /// Inlines 'expr' into 'next', if possible. /// /// Note that this method does not check whether 'v' has only one use; /// the caller is expected to validate whether inlining 'v' has any effects on other uses of 'v'. /// static bool DoInline(ILVariable v, ILInstruction inlinedExpression, ILInstruction next, bool aggressive) { ILInstruction loadInst; if (FindLoadInNext(next, v, inlinedExpression, out loadInst) == true) { if (loadInst.OpCode == OpCode.LdLoca) { //if (!IsGeneratedValueTypeTemporary((ILInstruction)next, loadInst, v, inlinedExpression)) return false; } else { Debug.Assert(loadInst.OpCode == OpCode.LdLoc); if (!aggressive && v.Kind != VariableKind.StackSlot && !NonAggressiveInlineInto(next, loadInst, inlinedExpression)) return false; } // Assign the ranges of the ldloc instruction: inlinedExpression.AddILRange(loadInst.ILRange); if (loadInst.OpCode == OpCode.LdLoca) { // it was an ldloca instruction, so we need to use the pseudo-opcode 'addressof' // to preserve the semantics of the compiler-generated temporary loadInst.ReplaceWith(new AddressOf(inlinedExpression)); } else { loadInst.ReplaceWith(inlinedExpression); } return true; } return false; } /* /// /// Is this a temporary variable generated by the C# compiler for instance method calls on value type values /// /// The next top-level expression /// The direct parent of the load within 'next' /// Index of the load within 'parent' /// The variable being inlined. /// The expression being inlined bool IsGeneratedValueTypeTemporary(ILInstruction next, ILInstruction parent, int pos, ILVariable v, ILInstruction inlinedExpression) { if (pos == 0 && v.Type != null && v.Type.IsValueType) { // Inlining a value type variable is allowed only if the resulting code will maintain the semantics // that the method is operating on a copy. // Thus, we have to disallow inlining of other locals, fields, array elements, dereferenced pointers switch (inlinedExpression.Code) { case ILCode.Ldloc: case ILCode.Stloc: case ILCode.CompoundAssignment: case ILCode.Ldelem_Any: case ILCode.Ldelem_I: case ILCode.Ldelem_I1: case ILCode.Ldelem_I2: case ILCode.Ldelem_I4: case ILCode.Ldelem_I8: case ILCode.Ldelem_R4: case ILCode.Ldelem_R8: case ILCode.Ldelem_Ref: case ILCode.Ldelem_U1: case ILCode.Ldelem_U2: case ILCode.Ldelem_U4: case ILCode.Ldobj: case ILCode.Ldind_Ref: return false; case ILCode.Ldfld: case ILCode.Stfld: case ILCode.Ldsfld: case ILCode.Stsfld: // allow inlining field access only if it's a readonly field FieldDefinition f = ((FieldReference)inlinedExpression.Operand).Resolve(); if (!(f != null && f.IsInitOnly)) return false; break; case ILCode.Call: case ILCode.CallGetter: // inlining runs both before and after IntroducePropertyAccessInstructions, // so we have to handle both 'call' and 'callgetter' MethodReference mr = (MethodReference)inlinedExpression.Operand; // ensure that it's not an multi-dimensional array getter if (mr.DeclaringType is ArrayType) return false; goto case ILCode.Callvirt; case ILCode.Callvirt: case ILCode.CallvirtGetter: // don't inline foreach loop variables: mr = (MethodReference)inlinedExpression.Operand; if (mr.Name == "get_Current" && mr.HasThis) return false; break; case ILCode.Castclass: case ILCode.Unbox_Any: // These are valid, but might occur as part of a foreach loop variable. ILInstruction arg = inlinedExpression.Arguments[0]; if (arg.Code == ILCode.CallGetter || arg.Code == ILCode.CallvirtGetter || arg.Code == ILCode.Call || arg.Code == ILCode.Callvirt) { mr = (MethodReference)arg.Operand; if (mr.Name == "get_Current" && mr.HasThis) return false; // looks like a foreach loop variable, so don't inline it } break; } // inline the compiler-generated variable that are used when accessing a member on a value type: switch (parent.Code) { case ILCode.Call: case ILCode.CallGetter: case ILCode.CallSetter: case ILCode.Callvirt: case ILCode.CallvirtGetter: case ILCode.CallvirtSetter: MethodReference mr = (MethodReference)parent.Operand; return mr.HasThis; case ILCode.Stfld: case ILCode.Ldfld: case ILCode.Ldflda: case ILCode.Await: return true; } } return false; } */ /// /// Determines whether a variable should be inlined in non-aggressive mode, even though it is not a generated variable. /// /// The next top-level expression /// The load within 'next' /// The expression being inlined static bool NonAggressiveInlineInto(ILInstruction next, ILInstruction loadInst, ILInstruction inlinedExpression) { Debug.Assert(loadInst.IsDescendantOf(next)); if (inlinedExpression.OpCode == OpCode.DefaultValue) return true; var parent = loadInst.Parent; switch (next.OpCode) { case OpCode.Return: return parent == next; case OpCode.IfInstruction: while (parent.OpCode == OpCode.LogicNot) { parent = parent.Parent; } return parent == next; case OpCode.SwitchInstruction: return parent == next || (parent.OpCode == OpCode.Sub && parent.Parent == next); default: return false; } } /// /// Gets whether 'expressionBeingMoved' can be inlined into 'expr'. /// public static bool CanInlineInto(ILInstruction expr, ILVariable v, ILInstruction expressionBeingMoved) { ILInstruction loadInst; return FindLoadInNext(expr, v, expressionBeingMoved, out loadInst) == true; } /// /// Finds the position to inline to. /// /// true = found; false = cannot continue search; null = not found static bool? FindLoadInNext(ILInstruction expr, ILVariable v, ILInstruction expressionBeingMoved, out ILInstruction loadInst) { loadInst = null; if (expr == null) return false; if (expr.MatchLdLoc(v) || expr.MatchLdLoca(v)) { // Match found, we can inline loadInst = expr; return true; } foreach (var child in expr.Children) { if (!child.SlotInfo.CanInlineInto) return false; // Recursively try to find the load instruction bool? r = FindLoadInNext(child, v, expressionBeingMoved, out loadInst); if (r != null) return r; } if (IsSafeForInlineOver(expr, expressionBeingMoved)) return null; // continue searching else return false; // abort, inlining not possible } /// /// Determines whether it is safe to move 'expressionBeingMoved' past 'expr' /// static bool IsSafeForInlineOver(ILInstruction expr, ILInstruction expressionBeingMoved) { ILVariable v; if (expr.MatchLdLoc(out v) && v.AddressCount == 0) { // MayReorder() only looks at flags, so it doesn't // allow reordering 'stloc x y; ldloc v' to 'ldloc v; stloc x y' // We'll allow the reordering unless x==v if (expressionBeingMoved.HasFlag(InstructionFlags.MayWriteLocals)) { foreach (var stloc in expressionBeingMoved.Descendants.OfType()) { if (stloc.Variable == v) return false; } } return true; } return SemanticHelper.MayReorder(expressionBeingMoved.Flags, expr.Flags); } /* /// /// Runs a very simple form of copy propagation. /// Copy propagation is used in two cases: /// 1) assignments from arguments to local variables /// If the target variable is assigned to only once (so always is that argument) and the argument is never changed (no ldarga/starg), /// then we can replace the variable with the argument. /// 2) assignments of address-loading instructions to local variables /// public void CopyPropagation() { foreach (ILBlock block in method.GetSelfAndChildrenRecursive()) { for (int i = 0; i < block.Body.Count; i++) { ILVariable v; ILInstruction copiedExpr; if (block.Body[i].Match(ILCode.Stloc, out v, out copiedExpr) && !v.IsParameter && numStloc.GetOrDefault(v) == 1 && numLdloca.GetOrDefault(v) == 0 && CanPerformCopyPropagation(copiedExpr, v)) { // un-inline the arguments of the ldArg instruction ILVariable[] uninlinedArgs = new ILVariable[copiedExpr.Arguments.Count]; for (int j = 0; j < uninlinedArgs.Length; j++) { uninlinedArgs[j] = new ILVariable { IsGenerated = true, Name = v.Name + "_cp_" + j }; block.Body.Insert(i++, new ILInstruction(ILCode.Stloc, uninlinedArgs[j], copiedExpr.Arguments[j])); } // perform copy propagation: foreach (var expr in method.GetSelfAndChildrenRecursive()) { if (expr.Code == ILCode.Ldloc && expr.Operand == v) { expr.Code = copiedExpr.Code; expr.Operand = copiedExpr.Operand; for (int j = 0; j < uninlinedArgs.Length; j++) { expr.Arguments.Add(new ILInstruction(ILCode.Ldloc, uninlinedArgs[j])); } } } block.Body.RemoveAt(i); if (uninlinedArgs.Length > 0) { // if we un-inlined stuff; we need to update the usage counters AnalyzeMethod(); } InlineInto(block.Body, i, aggressive: false); // maybe inlining gets possible after the removal of block.Body[i] i -= uninlinedArgs.Length + 1; } } } } bool CanPerformCopyPropagation(ILInstruction expr, ILVariable copyVariable) { switch (expr.Code) { case ILCode.Ldloca: case ILCode.Ldelema: case ILCode.Ldflda: case ILCode.Ldsflda: // All address-loading instructions always return the same value for a given operand/argument combination, // so they can be safely copied. return true; case ILCode.Ldloc: ILVariable v = (ILVariable)expr.Operand; if (v.IsParameter) { // Parameters can be copied only if they aren't assigned to (directly or indirectly via ldarga) return numLdloca.GetOrDefault(v) == 0 && numStloc.GetOrDefault(v) == 0; } else { // Variables are be copied only if both they and the target copy variable are generated, // and if the variable has only a single assignment return v.IsGenerated && copyVariable.IsGenerated && numLdloca.GetOrDefault(v) == 0 && numStloc.GetOrDefault(v) == 1; } default: return false; } }*/ } }